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ABSTRACT
There is an exploding amount of user-generated content on the Web
due to the emergence of “Web 2.0” services, such as Blogger, MyS-
pace, Flickr, and del.icio.us. The participation of a large number of
users in sharing their opinion on the Web has inspired researchers
to build an effective “information filter” by aggregating these in-
dependent opinions. However, given the diverse groups of users
on the Web nowadays, the global aggregation of the information
may not be of much interest to different groups of users. In this
paper, we explore the possibility of computingpersonalized aggre-
gation over the opinions expressed on the Web based on a user’s
indication of trust over the information sources. The hope is that
by employing such “personalized” aggregation, we can make the
recommendation more likely to be interesting to the users. We ad-
dress the challenging scalability issues by proposing an efficient
method, that utilizes two core techniques:Non-Negative Matrix
Factorizationand Threshold Algorithm, to compute personalized
aggregations when there are potentially millions of users and mil-
lions of sources within a system. We show that, through experi-
ments on real-life dataset, our personalized aggregation approach
indeed makes a significant difference in the items that are recom-
mended and it reduces the query computational cost significantly,
often more than 75%, while the result of personalized aggregation
is kept accurate enough.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filter-
ing; H.3.4 [Systems and Software]: Performance evaluation (effi-
ciency and effectiveness)

General Terms
Algorithms, Experimentation

Keywords
Persoanlized Recommendation, Aggregate Queries, Matrix Factor-
ization, Web-mining.
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1. INTRODUCTION
The amount of user-generated content on the Web is explod-

ing as the broadband internet connection becomes ubiquitous and
many “Web 2.0” services, such as Blogger, MySpace, Flickr, and
del.icio.us, make it extremely easy even for a novice user to post
and share their own creation on the Web. These user-generated
contents are the expression of individuals’ opinion on various is-
sues and items around them. For example, a technical blogger may
write his own opinion on a new and highly-anticipated gadget on
his blog, and a del.icio.us user may “bookmark” a page if she finds
the page worth a later visit.

The participation of a large number of users in sharing their opin-
ion on the Web has inspired researchers to build an effective “in-
formation filter” by aggregating these independent opinions. For
example, del.icio.us and Digg – two popular online bookmarking
sites – count how many times a page is “bookmarked” or “digged”
by their users, and prominently show the most popular pages on
their front page. The hope of these aggregation services is that
by leveraging the independent judgement of millions of users, we
can tap into the wisdom of the crowds and make a good collective
judgement on what items and/or topics are truly interesting.

Such aggregation service is shown to be effective in finding the
popular and interesting items from the Web. However, this ap-
proach suffers from two shortcomings: (1) a particular user’s in-
terest may be significantly different from the interest of the general
publics. (2) it may be vulnerable to spam. For example, a group
of users can collaborate to promote pages for their own benefit to
the front page of Digg. Also, given the diverse groups of users on
the Web nowadays, a Web page that has been recommended by a
particular group of users may not be of much interest to different
groups of users.

In this paper, to address the above-mentioned problems, we ex-
plore the possibility of computingpersonalized aggregationof the
opinions expressed on the Web. Under our approach, we assume
that each user indicates how much the user “trusts” each informa-
tion source1 — either explicitly or implicitly. Then as each source
“mentions” or “endorses” different items2 over time, users get per-
sonalized recommendation of items based on how many times each
item is endorsed by their trusted sources. By employing this “per-
sonalized” aggregation, we can make the recommendation more
likely to align with the user’s interest and less vulnerable to spam
created by untrusted sources. In fact, in our experiments, we ob-

1An information source can be any independent source of informa-
tion, such as a blog page maintained by a particular blogger, or the
bookmark page maintained by a particular del.icio.us user.
2An item can be any potential object of interest, such as a Web
page mentioned on blogs, or a hot topic or gadget being discussed
on blogs.



serve that our personalized aggregation approach indeed makes a
significant difference in the items that are recommended and cap-
tures the user’s interest much better than a overall aggregation ser-
vice.

Although such an idea can be extremely effective, one important
challenge in providing personalized aggregation is the problem of
scalability. Given that there are potentially millions of users who
may use the system and millions of sources to get the opinions
from, computing the personalized aggregation every time when a
user requests incurs significant computational cost as we will see
later. The main focus of this paper is to address this scalability is-
sue. Roughly, our idea for addressing this challenge is to model
the personalized aggregation problem as matrix multiplication and
apply an effective matrix decomposition method to reduce the mul-
tiplication cost. As we will show, our approach for personalized ag-
gregation reduces the computational cost significantly, often more
than 75%, while the result of personalized aggregation is kept ac-
curate enough.

The rest of the paper is organized as follows. In Section 2, we
formulate thepersonalized aggregationas the problem of weighted
sum computation and present two basic methods to perform this
computation. We then present a matrix representation of this prob-
lem and propose an efficient method to supportpersonalized aggre-
gations. In Section 3, we will describe the experiments with real
dataset to show the impact of personalization and the efficiency of
our proposed method. Finally, we give concluding remarks and a
brief discussion of some possible future investigations in Section 5
after we briefly go over related work in Section 4.

