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Efficient Monitoring Algorithm for Fast News Alerts
Ka Cheung Sia, Junghoo Cho, and Hyun-Kyu Cho

Abstract— Recently, there has been a dramatic increase in
the use of XML data to deliver information over the Web.
Personal weblogs, news Web sites, and discussion forums are
now publishing RSS feeds for their subscribers to retrieve new
postings. As the popularity of personal weblogs and the RSS
feeds grow rapidly, RSS aggregation services and blog search
engines have appeared, which try to provide a central access
point for simpler access and discovery of new content from a
large number of diverse RSS sources. In this paper, we study how
the RSS aggregation services should monitor the data sources to
retrieve new content quickly using minimal resources and to
provide its subscribers with fast news alerts. We believe that
the change characteristics of RSS sources and the general user
access behavior pose distinct requirements that make this task
significantly different from the traditional index refresh problem
for Web-search engines. Our studies on a collection of 10K RSS
feeds reveal some general characteristics of the RSS feeds, and
show that with proper resource allocation and scheduling the
RSS aggregator provides news alerts significantly faster than the
best existing approach.

Index Terms— Information Search and Retrieval, Online In-
formation Services, Performance evaluation, User profiles and
alert services

I. I NTRODUCTION

Recently, there has been a dramatic increase in the use of
XML data to deliver information over the Web. In particular,
personal weblogs, news Web sites, and discussion forums are
now delivering up-to-date postings to their subscribers using
the RSS protocol [32]. To help users access new content in
this RSS domain, a number of RSS aggregation services and
blog search engines have appeared recently and are gaining
popularity [2], [3], [33], [38]. Using these services, a user can
either (1) specify the set of RSS sources that she interested
in, so that the user is notified whenever new content appears
at the sources (either through email or when the user logs
in the service) or (2) conduct a keyword-based search to
retrieve all content containing the keyword. Clearly, having a
central access point makes it significantly simpler to discover
and access new content from a large number of diverse RSS
sources.

A. Challenges and contributions

In this paper, we investigate one of the important challenges
in building an effective RSS aggregator: how can we minimize
the delay between the publication of new content at a source
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and its appearance at the aggregator? Note that the aggregation
can be done either at a desktop (e.g., RSS feed readers) or at
a central server (e.g., Personalized Yahoo/Google homepage).
While some of our developed techniques can be applied to the
desktop-based aggregation, in this paper we primarily focus on
the server-based aggregation scenario. This problem is similar
to the index refresh problem for Web-search engines [7], [9],
[11], [13], [15], [30], [31], [40], but two important properties
of the information in the RSS domain make this problem
unique and interesting:

• The information in the RSS domain is oftentime sensi-
tive. Most new RSS content is related to current world
events, so its value and significance deteriorates rapidly
as time passes. An effective RSS aggregator, therefore,
has to retrieve new content quickly and make it available
to its users close to real time. This requirement is in
contrast to general Web search engines where the tempo-
ral requirement is not as strict. For example, it is often
acceptable to index a new Web page within, say, a month
of its creation for the majority of Web pages.

• For general search engines, users mainly focus on the
quality of the returned pagesand largely ignore (or not
care about) what is not returned [22], [24]. Based on this
observation, researchers have argued and mainly focused
on improving theprecisionof the top-k result [30], and
the page-refresh policies have also been designed to
improve the freshness of the indexed pages. For RSS
feeds, however, many users often have a set of their
favorite sources and are particularly interested in reading
the new content from these sources. Therefore, users
do notice (and complain) if the new content from their
favorite sources is missing from the aggregator.

As we will see later, the time-sensitivity of the RSS domain
fundamentally changes how we should model the generation
of new content in this domain and makes it necessary to design
a new content-monitoring policy. In the rest of this paper, we
investigate the problem of how we can effectively monitor and
retrieve time sensitive new content from the RSS domain as
follows:

• In Section II, we describe a formal framework for this
problem. In particular, we propose aperiodic inhomoge-
neous Poisson processto model the generation of postings
at the RSS feeds. We also propose to use thedelay metric
to evaluate the monitoring policies for RSS feeds.

• In Section III, we develop the optimal ways to retrieve
new content from RSS feeds through a careful analysis
of the proposed model and metric.

• In Section IV, we examine the general characteristics
of the RSS feeds based on real RSS-feed data. We
also evaluate the effectiveness of our retrieval policies
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Fig. 1. Framework of an information aggregator.

using the data. Our experiments show that our policy
significantly reduces the retrieval delay compared to the
best existing policies.

Note that while our work is primarily motivated by our desire
to aggregate the content from the RSS domain, our approach
is general and independent of the particular type of the data
source (e.g., whether we monitor the content from a general
Web page or from an RSS feed) as we will see later. As
long as the content is time sensitive and it is important to
redownload the content frequently (say, more than once a
day), the traditional homogeneous Poisson model for changes
often does not hold anymore, which makes our new approach
important.

II. FRAMEWORK

In Figure 1 we show the high-level architecture of an RSS
aggregator. We consider a distributed information system that
consists ofn data sources1, a singleaggregatorand a number
of subscribers. The data sources constantly generate new
pieces of information referred to as newpostings. We assume
a pull-based architecture, where the aggregator periodically
collects the most recentk postings from each source.2 A
subscriber, in turn, retrieves new postings from the aggregator.