2. FRAMEWORK
In this paper, we assume that we want to compute personal-

ized recommendations forn users (U = {u1, u2, . . . , un}) by
aggregating opinions fromm different individual bloggers (B =
{b1, b2, . . . , bm}). While our method is general enough, we focus
on blogs to make our discussion more concrete. It is straightfor-
ward to apply our framework to other application domain. We as-
sume that each userui has expressed his level of “trust” on each
bloggerbj as the trust scoreT (ui, bj). We refer to the set of trust
scores that the userui places on bloggersb1, . . . , bm

~Ti = 〈T (ui, b1), T (ui, b2), . . . , T (ui, bm)〉

as thetrust vectorof ui. These trust scores may be provided ex-
plicitly by the users (e.g., users may subscribe to a list of blog
RSS feeds, indicating their interest and/or trust in those blogs) or
the trust scores may be estimated by analyzing the past behavior
of the users (e.g., by monitoring how frequently a user reads arti-
cles from each blog). We assume that there arel items of interest
(O = {o1, o2, . . . , ol}) that bloggers mention and that can poten-
tially be recommend to the users. The exact definition of an item is
application dependent. For example, for a system that recommends
Web pages, an item will be a Web page, and for a system that rec-
ommends electronic gadgets, an item will be an electronic gadget
that is mentioned on the blogs. Whenever a bloggerbj mentions an
item ok on his blog and expresses his opinion, we assume that he
provides a certain degree of “endorsement” forok, represented as
the endorsement scoreE(bj , ok). For example, when a bloggerbj

includes a link to the Web pageok in one of his articles, we may
assume thatbj is giving the endorsement score 1 forok. The set of
all endorsement scores for the itemok by the bloggersb1, . . . , bm

~Ek = 〈E(b1, ok), E(b2, ok), . . . , E(bm, ok)〉

is referred to as theendorsement vectorof the itemok.

Under this notation, our problem of computing personalized ag-
gregate recommendation can be stated as follows:

PROBLEM 1 For each userui and each itemok, we want to com-
pute the personalized endorsement scoreR(ui, ok)

R(ui, ok) =

m
X

j=1

T (ui, bj)E(bj , ok), (1)

and return items with the highest personalized scores to the user.
Equation 1 can be restated using the following vector notation:

R(ui, ok) = ~Ti · ~Ek. 2

In order to compute the personalized endorsement score for each
user, we have to maintain the trust scoreT (ui, bj) for every (ui, bj)
pair and the endorsement scoreE(bj , ok) for everyok endorsed by
bj . We may record these scores in the following two tables:

• Trust (user_id, blog_id, score)

• Endorsement(blog_id, item, score)

Each tuple in the Trust table records a user’s trust score on a blogger
in the score attribute. Each tuple in the Endorsement table records
the endorsement score by a blogger for an item in the score at-
tribute.

Given the above two tables, computing the items with highest
personalized endorsement scores for userui can be expressed as
the following SQL queryQ1:
Q1: SELECT t.item, sum(t.score*e.score) AS score
FROM Endorsement e, Trust t
WHERE e.blog_id = t.blog_id AND
t.user_id = ui

GROUP BY t.item
ORDER BY score DESC LIMIT 20

Here, we assumed that we want to return the top-20 items, using
the syntaxORDER BY score DESC LIMIT 20, for the userui.

2.1 OTF and VIEW
One simple way of returning the items with the top personal-

ized endorsement scores is to compute the answer for the query
Q1 on-the-fly when the user wants personalized recommendation.
This approach is illustrated in Figure 1(a) and is referred to asOTF
(short for on-the-fly). Under OTF, we maintain one global Endorse-
ment table, where a new tuple is inserted (or an existing tuple is
updated) whenever a blogger posts a new article and provides an
endorsement for an item. Using this global Endorsement table, we
then executeQ1 by joining the table with a user’s trust scores in
the Trust table when the user asks for recommendation.

Unfortunately, repeatedly executingQ1 for every user’s request
can be prohibitively expensive. Because there are millions of blog-
gers who keep posting new articles (and thus providing new en-
dorsements), and a user may trust a large number of bloggers and
have many non-zero entries in his trust vector, the join in Q1 may
involve millions of tuples, which will be too expensive to perform
on the fly.

Alternatively, to avoid this runtime query execution cost, we may
proactivelyprecomputethe personalized endorsement scores for
every user. That is, for each userui, we maintain his personalized
endorsement score table

• PersonalizedEndorsement(item, score)

as we show in Figure 1(b). Under this approach, whenever a blog-
ger bj provides a new endorsement for the itemok, all Personal-
izedEndorsement tables for the users with non-zero trust onbj are
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Figure 1: The graphical illustration of three different methods

updated to reflect this new endorsement. We refer to this approach
asVIEW, since this approach maintains a materialized view of per-
sonalized endorsement scores for every user.

Under this VIEW approach, a user’s personalized endorsement
scores are always precomputed and are available in the user’s Per-
sonalizedEndorsement table, so the user’s request for recommen-
dation can be handled quickly. We simply need to look up the
top-scored items from the user’s PersonalizedEndorsement table.
However, maintaining the Personalized Endorsement tables will in-
cur significant update cost, because whenever there is a new update
on a blog with a large number of trusting users, all corresponding
PersonalizedEndorsement tables should be updated.

2.2 Matrix representation
In the previous section, we described the two baseline approaches

for computing the personalized endorsement scores: OTF and VIEW.
The main problem of OTF is that the query execution cost is too
high due to a join between two large tables. The main problem
of VIEW, on the other hand, is that the maintenance cost of the
PersonalizedEndorsement tables is too high because one new en-
dorsement may trigger updates on a large number of tables. In this
section, we investigate how we can minimize both the table up-
date cost and the query computation cost. In order to develop an
approach with lower costs, we first reformulate the execution of
query Q1 as a matrix multiplication problem.

It is easy to see that the trust scores in the Trust table can be
viewed as an (n × m) matrixT , where each entry(i, j) represents
the userui’s trust score on the blogbj . Similarly, the endorsement
scores in the Endorsement table can be viewed as an (m× l) matrix
E, where each entry(j, k) represents the bloggerbj ’s endorsement
score for the itemok. Then from the definition of the personalized
endorsement scoreR(ui, ok) in Equation 1, we see thatR(ui, ok)
can be computed from the matrix multiplication ofT andE:

PROPOSITION1 The personalized endorsement score of the item
ok for the userui, R(ui, ok), is the(i, k) entry of the matrix mul-
tiplication ofT andE. That is,

R(ui, ok) = (TE)(i,k), (2)

whereM(i,k) represents the(i, k) entry of the matrixM . 2

We use the following example to illustrate this matrix interpreta-
tion of the problem.

EXAMPLE 1 Suppose that there are three users, four bloggers and
three items. The userui’s trust score on the bloggerbj is given in
the trust matrixT in Figure 2. For example, the value of the (1,2)
entry, 0.8, indicates thatu1 trustsb2 with the score0.8. Also, the
bloggerbj ’s endorsement for the itemok is given in the endorse-
ment matrixE in the figure. For example, the value, 2, of the (4,2)

T b1 b2 b3 b4

u1 .8 .8 0 0
u2 .2 .2 .6 .6
u3 0 0 .5 .5

E o1 o2 o3

b1 3 2 0
b2 0 3 0
b3 1 0 1
b4 1 2 3

Figure 2: Trust matrix T and endorsement matrixE

TE o1 o2 o3

u1 2.4 4 0
u2 1.8 2.2 2.4
u3 1 1 2

Figure 3: The result of the matrix multiplication TE

entry, indicates that the bloggerb4 endorses the itemo2 with the
score 2.

Note that each row in the trust matrixT corresponds to the trust
vector~Ti of the userui. Also each column in the endorsement ma-
trix E corresponds to the endorsement vector~Ek of the itemok.
Given thatR(ui, ok) = ~Ti · ~Ek, we see thatR(ui, ok) is simply
the (i, k) entry of the matrix multiplicationTE. That is, comput-
ing the personalized endorsement scoreR(ui, ok) is equivalent to
performing the matrix multiplication ofT andE. In Figure 3 we
show the result of this multiplication. 2

Given this matrix formulation, OTF can be viewed as follows:
We maintain separateT andE matrices as new endorsements are
provided by the bloggers by updating theE matrix. Then, when the
users request their personalized endorsement scores, weperform
the multiplication ofT andE on the fly. The cost for updating the
E matrix, therefore, will be low, because a new endorsement from a
blogger incurs an update to a single entry in the matrixE; when the
bloggerbj provides the endorsement forok, only the(j, k) entry
of theE matrix will be updated. The computation cost of the per-
sonalized endorsement scores, on the other hand, will be very high
because of the high cost of the multiplication of two large matrices.

The other VIEW approach can also be seen as the following ma-
trix operations: We maintain the single matrixTE as new endorse-
ments are provided by the bloggers by updating the appropriate
entries inTE. Since all personalized scoresR(ui, ok) are pre-
computed in the matrixTE and are readily available, the cost for
answering a user’s request forR(ui, ok) will be low. On the other
hand, the cost for maintaining the matrixTE will be high, because
a single endorsement from a blogger may trigger multiple updates
on a large number of entries in theTE matrix. For example, an en-
dorsement frombj who have 1,000 trusting users will incur updates
to 1,000 entries in theTE matrix.

The above two extreme approaches, either precomputing the en-
tire matrix multiplicationTE or performing it lazily at the user’s
request suggests exploring a possible middle ground, where we per-
form part of the multiplication proactively before the user’s request



and finish the rest of the multiplication on the fly. In the next sec-
tion, we will see that finding this middle ground is equivalent to
finding a good low-rank decomposition of the matrixT .

2.3 Matrix decomposition for efficient compu-
tation

To understand how matrix decomposition can be used to find
the middle ground, we consider the trust matrixT in Figure 2 of
Example 1. From the trust table, we observe that even though there
are three users with different trust vectors, the useru2’s vector ~T2

is simply a linear combination of~T1 and~T3. That is,

~T2 = 0.25 ~T1 + 1.2 ~T3. (3)

Now, given thatR(u2, ok) = ~T2 · ~Ek, we observe thatR(u2, ok)
can actually be computed fromR(u1, ok) andR(u3, ok). That is,

R(u2, ok) = ~T2 · ~Ek

= (0.25 ~T1 + 1.2 ~T3) · ~Ek

= 0.25~T1 · ~Ek + 1.2~T3 · ~Ek

= 0.25R(u1, ok) + 1.2R(u3, ok)

This observation hints a possible modification to the VIEW ap-
proach:instead of maintaining one PersonalizedEndorsement table
for every user, maintain the table only for the two “representative
users,” u1 andu3. The personalized endorsement score foru2 is
then computed indirectly by combining the personalized scores for
u1 andu3. This modification to the VIEW approach has the fol-
lowing two merits in terms of its update and the query computation
cost:

1. Update cost: The update cost for the PersonalizedEndorse-
ment tables is significantly reduced from the VIEW approach.
That is, according to the trust matrixT in Figure 2, every
bloggerbj is trusted by two users (i.e., for every columnbj

in T , there are two non-zero entries). Therefore, under the
VIEW approach, a new endorsement by the bloggerbj will
trigger updates totwo Endorsement tables. In contrast, un-
der our modified approach, we maintain only two Personal-
izedEndorsement tables foru1 andu3. Now, becausebj is
trusted by only one ofu1 or u3, a new endorsement bybj

will trigger just a single update to one of the two Personal-
izedEndorsement tables.