Resource constraints:We assume that both the aggregator
and the sources have limited computational and network
resources for the retrieval of new postings. For example, the
aggregator may have a dedicated T1 line that allows the
aggregator to contact the sources up to one million times per
day, or due to the limit of its networking stack, the aggregator
may issue up to 500,000 HTTP requests per hour. In this
paper, we model the resource constraint by assuming that the
aggregator can contact the sources a total ofM times in each
period. (The notion of “period” will become clear when we
discuss the posting generation model.)

1In here, one data source typically corresponds to a single RSS feed, but if
multiple RSS feeds can be downloaded through one single HTTP connection
to a Web server, they may be grouped together and be consideredas one data
source.

2k is typically in the range of 10–15

Retrieval delay:An effective RSS aggregator has to retrieve
new postings from the sources quickly and make them avail-
able to its users with minimal delay. We formalize this notion
of delay as follows:

DEFINITION 1 Consider a data sourceO that generates post-
ings at timest1, . . . , tk. We also useti to represent the posting
itself generated at timeti unless it causes confusion. The
aggregator retrieves new postings fromO at timesτ1, . . . , τm.
The delay associated with the postingti is defined as

D(ti) = τj − ti

whereτj is the minimum value withti ≤ τj . The total delay
of the postings from sourceO is defined as

D(O) =

k
∑

i=1

D(ti) =

k
∑

i=1

(τj − ti) with ti ∈ [τj−1, τj ]. 2

It is also possible to use the metrics that have been widely
used in the general search-engine research [7], [10], [13],such
as freshnessand age, by modeling the publication of new
postings asmodificationsof a data source. For example, the
freshness,F (O; t), and age,A(O; t), of a data sourceO at
time instancet can be defined as

F (O; t) =

{

0 if ∃ti ∈ [τj , t]
1 otherwise

A(O; t) =

{

t − tm if ∃ti ∈ [τj , t]
0 otherwise

where τj is the most recent retrieval time andtm is the
minimum of all ti’s within [τj , t].

For illustration, we show an example evolution of delay,
freshness and age in Figures 2(a), (b), and (c), respectively.
The data source generates five postings att1, . . . , t5 (marked
by dashed lines). Two retrievals are scheduled by the aggre-
gator atτ1 and τ2 (marked by solid lines). The vertical axes
represent the delay, freshness, and age associated with thedata
source. Note that after the generation oft2, the delay metric
increases twice as rapidly as before, because two new postings,
t1 andt2, are pending at the source. In contrast, the age metric
does not take into account that two pending postings and still
increases at the constant same rate as before. Thus, we may
consider our delay metric as an improved version of the age
metric that takes into account multiple postings pending ata
source, which we believe is more appropriate in the context
of RSS feeds.

When multiple sources generate new postings, it may be
more important to minimize the delay from one source than
others. For example, if a source has more subscribers than
others, it may be more beneficial to minimize the delay for
this source. This difference in importance is captured in the
following weighted definition:

DEFINITION 2 We assume each sourceOi is associated with
weight wi. Then the total weighted delay observed by the
aggregator,D(A), is defined as

D(A) =

n
∑

i=1

wi D(Oi) 2
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Fig. 2. Illustration of the delay, freshness, and age metrics

Delay minimization problem:We usetij to represent thejth
posting generation time atOi andτij to refer to the time of the
jth retrieval fromOi by the aggregator. Given the definitions,
we can formalize the problem of delay minimization as
follows:

PROBLEM 1 Given the posting generation timestij ’s, find the
retrieval timesτij ’s that minimize the total delayD(A) =
∑n

i=1 wi D(Oi) under the constraint that the aggregator can
schedule a total ofM retrievals. 2

A. Posting generation model

In practice, the aggregator does not know the future posting
generation timestij ’s. Therefore, to solve the delay minimiza-
tion problem, the aggregator has toguessthe future posting
times based on thepastposting pattern of each source.

In the context of general Web search engines, researchers
have proposed that ahomogeneousPoisson process with a
rateλ is a good model to be used [7], [10]. Roughly, a homo-
geneous Poisson process is a stateless and time-independent
random process, where new postings always appear at a
constant rate λ regardless of the time [37]. A number of
studies [7], [10] show that this model is appropriate especially
when the time granularity is longer than one month. For
example, Figure 3(a) shows the total number of postings
appearing in roughly 10,000 RSS feeds that we monitored
(more details of this dataset is described in the experiment
section). The horizontal axis is the time, and the vertical
axis shows the number of postings appearing in each week
of the monitoring period. While there are small fluctuations,
the total number of new postings in each week is reasonably
stable at roughly 180,000 postings, which matches with the
homogeneous Poisson assumption. Formally, this assumption
can be stated asλ(t) = λ, where the posting generation rate at
time t, λ(t), is constant and independent of timet. Based on
this homogeneous model, researchers have derived the optimal
re-download algorithms for Web crawlers [10], [13].

Unfortunately, when the time granularity is much shorter
than one month, there exists strong evidence that the homo-
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Fig. 3. Posting rate at different resolution.

geneous Poisson model is no longer valid [4], [17], [20]. In
Figure 3(b), for example, we show the total number of postings
appearing in the same RSS feeds when we count the number
at a granularity of two hours. From the figure, it is clear that
at this time granularity, the time-independence property of the
homogeneous Poisson model does not hold. The posting rate
goes through wide fluctuation depending on the time of the
day and the day of the week. The graph also shows a certain
level of periodicity in the posting rates. During the day, there
are a significantly higher number of postings than at night.
Similarly, there are more activities during the weekdays than
on weekends. Based on this observation, we propose to use
an inhomogeneousPoisson model, where the posting rateλ(t)
changes over time. Depending on whether similar patterns of
λ(t) values are repeated over time, this model can be further
classified into one of the following:

1) Periodic inhomogeneous Poisson model: We assume that
the sameλ(t) values are repeated over time with a period
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of T . That is, λ(t) = λ(t − nT ) for n = 1, 2, . . ..
This model may be a good approximation when similar
rate patterns are repeated over time, such as the burst
of activities during the day followed by a period of
inactivity at night.

2) Non-periodic inhomogeneous Poisson model: This is the
most general model where no assumption is made about
the periodicity in the changes ofλ(t). That is, there
exists noT that satisfiesλ(t) = λ(t − nT ).

Given the periodicity that we observe in the RSS posting
pattern and the strict temporal requirement for the retrieval
of new postings from RSS feeds, we mainly use the periodic
inhomogeneous Poisson model in the rest of this paper.

B. Expected retrieval delay

Since the aggregator does not know the exact times at which
new postings are generated, it can only estimate theexpected
delay based on the posting generation model of a source. In
general, the expected delay can be computed as follows under
the general inhomogeneous Poisson model:

LEMMA 1 For a data sourceO with the rateλ(t), the total
expected delay for the postings generated within[τj−1, τj ] are
as follows:

∫ τj

τj−1

λ(t)(τj − t)dt. 2

Proof: During a small time intervaldt at time t, λ(t)dt
postings are generated. Since these postings are retrievedat
time τj , their associated delays areτj − t. Therefore, the
total delay of the postings generated betweenτj−1 and τj is
∫ τj

τj−1
λ(t)(τj − t)dt.

For the simpler homogeneous Poisson model, the above
formula is simplified to the following formula.

COROLLARY 1 When the posting rate remains constant atλ
within the time period[τj−1, τj ], the total expected delay for
postings generated within this period is

λ(τj − τj−1)
2

2
. 2

The expected delays computed above will be used in the next
section when we investigate optimal retrieval policy used by
the aggregator.

III. R ETRIEVAL POLICY

We now study how the aggregator should schedule theM
retrieval pointsτij ’s to minimize the total expected delay. We
approach this scheduling problem in two steps:

• Resource allocation: Given n data sources and a total
of M retrievals per periodT , the aggregator first decides
how many timesit will contact individual sourceOi. This
decision should be made based on how frequently new
postings appear in each source and how important each
source is.

• Retrieval scheduling: After the aggregator decides how
many times it will contactOi per T , it decides exactly
at what timesit will contact Oi. For example, if the

aggregator has decided to contactO1 twice a day, it
may either schedule the two retrieval points at uniform
intervals (say, one at midnight and one at noon) or it
may schedule both retrievals during the day when there
are likely to be more new postings.

In Section III-A, we start with the resource-allocation
problem. We then study the retrieval scheduling problem in
Section III-B. As far as we know, our work is the first
study to develop optimal solutions for the retrieval-scheduling
problem for Web sources, while similar resource-allocation
problems have been studied before (e.g., [7], [9], [13]) albeit
under a different metric. Finally in Section III-C, we go over
techniques to obtain accurate estimate of posting rates and
patterns from past history.

A. Resource-allocation policy

Our task in this section is to allocate theM retrievals among
the data sources to minimize the total expected delay. For this
task, we use the simple homogeneous Poisson process model
because the resource allocation is done based on theaverage
posting generation rateand theweight of each source, both of
which are adequately captured by the homogeneous Poisson
model. The more complex inhomogeneous model will be used
later when we consider the retrieval-scheduling problem.

Our main result for this resource-allocation problem is
summarized in the following theorem, which shows that the
optimal allocation of resources to a sourceOi should be
proportional to the square root of the product of its posting
rateλi and its importancewi.

THEOREM 1 Consider data sourcesO1, . . . , On, where Oi

has the posting rateλi and the importance weightwi. The
aggregator performs a total ofM retrievals per each period
T .

Under this scenario, the weighted total delay of postings,
D(A) =

∑n
i=1 wiD(Oi), becomes minimum when the source

Oi is contacted at a frequency proportional to
√

wiλi. That
is, mi, the optimal number of retrievals per each period for
Oi, is given by

mi = k
√

wiλi (1)

wherek is a constant that satisfies
∑n

i=1 k
√

wiλi = M . 2

Proof: We consider the data sourceOi that is retrieved
mi times per day. Under the homogeneous Poisson model, we
can show thatD(Oi), the total delay of postings fromOi,
is minimum when the retrievals are scheduled at the uniform
interval.3 In this case,D(Oi) = λiT

2

2mi
, and the total weighted

delay,D(A), is

D(A) =

n
∑

i=1

λiwiT
2

2mi

.

D(A) can be minimized by using the Lagrange multiplier
method.

∂D(A)

∂mi

= −λiwiT
2

2m2
i

= −µ.

3This proof follows from a special case of the Cauchy’s inequality stating
that sum of squares are always less then square of sums and equality holds
when all numbers are equal.



5

If we rearrange the above equation, we get

mi =
√

λiwiT 2/2µ = k
√

λiwi.