2. Query computation cost: The computation cost for person-
alized endorsement scores of the modified approach is also
significantly lower than that of OTF. Under OTF, the com-
putation ofR(ui, ok) values involves the multiplication ofT
andE matrices. Under the modified approach, in contrast,
R(ui, ok) scores for the useru1 andu3 have already been
precomputed. For the remaining useru2, the computation of
R(u2, ok) can also be done cheaply by taking the weighted
sum ofR(u1, ok) andR(u3, ok). In short, the query com-
putation cost of the modified approach is significantly lower
than that of OTF and is close to the cost of VIEW.

Our modified approach to computingR(ui, ok) can be viewed
as the following matrix decomposition ofT into W andH:

T = WH

0

@

.8 .8 0 0

.2 .2 .6 .6
0 0 .5 .5

1

A =

0

@

1 0
.25 1.2
0 1

1

A

„

.8 .8 0 0
0 0 .5 .5

«

Here, each row of the second matrixH corresponds to the trust
vector of the two “representative” users,u1 andu3. Each row of
the first matrixW then represents how each userui’s trust vec-
tor can be obtained from the trust vectors of the two representative
users. For example, the first row ofW is 1 for the first entry, indi-
cating thatu1’s trust vector is identical to the trust vector of the first
representative user. The second row has 0.25 and 1.2 as its entries,
indicating that the trust vector ofu2 is the the linear combination of
the trust vectors of the two representative users, weighted by 0.25
and 1.2, respectively.

Given this decomposition, we see that maintaining the Person-
alizedEndorsement tables for the two representative usersu1 and
u3 is equivalent to precomputing the multiplication ofH andE.
Note that each row of theHE matrix has theR(ui, ok) scores of
each of the two representative users. Then during the query time,
we computeR(ui, ok) of ui by multiplying the precomputedHE

with W as follows:

TE = (WH)E = W (HE)

=

0

@

1 0
.25 1.2
0 1

1

A

0

B

@

„

.8 .8 0 0
0 0 .5 .5

«

0

B

@

3 2 0
0 3 0
1 0 1
1 2 3

1

C

A

1

C

A

=

0

@

1 0
.25 1.2
0 1

1

A

„

2.4 4 0
1 1 2

«

The main benefit of this approach comes from the fact that the
number of rows inH is much smaller than the number of rows inT ,
so we need to maintain a much smaller number of PersonalizedEn-
dorsement tables. More formally, we reduce both the update and
the query computation cost for personalized endorsement scores
by decomposing the(n × m) matrix T into (n × r) and(r × m)
matricesW andH wherer ≪ n and by precomputing the multi-
plicationHE.

In general, this process of matrix decomposition have the fol-
lowing intuitive interpretation: We first identify therepresentative
groups of userswho have similar trust vectors, so that we can pre-
compute the personalized endorsement scores for each represen-
tative user group. Then during the query time, we compute the
personalized endorsement scores of each user by combining their
scores on the representative user groups. In Figure 1(c) we graphi-
cally illustrate this interpretation. Note that in the figure, note that
we maintainone PersonalizedEndorsement table per user group
not per every user. Since the number of user groups is much smaller
than the number of users, this approach is likely to lead to signif-
icant improvement in the update and the query computation cost
compared to to VIEW and OTF.

2.4 SVD and NMF
Our previous discussion shows that we can reduce the costs of

multiplication by finding a way to decompose(n × m) matrix
T into (n × r) matrix W and (r × m) matrix H wherer ≪
min{n, m}. Sincer corresponds to the number of “representative”
user groups for which we maintain separate PersonalizedEndorse-
ment tables, we would like to find a decompositionWH such that
r is minimal. Unfortunately, it is known that the minimumr value
for the decompositionWH is therankof the matrixT . That is, for
a matrixT whose rank is close tomin{n, m}, it is not possible to
obtain a decompositionWH with a low r value. Given that exact
decomposition is almost impossible , we relax our goal to find the
closest approximation of the trust matrixT with WH for a givenr

value.

DESIDERATA 1 Given the desired rankr of the matrix decompo-



sition ofT , find theW andH such thatWH is closest toT :

T ≈ WH 2

One well-known method for low-rank matrix approximation is
Singular Value Decomposition (SVD). If we use SVD to decom-
pose matrixT into two orthogonal matrices, the decomposition is
guaranteed to be the best in terms of the Forbenius norm, at any
given rank approximation. Unfortunately, the decomposed matri-
cesW andH incur significant update and query execution cost due
to the high density of the the matrices; almost all entries in theW

andH are non-zero, which can be interpreted that every blogger
bj is trusted by every representative user group and that every user
ui belongs to every representative user group to a certain extent.
Therefore, an update from the bloggerbj incurs updates to the Per-
sonalizedEndorsement table of almosteveryuser group. Also, the
computation ofR(ui, ok) for the userui, requires us to combine
the scores from almostall PersonalizedEndorsement tables.

This high update and query cost resulting from the SVD decom-
position led us to introduce the second desiderata for the matrix
decomposition:

DESIDERATA 2 Given the desired rankr of the matrix decompo-
sition of T , find theW andH, T ≈ WH, such that matricesW
andH are as sparse as possible. 2

Intuitively, by making most of the entries ofW andH zero, we
are trying to identify the user groups such that that each blogbj is
trusted by only a small number of groups and each userui belongs
to only a small number of groups.