As we can see from the solution, the optimal resource
allocation can be computed simply by multiplying the posting
rate of each source withk, which can be computed fromwi’s
andλi’s. Therefore, the complexity of computing the optimal
resource-allocation policy is linear with the number of data
sources.

B. Retrieval-scheduling policy

We have just discussed how to allocate resources to data
sources based on their weights and average posting rates.
Assuming that postings are retrievedm times from the source
O, we now discuss exactly at what times we should schedule
the m retrievals. Clearly, this decision should be based on
what time of the day the source is expected to generate
the largest number of postings, so we now use the periodic
inhomogeneous Poisson model to capture the daily fluctuation
in the posting generation rate.

To make our discussion easy to follow, we start with a
simple case when only one retrieval is allocated per period
in Section III-B.1. We then extend our analysis to a more
general case in Section III-B.2.

1) Single retrieval per period:Consider a data source
O at the periodic posting rateλ(t) = λ(t − nT ). The
postings fromO are retrieved only once in each periodT .
The following theorem shows that the best retrieval time is
when the instantaneous posting rateλ(t) equals the average
posting rate over the periodT .

THEOREM 2 A single retrieval is scheduled at timeτ for a
data source with the posting rateλ(t) of periodT . Then, when
the total delay from the sourceD(O) is minimized,τ satisfies
the following condition:

λ(τ) =
1

T

∫ T

0

λ(t)dt

(

and
dλ(τ)

dτ
< 0

)

. (2) 2

Proof: Without loss of generality, we consider only the
postings generated within a single interval[0, T ]. We use the
notation D(τ) to represent the delay when the retrieval is
scheduled atτ . The postings generated between[0, τ ] are
retrieved atτ , so their delay is

∫ τ

0
λ(t)(τ − t)dt. The postings

generated between[τ, T ] are retrieved in the next interval at
time T + τ , so their delay is

∫ T

τ
λ(t)(T + τ − t)dt. Therefore,

D(τ) =

∫ τ

0

λ(t)(τ − t)dt +

∫ T

τ

λ(t)(T + τ − t)dt

= T

∫ T

τ

λ(t)dt +

∫ T

0

λ(t)(τ − t)dt.

D(τ) is minimum when

dD(τ)

dτ
= −T λ(τ) +

∫ T

0

λ(t)dt = 0

and d2D(τ)
dτ2 = −T dλ(τ)

dτ
> 0. After rearranging the expres-

sions, we get Equation 2.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

time (t)

P
os

tin
g 

ra
te

 λ
(t

)

Fig. 4. A data source going through periods of high activity and low activity

We illustrate the implication of the theorem using a simple
example.

EXAMPLE 1 Figure 4 shows a data source that goes through
a period of high activity,λ(t) = 1, during t ∈ [0, 1] and a
period of low activity,λ(t) = 0, during t ∈ [1, 2]. The same
pattern is repeated aftert = 2. Its postings are retrieved once
in each period.

According to our theorem, the retrieval should be scheduled
at t = 1 when theλ(t) changes from1 to 0 and takes the
average valueλ(t) = 0.5. This result matches our intuition that
the retrieval should be scheduled right after a period of high
activity. The expected total delay in this case is1

2 . Compared
to the worst case when the retrieval is scheduled right before
a period of high activity (i.e.,τ = 0) we get a factor of 3
improvement. Compared to the average case, we get a factor
of 2 improvement. 2

2) Multiple retrievals per period:Now, we generalize the
scenario and consider the case when multiple retrievals are
scheduled within one period.

THEOREM 3 We schedulem retrievals at timeτ1, . . . , τm for
a data source with the posting rateλ(t) and periodicityT .
When the total delay is minimized, theτj ’s satisfy the following
equation:

λ(τj)(τj+1 − τj) =

∫ τj

τj−1

λ(t)dt, (3)

where τm+1 = T + τ1 (the first retrieval point in the next
interval) and τ0 = τm − T (the last retrieval point in the
previous interval). 2

Proof: Without loss of generality, we consider the
expected total delay in postings generated betweenτ1 and
T + τ1:

D(O) =

m
∑

i=1

∫ τi+1

τi

λ(t)(τi+1 − t)dt
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=
m

∑

i=1

(

τi+1

∫ τi+1

τi

λ(t)dt

)

−
∫ T+τ1

τ1

λ(t)tdt

=

m
∑

i=1

(

τi+1

∫ τi+1

τi

λ(t)dt

)

−
∫ T

0

λ(t)tdt.

ThenD(O) is minimum when∂D
∂τj

for everyτj :

∂D

∂τj

=

∫ τj

τj−1

λ(t)dt + τjλ(τj) − τj+1λ(τj) = 0.

By rearranging the above expression, we get Equation 3.
We illustrate the graphical meaning of the theorem using an

example.

EXAMPLE 2 Figure 5 shows a data source with the posting
rate λ(t) = 2 + 2 sin(2πt). Postings are retrieved from the
source6 times in one period. We assume that we have decided
up to thejth retrieval point, and need to determine the(j+1)th

point. Note that the right-hand side of Equation 3 corresponds
to the dark-shaded area in Figure 5. The left-hand side of the
equation corresponds to the light-shaded area of Figure 5. The
theorem states that the total delay is minimized whenτj+1 is
selected such that the two areas are the same.

The above theorem states the necessary conditions of the
optimal solution. Based on this result, we may use one of
the following two methods in computing the optimal schedule
once we know theλ(t) of a source.