We find that Non-negative Matrix Factorization (NMF) is one of
the methods with both properties. In fact, NMF allows us to spec-
ify the desired sparsity of the resulting matrixW andH for a given
rank valuer. Later in Section 3, we will provide the experimental
comparison between SVD and NMF, in terms of their approxima-
tion accuracy and the sparsity of the decomposed matrices. In the
rest of this paper, we refer to our approach of using NMF for the
matrix decomposition and theR(ui, ok) computation as theNMF
method.

2.5 Efficient computation of top-K items
Once the PersonalizedEndorsement tables are precomputed for

every user group using our NMF method, we can computeR(ui, ok)
for ui by combining the scores from the tablesui belongs to. In
most case, as the query Q1 suggests, users are interested in a top-K
items with the highest endorsement scores, not every item endorsed
by bloggers. This suggests another possibility for optimization un-
der our NMF method. Instead of computingR(ui, ok) for every
item ok, we computeR(ui, ok) only for the items that are likely
to have high scores. More specifically, from each PersonalizedEn-
dorsement table thatui belongs to, we obtain only those items with
highR(ui, ok) scores in each table. We then compute the personal-
izedR(ui, ok) values only among these items and return the top-K.
This way, we can further reduce the execution cost ofQ1 because
we read only a few tuples from each PersonalizedEndorsement ta-
ble, avoiding scanning most of the tuples in the tables.

In [1], Fagin et.al. proposed an algorithm, called Threshold Al-
gorithm, suitable for this optimization. Through a careful analysis
of the algorithm, the authors have shown that we can indeed com-
pute thecorrect top-K items optimally, by looking at just the top
few entries from each PersonalizedEndorsement table. More for-
mally, they have shown that when the score of an itemoi is com-
puted by by a monotone aggregate functiont(oi) = t(x1, . . . , xm),
wherex1, . . . , xm are the basis scores from which the final score
is computed, we only have to read the top items with the high-
est x1, . . . , xm scores until a certain threshold condition is met.

See [1] for more detailed description of the algorithm. In our later
experiment section, we implement Threshold Algorithm for the
top-K item computation and report the performance numbers with
this optimization. Note that the optimization based on the Thresh-
old Algorithm does not involve any approximation, because the re-
turned top-K items are guaranteed to be the correct top-K item.

2.6 Hybrid approach
The NMF method brings advantages by approximating and de-

composing a dense user-blog trust matrix into fewer number of user
groups; hence, we do not need to update a large number of Person-
alizedEndorsement tables or to aggregate a large number of tuples
in the Endorsement table at query time. However, the user-blog
trust matrix may not be dense over all users and blogs. In a real
world dataset, some users may only trust a few blogs, while some
blogs may only have a few followers. For this kind of users and
blogs, the two baselines, OTF and VIEW, can already handle the
personal aggregate query efficiently.

As shown in the literature [2] (and also in the experiments after-
wards), the user-blog trust matrix (also referred as the subscription
matrix) is usually skewed and shows a power-law like distribution.
Figure 5 shows a a subscription matrix with rows and columns as
the blogs and users respectively. When the rows and columns of
the matrix are ordered by the number of non-zero entries, it may be
divided roughly into three regions as illustrated in Figure 4. In the
figure, the region marked as “1. OTF” corresponds to the users that
subscribe to just a small number of blogs. The other two regions,
“2. VIEW” and “3. NMF”, correspond to the users who subscribe
to a large number of blogs, where “2. VIEW” indicates the blogs
with just a few subscribers and “3. NMF” indicates the blogs with
many subscribers.

Based on such division of users and blogs, we can apply dif-
ferent methods to process aggregate queries. For the region “1.
OTF”, OTF is efficient enough; since the users in the region sub-
scribes to a small number of blogs, personalized endorsement is
computed from just a small number of blogs. For the other two re-
gions, the query computation cost can be high if OTF is used, since
these users subscribe to a large number of blogs. Fortunately, for
the region “2. VIEW”, we can use VIEW method to pre-compute
the PersonalizedEndorsement table for each user whenever there
is a new endorsement from each blog; the blogs in this region are
subscribed by a small number of users, so an update from a blog
in this region triggers updates to just a few PersonalizedEndorse-
ment tables. The third region “3. NMF”, however, incurs too much
cost if either OTF or VIEW method is used, so we apply NMF
method to this region to reduce the query computation cost. Later
in Section 3, we experimentally investigate how the relative size of
the three regions impacts the query and update performance of the
overall system.

Under such partitioning scheme, whenever new users or blogs
are added, they can first be handled in region “1.OTF” and “2.VIEW”
because they are assumed to have smaller number of subscriptions
and subscribers respectively, for which the query cost and update
cost are low. Either periodically or after the subscription data has
changed from the previous version beyond a threshold, the trust ma-
trix is repartitioned and the region “3.NMF” is recomputed again to
update these changes. In this paper, we assume the trust matrix is
fairly stable and will leave the study of handling dynamic subscrip-
tion matrix as future work.

3. EXPERIMENTS
In this section, we evaluate the effectiveness of the proposed

NMF method. In Section 3.1, we first describe the dataset used
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Figure 4: Three different regions of the user-blog trust matrix.

Figure 5: Subscription matrix with rows and columns ordered
by the number of subscribers and subscriptions respectively.

for our experiments. Then in Section 3.2, we investigate how much
difference personalization makes in the recommendation quality by
comparing recommended items with or without personalization. In
Sections 3.3 and 3.4, we evaluate the effectiveness of the NMF
method by measuring the accuracy of the NMF method in approxi-
mating the top-k popular items (Section 3.3) and by comparing the
query and update cost of the NMF method to the other two base-
line methods(Section 3.4). Finally in Section 3.5, we measure how
different choices of parameters affect the performance of the NMF
method.