1) Exhaustive search with pruning: Once the first two
retrieval points are determined, the remaining retrieval
points are derived automatically from Equation 3. There-
fore, all possible plans are evaluated by exhaustively try-
ing all choices for the first two retrieval points (assuming
a certain level of discretization in the time). We can then
choose the plan with the minimum delay from only the
combinations of all first two retrieval points. Assuming
that the the time is discretized intok intervals, the cost of

exhaustively searching all possible combination of two
initial points isO(k2).

2) Iterative refinement: Initially, we place all retrieval
points at uniform intervals. We then iteratively adjust
the retrieval points by comparing the areas below the
graph. For example, if the dark area in Figure 5 is larger
than the light area, we moveτj slightly to the left to
compensate for it. We repeat the adjustment until the
retrieval points converge or subsequent adjustments are
below a certain threshold.4

In our experiments, we find that both methods lead to rea-
sonable performance in finding the optimal retrieval points
when a time granularity of 5 minutes is used for exhaustive
search with pruning. For the experiments described afterwards,
we compute the optimal retrieval schedule by the exhaustive
search with pruning method.

C. Learning posting rates and patterns

In order to implement the resource allocation and retrieval
scheduling policies, the aggregator has to learn the average
posting rate and the posting patternλ(t) of each source.
Assuming that they do not change rapidly over time, we may
estimate them by observing the source for a period of time
and use the estimation in determining the optimal monitoring
policies.

Measuring the posting rate can be done simply by counting
the total number of postings generated within a particular
learning period and dividing it by the length of the period.
Learning the continuous posting patternλ(t) is more difficult,
because we are observing discrete events of posting genera-
tion. Therefore, we first count the number of hourly postingsat
every source and build a daily histogram of hourly postings for
the sources. We then overlap the daily histograms fork-week
data for each source and obtain a graph similar to Figure 11.
This discrete posting histogram is then approximated by a
continuous function ofλ(t) through interpolation by using,
say, aith degree polynomial function.

Note that there exists a clear tradeoff in deciding how long
we choose to monitor a source to estimateλ(t); if the length
is too short, the estimatedλ(t) may be inaccurate due to the
randomness in the posting generation. However, if it is too
long and if the posting pattern itself changes over time, the
estimatedλ(t) will become obsolete by the time we obtain
it (making the monitoring policy based on the estimatedλ(t)
ineffective). Later in the experiment section, we evaluatethe
impact of the length of estimation on the effectiveness of
the policies and empirically determine the optimal estimation
period.

IV. EXPERIMENTS

In this section, we show some statistics of the collected RSS
feeds data and the result from the performance evaluation of
our retrieval policies.

4More precise formulations on how much we need to shift the retrieval
points are given in the extended version of this paper [36].
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A. Description of dataset

RSS feeds are essentially XML documents published by
Web sites, news agents, or bloggers to ease syndication of their
Web site’s contents to subscribers. Figure 6 shows a typical
RSS feed. It contains different postings in the〈item〉 tag and
summaries in the〈description〉 tag. Each posting is associated
with a timestamp〈dc:date〉, stating when it was generated.
The postings are arranged in the reverse chronological order
where new postings are prepended in the front and old postings
are pushed downwards and removed. For the majority of
current implementations, an RSS feed contains the most recent
10 or 15 postings. New postings are added to the feed at any
time without notifying their subscribers; thus, the subscribers
have to poll the RSS feeds regularly and check for updates.
The set of data used comes from a list of 12K RSS feeds
listed in http://www.syndic8.com that include time of
posting within the RSS. They were downloaded 4 times a
day between September 2004 and December 2004. Out of the
12K feeds, 9,634 (about 80%) feeds have at least one posting
within this monitoring period. We focus on this subset of 9,634
RSS feeds in the following experiments. The range of the
topics covered by this set of RSS feeds is quite diverse and
the feeds are originating from about five thousand domains.
Table I shows some of the frequent domains where these RSS
feeds originate from.

- <rdf: R DF >

<channel rdf: about="http://slashdot.org/"/>
- <image rdf: about="http://images.slashdot.org/topics/topicslashdot.gif">

<title>Slashdot</title>

- <url>

http://images.slashdot.org/topics/topicslashdot.gif
</url>

<link>http://slashdot.org/</link>

</image>

- <item rdf: about="http://slashdot.org/article.pl?sid=05/06/21/2238256& from=rss">

<title>L egal Music Downloads At 35%, Soon T o Pass Piracy</title>
- <link>

http://slashdot.org/article.pl?sid=05/06/21/2238256& from=rss

</link>

- <description>
bonch writes "E ntertainment Media R esearch released a study stating that 35% of
strategic milestone with the population of legal downloaders close to exceeding tha

</description>

<dc: creator>timothy</dc: creator>

<dc: date>2005-06-22T 02:00:00+00:00</dc: date>

<dc: subject>music</dc: subject>

<slash: department>cars-surpass-buggies</slash: department>

<slash: section>mainpage</slash: section>

<slash: hitparade>39,39,27,17,1,0,0</slash: hitparade>

<slash: comments>39</slash: comments>

</item>

Fig. 6. A sample RSS feed

In Figure 7 we show the distribution of posting rates among
the 9,634 RSS feeds, with the x-axis being the number of
postings generated within three months and the y-axis being
the number of feeds at the given rate. Both axes are shown in
log scale. Within the 3 months, 3,116 feeds have generated one
or more postings per day on average. The distribution roughly
follows a straight line in the log-log scale plot, which suggests
that it follows a power-law distribution.5

5A curve fit of the data indicates the best matching power-law curve is
y = axb, with a ≃ 376 andb ≃ −0.78.