3.1 Description of dataset
Trust matrix We obtained the users’ trust information on the
blogs, by collecting a snapshot of the user-blog subscription data
from Bloglines [3]. Bloglines is a Web-based online RSS reader,
where users can specify the list of RSS feeds that they are inter-
ested in, so that they can access new articles from the subscribed
blogs at a single location.

This subscription dataset contained 91,366 users who subscribed
to 487,694 distinct RSS feeds on the Web.3. On average, one user
subscribed to 30 distinct RSS feeds, leading to a total of 2.7 million
user-blog subscription pairs. Figure 5 shows the collected subscrip-
tion matrix, where the users and the feeds are sorted by their num-
ber of subscriptions and subscribers, respectively. The subscription
pattern follows a power-law distribution as reported in similar pre-
vious studies [2]. The matrix is indeed very sparse, with most of the
subscription pairs located in the lower-right-hand corner (This may
not be noticeable because of the printing issue). There were 24,340
users with more than 30 subscriptions and 10,152 blogs with more
than 30 subscribers, which correspond to the box in the lower-right
corner in Figure 5. This region consists of roughly 1 million sub-
scription pairs inside. Since the Bloglines users do not indicate
their level of interest over the feeds, the subscription matrix is a
degenerate version of the user-blog trust matrix having values of
either zero or one.
Endorsement matrix In order to obtain the endorsement matrix
for our experiments, we have collected all articles posted at the
3We only consider the users with public profile.

487,694 RSS feeds between October 2006 and July 2007 and an-
alyzed their contents. Again, we consider that when the itemoi

appears in an article posted by the bloggerbj , the blogger “en-
dorses” the item. Still, an important decision that we have to make
is what constitutes an item. For our experiments, we explored two
possibilities – theURLs appearing on blog articles and thekey-
wordsappearing on the blog articles – but due to space limit, we
report our results obtained from keywords. This choice of item
may be interpreted as identifying “popular buzzwords” within the
subscribed blogs for each user. To assign the endorsement score
for every keyword appearing in the blog articles, we extracted only
the nouns from the articles using a basic NLP part-of-speech tag-
ger and used the standardtf.idf score of those nouns, whereidf
is calculated from all the blog entries published on the same day.
There are other methods like n-grams technique and KL-divergence
with background corpus [4] to extract key phrases from blog arti-
cles to improve the quality of recommendation, we apply thetf.idf

method for simplicity and focus our work on the query optimization
in this paper.

3.2 Does personalization make a difference?
To quantitatively show how much difference personalization makes

in overall recommendation, we first present the top few recom-
mended items when they are computedgloballyby aggregating the
endorsements from all bloggers with equal weights and when they
are computedindividually for each user by weighting the endorse-
ments with each user’s trust vector. Table 1 shows the list of top 10
recommended keywords among all RSS feeds and for three sample
users in the week between 2007-01-07 and 2007-01-13. This is the
week whenApple Inc.announced itsiphone.

From this list we can see that personalizing the aggregation based
on a user’s interest does make a big difference in terms of the rec-
ommendation. Globally, the announcement ofiphoneby Applewas
indeed very popular among bloggers and showed up as one of the
top-10 recommended keywords. This globally popular event, how-
ever, was essentially filtered out for the recommendations for the
user 90550 and the user 91017, whose interests seem to be less
technology oriented, but more towards media/entertainment (user
90550) and politics (user 91017). As another data point, we also
show the same list computed in the week between 2007-04-01 and
2007-04-07. The global top keywords, again, pick up an important
event close to the week (Easter holiday), while top keywords for
individual users are less sensitive to the change of global trend and
continue to be related to their personal interests.

In order to quantitatively measure the difference of the recom-
mended keywords among the users, we compute the following met-
rics. LetLG be the set of global top-20 keywords andLi be the set
of top-20 keywords of the useri. Then the average overlap between
the global recommendation and the individual recommendations
can be measured by1

n

P

|LG ∩ Li| and the overlap of the recom-
mendations among the users can be measured by2

n(n−1)

P

i6=j |Li∩

Lj |, wheren is the number of users. When we measured these
overlaps, they were 1.12 and 1.13, respectively, for the top-1000
users with the largest number of subscriptions, indicating that the
recommended keyword lists shared only one keywords, on aver-
age.4

We show the shared-keyword count distributions in Figure 6(a)
and 6(b). As we can see, even among users with large number
of subscriptions (that are likely to have overlapping interest), their
personalized answers differ significantly from the global answer
and also among the users themselves.

4These numbers were even smaller for the users with fewer sub-
scriptions.



Global user 90439 user 90550 user 91017

2007-01-07 to 2007-01-13
sales cattle brazil yorker
iphone beef iguazu iraq
apple iphone reuters bush
manager chicago search president
iraq iraq vegas views
management bush argentina avenue
development apple kibbutz dept
software companies video troops
business prices cathartik saddam
phone quarter google iran

2007-04-01 to 2007-04-07
easter bush angeles yorker
news iraq google views
google campaign kibbutz rock
sales president premiere theatre
business slashdottit entourage critic
description money photo/gus iran
york chicago ruelas paul
police plans shop fiction
security zell reuters southern
quality mccain actress stage

Table 1: Global and individual list of top keywords during the
week of 2007-01-07 to 2007-01-13 and 2007-04-01 to 2007-04-
07.
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Figure 6: Distribution of the number of overlapping top-20
keywords among top 1000 users.

3.3 Accuracy of approximation
The NMF method attempts to compute the aggregation quickly

at the cost of losing the accuracy of the aggregation. In this section,
we investigate accuracy of the approximated result computed by the
NMF method.

We first compare NMF with SVD on how close they can approx-
imate the original matrix when both are approximated to the same
rank.5 Since NMF does not necessarily produce orthogonal matri-
ces as the output, when SVD approximation is done to rank-r, we
choosen × r andr × m to be the size ofW andH from NMF,
for a fair comparison withr rank SVD approximation. In Table 2,
we report the accuracy of these two methods. The first column
shows the rank of the approximated matrix. The second column
shows the Frobenius norm of the difference between the original
matrix and the SVD-approximated matrix (i.e.,|T − USV T |) and
the third column shows the Frobenius norm under the NMF approx-
imation (i.e.,|T − WH|). From this result, we can see that SVD
and NMF both results in roughly the same accuracy in terms of the
Frobenius norm; NMF approximation is only 1% worse than that
of SVD; however, NMF significantly outperforms SVD in terms
of the sparsity (the percentage of non-zero entries) of the decom-
posed matrices. From the third column of the table, we see that
NMF gives an average sparsity of 23% inW and 13% inH, while

5SVD is proven to provide the best approximation under the Frobe-
nius norm for a given rank.
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Figure 7: Visual comparison of the accuracy of subscription
matrix approximation.

the sub-matrices decomposed from SVD contain almost 100% non-
zero entries.

To make the accuracy of the approximation easier to see visually,
we plot the density map of the subscription matrix (only the dense
region) comparing the original subscription matrix, the SVD, and
the NMF approximations in Figure 7. From the figure, we can see
that both NMF and SVD leads to very close approximation of the
original subscription matrix.

SVD NMF
Rank norm norm (sparsity ofW, H)
80 848.5 856.9 (25.0%,14.4%)
90 841.6 850.1 (24.7%,13.6%)
100 835.1 844.6 (23.2%,13.3%)
110 829.0 837.9 (22.7%,12.9%)
120 823.2 833.0 (21.5%,12.7%)

Table 2: Comparison of the accuracy and sparsity between
SVD and NMF at different rank approximation.

In addition to measuring the accuracy in terms of subscription
matrix approximation, we investigate NMF’s accuracy in terms of
the top-20 recommended items to the users. To quantify this, sup-
poseAi andTi are the top-k recommended items computed with
and without using the NMF approximation method for the userui.
Then we measure the degree of overlap between the correct and
approximated recommendations,Ai∩Ti

Ti

. When we computed this
overlap for the top of the top 1000 users (those with most num-
ber of subscriptions) and took the average, we observed that 70%
of recommended items were shared between the two lists. In Fig-
ure 8, we show this overlap varies as we changek in the top-k.
From the figure, we can see that the higher-ranked items, that are
considered more important to the users, are more likely to be ap-
proximated by the NMF method. For example, the top-ranked item
was recommended by the NMF method in about 90% of the cases.

3.4 Efficiency of the the NMF method
We now compare the update and query performance of NMF

with two other baselines, OTF and VIEW. To compare their up-
date performance, we assume that we monitor the blogs for one
week from 2007-01-07 to 2007-01-13 and as new items appear in
the blogs, we update the Endorsement table in OTF, the Person-
alizedEndorsement table of users in VIEW, and the group tables
in NMF. From this measurement, we see that the total number of
updates for OTF, VIEW, and NMF are roughly 222K, 23.6M, and
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Figure 8: Approximation accuracy as a function of rank

Method avg std max min
OTF 2.05s 3.60s 84.42s 0.037s
NMF 0.46s 0.53s 2.84s 0.007s

Table 3: Statistics of time taken by OTF and NMF (among the
top 1000 users)

3.2M, respectively, for the region where NMF approximation is ap-
plied. That is, while the update cost of NMF is higher than OTF,
NMF still reduces the update cost by an order of magnitude com-
pared to VIEW.

In Table 3, we report the query response time of OTF and NMF
for top-1000 users (with a large number of subscriptions). We
do not report the result from VIEW here, because answering a
query under VIEW is a simple table lookup. The response time
of OTF is measured by running theQ1 in Section 2 on MySQL
and that of NMF is measured by a python implementation of the
NMF and Threshold Algorithm interfacing a MySQL 5.0.27 server
(with 600MB main memory as index key cache) running on a AMD
Dual Core Fedora machine with database files residing on a RAID
disk. On average, the OTF method spends to answer a query 2.05s,
while the NMF method spends 0.46s. From the table, we observe
that the reduction in the query response time is even more signifi-
cant when we compare the maximum response time; NMF reduces
the maximum from 84.42s to 2.84s and allows that all users get
results within a reasonable amount of time in an interactive setting.

In summary, we can see the NMF method is a middle ground
between OTF and VIEW by trading more update cost for a faster
query response time.

3.5 Sensitivity analysis of NMF region size
We have previously studied on an arbitrary choice (users with

>30 subscriptions and feeds with>30 subscribers) of the dense
subscription region to apply the NMF method. In this experiment,
we empirically try different sizes of the NMF region and study its
impact on the query cost, update cost, and approximation accuracy.
Table 4 shows the size and sparsity of the NMF region under differ-
ent choices of boundary. For each of these settings, we apply NMF
with the same parameterr = 100.