Count Domain
1133 scotsman.com
209 www.rss-job-feeds.org
154 newsroom.cisco.com
138 www.employmentspot.com
118 blogs.msdn.com
109 radio.weblogs.com
88 feedster.com
83 www.computerworld.com
79 www.sportnetwork.net
67 abclocal.go.com

TABLE I

TOP 10 DOMAINS HOSTING THERSSFEEDS IN THE DATASET.
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Fig. 7. Distribution of posting rate of 9,634 RSS feeds

B. Effectiveness of our policy

In this section, we evaluate the potential improvement of
our proposed policy by comparing it against the best policies
in the literature. In particular, we compare thetotal weighted
delayD(A) (Definition 2 in Section II) achieved by our policy
against that of the age-based optimal crawling policy in [9].6

Since both policies have to know the average posting rate
of each source, we first learn the rates from the first two-
week data and simulate the policies on the remaining 11-week
data using the learned posting rates.7 We assign equal weights
to all sources because we want to evaluate the improvement
from our accurate modeling of the posting generation at the
sources, which is the main focus of this paper. For our policy,
we employ both resource-allocation and retrieval-scheduling
policies.

The results from these experiments are shown in Figure 8.
The horizontal axis represents the resource constraint for
a given experiment. More precisely, it shows theaverage
retrieval intervalper source (i.e., 11 weeks divided byM/n,

6Reference [9] describes two policies, one for the freshnessmetric and
the other for the age metric. Since the result from the age-based policy
outperforms the freshness-based policy by several orders ofmagnitude, we
only show the age-based policy in our comparison.

7The choice of the two-week estimation window is explained later in
Section IV-C.
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where M is the total number of retrievals andn is the
number of sources). Note that even when the average retrieval
interval is the same, the actual retrieval points for each source
are different under the two policies due to their different
optimization approach.

The vertical axis represents the retrieval delay of postings
under each policy at the given resource constraint. More
formally, it shows theaverage delay, which is the total delay
D(A) divided by the total number of postings generated by
all sources. We believe that reporting the average delay makes
the numbers easier to interpret.
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Fig. 8. Comparison with CGM03 policy

From the figure, we can see that our policy clearly outper-
forms CGM03; in general, CGM03 gives 35% longer delay
than our policy. Also note that the average delay is signifi-
cantly shorter than half of the average retrieval interval,which
is the expected delay when no optimization is performed. For
example, when the average retrieval interval is 10 hours, the
average delay is less than 3 hours under our policy, which is
more than 2 hours shorter than 5-hour expected delay with no
optimization.

Contribution of individual policy: To investigate further
how much improvement we get from each of our two opti-
mizations (i.e., the resource-allocation policy in Section III-
A and the retrieval-scheduling policy Section III-B), we now
compare the average delay of the following four policies:

1) Uniform scheduling: We do not employ either our resource-
allocation or the retrieval-scheduling policies. That is, all
sources are retrieved the same number of times and the
retrieval points are scheduled at uniform intervals. This can
be considered as the baseline.

2) Retrieval scheduling only: We employ our retrieval-scheduling
policy only. That is, all sources are retrieved the same number
of times, but the retrieval points are optimized based on their
posting patterns.

3) Resource allocation only: We employ our resource-allocation
policy only. That is, we retrieve postings different numbers of
times from the sources depending on their posting rates, but
the retrieval points are scheduled at uniform intervals for each
source.

4) Combined: Both of our policies are employed. The source are
retrieved different numbers of times and the retrieval points
are further optimized based on their posting patterns.

Again, we use the first 2-week data to learn the posting
rates and the posting patterns, and use the remaining 11
weeks to simulate the retrieval policies and to compute the
average delay. Every source is assigned an equal weight in
this experiment.

Average retrieval interval 6hr 8hr 12hr 24hr

Uniform 180 256 352 645
Retrieval scheduling 159 211 310 518
Resource allocation 109 145 217 433
Combined 101 133 197 395

TABLE II

PERFORMANCE OF4 RETRIEVAL POLICIES UNDER DIFFERENT RESOURCE

CONSTRAINTS

Table II shows the average delays (reported in minutes) for
the four policies under different resource constraints (from one
retrieval per every 6 hours per source, up to one retrieval per
every 24 hours per source). For example, the number 180 in the
second column of the second row means that the average delay
is 180 minutes under the uniform policy when the average
retrieval interval per source is 6 hours.

From the table, we first note that the average delay under
the uniform policy is close to the half of the average retrieval
interval. For example, when the average retrieval intervalis
6 hours, the average delay under the uniform policy is 180
minutes (or 3 hours). This result is expected because when
the postings are retrieved every 6 hours from a source, the
maximum delay will be 6 hours and the minimum delay will
be 0 hour, with the average being 3 hours.

The results also show that both resource-allocation and
retrieval-scheduling policies are effective in reducing the av-
erage delay. For example, when we retrieve new postings
once every 24 hours on average (the last column), retrieval
scheduling and resource allocation decreases the delay by 20%
and by 32%, respectively, from the uniform policy. Combined
together, we observe a 40% reduction in the average delay
compared to the uniform policy.

While both resource-allocation and the retrieval-scheduling
policies are effective in reducing the average delay, we note
that the improvements are obtained through different mech-
anisms. Under the resource allocation policy, resources are
taken away from the sources of low posting rates (or of low
importance) and are allocated to the sources of high posting
rates (or of high importance). Thus, while we decrease the
averagedelay, we end upincreasingthe maximumdelay of
postings (for the sources of low posting rates). In contrast,
the retrieval scheduling policy improves the delay simply by
selecting the best retrieval time for a source without reallo-
cating resources among the sources, so the maximum delay
do not vary much among the sources under this policy. For
example, under the resource constraint of one retrieval perday
per source, the maximum delay of a posting was 1440 minutes
for the retrieval-scheduling only policy, while the maximum
delay was 9120 minutes for the resource-allocation policy.
Given this result, we recommend employing only the retrieval-
scheduling policy when a tight bound on the maximum delay
is important.
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C. Learning the posting rates and patterns

In Section III-C, we discussed that we use the past posting
history of an RSS source to learn its average posting rateλi

and its posting patternλ(t). We also discussed that if the length
of the estimation period (which we refer to as theestimation
window) for λi and λ(t) is too short, the estimate may be
unreliable, while if the window is too long, the estimate may
be obsolete. In this section, we try to experimentally identify
the optimal window length for our RSS sources.

Learning the posting rates:We first study the optimal
window length for learning the average posting rateλi for
sourceOi. To investigate this, at the beginning of each day,
we use the pastk-day history data to estimate the posting rate
of each source and decide the optimal number of retrievals per
day for each source. We repeat this process over the entire 3-
month data and measure the average delay at the end of the
3-month period.
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Fig. 9. The effect of estimation window width

Figure 9 shows the average delay of postings for different
k values.8 The graph shows that average delay decreases
as the estimation window gets longer, which indicates more
accurate estimation of the posting rates. However, there isno
more improvement beyondk =14, which suggests that 14-day
worth of data is adequate to smooth out fluctuations and get
reasonable estimates.

In addition, the fact that the delay does not increase after
k = 14 suggests that the posting rate of a source is stable and
does not change significantly over time. To further investigate
the change in the posting rate, we plot the following graph:
We calculate the posting rate of each source using the first
14-day trace and use it as the x-coordinate. We then calculate
the posting rate again based on the last 14-day trace and use
it as the y-coordinate. Based on the two coordinates, we draw
a x-y scatter plot in Figure 10. In this graph, if the posting
rates are stable, all dots should be aligned along the diagonal
line y = x. We use different colors for the dots depending on
their proximity to the diagonal line.

• Group A (darkest): the top 50% dots that are the closest to the
diagonal,

8The graph is obtained when postings are retrieved 4 times per day per
feed on average. The results were similar when we use different numbers of
retrievals per day.

• Group B (lightest): the top 50%–90% dots closest to the
diagonal, and

• Group C (medium light): the rest

In the graph, we can see that most of the dots are very close to
the liney = x; more than 90% of the dots are tightly clustered
in a narrow band aroundy = x. This result indicates that the
posting rates of most sources are stable, at least within the
RSS sources that we monitored in our experiments.
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Learning posting pattern:We now study the optimal win-
dow size for learning the posting patternλ(t). For this task, as
we described before, we count the number of hourly postings
at every source and build a daily histogram of hourly postings.
We then overlap the daily histograms for thek-week data for
each source and obtain a graph similar to Figure 11, which we
use as theλ(t) graph of the source. Differentk values are used
to obtain this cumulative count graph. Our retrieval scheduling
policy is then applied and the average delay is measured for
eachk value setting. The result of this experiment is shown
in Figure 12 with x-axis showing thek value used to obtain
theλ(t) graph and the vertical axis showing the average delay
at the givenk value. The graph shows that the size ofk does
not affect the final delay too much, which indicates that the
accuracy of the posting pattern estimation is not affected by the
estimation window size much. Given this result and the result
from the posting rate estimation, we conjecture that past 14-
day history data is a good choice in learning both the posting
rate and the pattern of each source.

D. Potential saving by push-based approaches

Other than the pull-based approach that we have mainly
investigated in this paper, there can be a push-based approach
where the data sources notify the aggregator whenever a new
posting appears. Under this approach, the aggregator no longer
needs to poll the sources regularly or maintain the posting-
pattern profile of each source. Furthermore, since only new
postings can be pushed to the aggregator, no resource will
be wasted retrieving previously downloaded postings. In our
dataset, it shows that, on average, each RSS feed contains
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Fig. 11. Aggregated posting pattern of 5,566 RSS feeds
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Fig. 12. Effect of different learning period of posting patterns

the 12 most recent postings on average.9 However, each feed
only generates 4.3 new postings per day on average; therefore,
if the aggregator retrieves from the data sources once a day
under the pull-based approach, about7.7/12 = 64% of the
bandwidth will be wasted in retrieving previously downloaded
postings, which will be saved when a push-based approach
is employed. Furthermore, if implemented correctly, a push-
based approach can potentially eliminate any noticeable delay
of new postings at the aggregator, which is very difficult to
achieve under the pull-based approach. For example, given our
experimental results, if we want to achieve the average delay of
less than an hour, the aggregator needs to contact the sources
at the average rate of once every three hours under the pull-
based approach, which corresponds to 8 retrievals per day. In
comparison, a push-based approach will deliver a new posting
to the aggregator only 4.3 times per day on average given their
posting generation rate, which is roughly 50% reduction in the

9The majority of implementation is to return either the 10 or 15 latest
postings.

number of retrievals per day.
These estimates show that a push-based approach is clearly

beneficial to the aggregator in both saving bandwidth and
the number of retrievals. However, it remains to be seen
how widely a push-based approach will be deployed on the
Internet, given the dominant adoption of the existing pull-
based protocols, and a number of potential problems that a
push-based approach entails (such as the problem of spamming
by certain RSS feeds that generate bogus spam postings in
order to be shown more prominently at the aggregator and the
problem of the additional cost at the sources for maintaining
the list of subscribed aggregators and their preferences).