Figure 9 shows how the update cost (as the number of SQL up-
date statements used to process one week of data) changes with the
size of the NMF region. We observe that changing the NMF region
size along the users and feeds dimension has opposite effect on the
update cost. The blue solid line shows that when fewer users are
included in the NMF region (i.e. more users are handled by the
OTF method), the lower is the update cost because users handled
by the OTF method do not require their PersonalizedEndorsement
table to be maintained; hence, results in lowering the update cost.
The red dashed line shows that when fewer feeds are included in the
NMF region (i.e. more feeds are handled by the VIEW method),

boundary size # subscription pairs
(feeds, users) (m× n) (sparsity)

> 30, > 25 10, 152× 28, 236 1,070,130 (0.37%)
> 30, > 30 10, 152× 24, 340 1,004,908 (0.41%)
> 30, > 35 10, 152× 21, 182 944,385 (0.44%)
> 30, > 40 10, 152× 18, 600 885,581 (0.47%)
> 30, > 45 10, 152× 16, 392 834,423 (0.50%)

> 25, > 30 12, 470× 24, 340 1,060,292 (0.35%)
> 30, > 30 10.152× 24, 340 1,004,908 (0.41%)
> 35, > 30 8, 514× 24, 340 958,789 (0.46%)
> 40, > 30 7, 275× 24, 340 918,483 (0.52%)
> 45, > 30 6, 315× 24, 340 883,324 (0.57%)

Table 4: Characteristics of different sizes of NMF region.

the higher is the update cost because less feeds are benefited from
the NMF method to reduce number of updates. This relationship
suggests us to include less users but more feeds to be approximated
by the NMF if update cost minimization is the desirable objective.
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Figure 9: The impact of NMF region size on update cost.

Next, we examine the impact of the size of NMF region on the
query efficiency and accuracy of approximation. Since our evalu-
ation focus on the set of users with large number of subscriptions,
changing the NMF boundary along the user dimension will not af-
fect the group of users evaluated, so, we investigate only the change
along the feed dimension that determines the proportion of feeds to
be handled by VIEW and NMF method.

Figure 10 shows the average approximation accuracy (with±1
standard deviation) of the top 1000 users under different sizes of the
NMF region. We observe that when fewer feeds are being approx-
imated by the NMF method, the higher is the approximation ac-
curacy because more feeds are now handled by the VIEW method
without any approximation. Other than this, we also observe that
the query response time remains similar regardless of the NMF re-
gion size. This can be explained by the fact that the Threshold
Algorithm is combining from similar number of ordered lists be-
cause sparsity of the factorized matrices are similar when we use
the samer parameter for different NMF region size.

Based on the above observation, when we want to best leverage
the advantage brought by the NMF method, we should aim at in-
cluding fewer users but more feeds in the NMF region, so that we
can reduces the update cost, while still giving good approximation
accuracy.

4. RELATED WORK
Our work span over several areas such as Web data mining, per-

sonalization and query optimization, the related literature roughly
fall into the three categories: 1) Web mining for trends, 2) Web
personalization and collaborative filtering, and 3) OLAP and query
optimization of aggregates and ranking operations.

Blogging activates have brought to the Web a huge amount of
user-generated content. There have been research efforts [4, 5,6,
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Figure 10: The impact of different size of NMF region on ap-
proximation accuracy.

7] on mining Web data for trends and information retrieval specific
on blog data. For example, Gruhlet.al. [5] describes several tech-
niques to find representative keywords and phrases (memes) that
corresponds to discussion topics in the blogosphere and presents
methods to trace the spreading of information among blogs. Wang
et.al [7] has proposed method to correlate similar trends from mul-
tiple sources. The majority of the prior work on Web mining focus
on finding a set of global trend by aggregating large number of
sources; while our work further extend this idea to provide more
personalization to improve user experience.

There are significant amount of work on Web personalization
and collaborative ranging from fast learning of accurate user pro-
files [8], personalized recommendation through collaborative filter-
ing [9], and optimization of complex systems [10, 11]. Recently,
Daset.al. [11] describe how Google News provides personalized
news feed items. It addresses on the implementation of PLSI and
EM algorithm using the map-reduce programming paradigm and
user profile management within the Google cluster. We see there
will be an interesting investigation to apply our method in a dis-
tributed environment to further improve the efficiency.

Optimization of aggregation and ranking query have long been
studied in the database community, especially in the OLAP con-
text. Recently, Liet.al. [12] have introduced an extension to the
SQL semantics to support custom clustering method using "group
by" and to support general ranking function using "order by". Qu
and Labrinids [13] describes how to optimize the scheduling pro-
cess of a streaming database engine to accommodate different user
preferences on freshness and accuracy of results. While some other
previous work [14, 15, 16] on efficient aggregate query processing
may differ from application domains and assumptions, we share the
same line of thoughts to improve query processing through approx-
imation and reusing partially computed results among queries.

Our work benefits from two existing prior arts: 1)the core tech-
nique, Non-negative Matrix Factorization, had been applied by ma-
chine learning researchers in various application domains such as
pattern recognition [17], computer vision [18] and clustering [19,
20]. 2) The Threshold Algorithm is an efficient method proposed
by Faginet.al. [1] to rank objects by merging from multiple sorted
attribute lists.

5. CONCLUSION
In this paper, we formalized the problem of personalized aggre-

gation. We presented two baseline approaches and discussed their
limitations. We then present a matrix representation of the prob-
lem and proposed a method that uses Non-negative Matrix Factor-
ization and Threshold Algorithm to speed up the query process-
ing and reduce the update cost. We showed, using experiments on
real-life blog dataset, the significance of personalized aggregation

and effectiveness of our proposed solution. In particular, the NMF
method is able to cut the query response time by 75% at the expense
of paying reasonable amount of update cost, while maintaining an
approximation accuracy of roughly 70%. Some interesting future
directions include the investigating the optimal choice of the num-
ber of users and blogs to be included in the NMF approximation,
the effect of matrix sparsity on query efficiency, and the application
of NMF method in a distributed computing environment.
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