V. RELATED WORK

References [7], [9], [10], [11], [13], [14], [15], [17], [31]
investigate the problem of maintaining a fresh copy of Web
pages for search engines. While the general problem is similar,
the exact model and overall goals are significantly different
from ours. For example, references [7], [9], [10], [13], [31]
assume the homogeneous Poisson model to describe Web-
page changes (which does not consider the fluctuations in the
change rate as discussed in Section II-A). References [5], [8]
investigate the problem of minimizing the time to download
one snapshotof the Web by efficiently distributing the down-
loading task to multiple distributed processes.

In more recent work [30], [40], researchers have proposed
new crawling strategies to improve the user satisfaction for
Web search engines by using more sophisticated goal metrics
that incorporate the query load and the user click-through
data. Since this body of work mainly focuses on getting
improvement by exploiting theuser behaviorin the context
of Web search, it still assumes a relatively simple model to
predict the changes of Web pages. For example, reference [30]
assumes that Web pages always change in the same manner
after every refresh. We believe that a more sophisticated
change model such as our periodic inhomogeneous Poisson
process can further improve the result of these studies and is
complementary to this body of work.

In the context of relational database, reference [17] has
studied the use of periodic inhomogeneous Poisson process
(referred to as Recurrent Piecewise-Constant Poisson process
in the reference) to model record updates in a database. Due
to the difference in the general goal and user requirements,
however, its overall problem formulation and final solutions
are significantly different from ours.

Researchers [14], [29] have also studied a source-
cooperative approach where data sources activelypush new
changes to the aggregator. While these push-based approaches
have significant benefits, it remains to be seen whether they
will be widely adopted for the general Web.

There have been recent efforts to make Web crawling more
efficient by improving the underlying protocol. For example,
Google sitemap protocol [19] allows a site administrator to
publish the list of pages available at her site at a predefined
location together with the last modification dates of the pages.
While this new protocol helps a crawler discover new Web
pages and their changes more efficiently, it is still based on



11

the pull architecture, where a Web crawler is still responsible
for periodically contacting the sites and downloading changes.
Therefore, even if this protocol are widely deployed, our
monitoring policy will be still helpful in reducing the retrieval
delay of new postings.

Researchers have studied publisher-subscriber systems [1],
[6], [16], [25], [34], [41] and proposed strategies for the
efficient dissemination of information in these systems. This
body of work mainly focuses on the efficient filtering of the
overwhelming incoming data stream against a large pool of
existing subscriber profiles, and the efficient data delivery
method in the Internet scale; different from this body of work,
our aggregator is not passively waiting for new data to come
in; instead, the aggregator monitors and actively pulls from
different data sources to collect new postings.

Researchers in the information retrieval communities have
also tackled the similar problem of monitoring multiple data
source but in the perspective of improving information rel-
evance, which complements the information freshness issue
addressed in this paper. Under the federated search and P2P
search framework, references [26], [28], [35] have proposed
algorithms for querying a subset of data sources while main-
taining a high quality of search result. Reference [21] has pro-
vided a theoretical study on the trade-off between wait-time in
querying the underlying data sources and providing reasonable
quality of results to users. In terms of efficient content delivery,
reference [39] has extended the publish/subscribe model on
DHT network that considers data and language model in data
placement process.

Google Alerts [18] and a number of blog aggregation
services [2], [3] provide ways for users to subscribe to a
set of news sources and get notified of any new articles.
Unfortunately, the details of their implementation is a closely
guarded secret. Besides, many interesting WWW applications,
such as blogging and semantic web [23], semantic information
retrieval based on XML data [12], and the recently emerged
Mashup [27] technology can all benefit from a more efficient
dissemination and exchange of content in the XML/RSS
format. We believe that our work can be helpful to further
improve these systems by providing the formal foundation and
a disciplined solution to the delay minimization problem in
order to provide timely service.

VI. CONCLUSION

In this paper we have investigated the problems related to an
RSS aggregator that retrieves information from multiple RSS
sources automatically. In particular, we have developed a new
RSS monitoring algorithm that exploits the non-uniformityof
the generation of new postings and is able to collect new
data efficiently using minimal resources. Our results have
demonstrated that the aggregator can provide news alerts
significantly faster than the best existing approach under the
same resource constraints. In addition, based on the analysis of
the collected RSS data, it suggests that the posting rate follows
a power-law distribution, and that the posting rate and pattern
remain fairly stable over time. Finally, we have estimated the
potential benefit of a push-based approach to the aggregatorby

measuring its saving in bandwidth and the number of retrievals
per day.

The ability to provide timely information to Web users is
of high commercial value to a Web service provider in both
attracting user traffic and mining user behavior. We believe
that existing RSS aggregators and blog search engines will
benefit from the proposed monitoring policy to provide up-to-
date information to users.
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