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Abstract of the Dissertation

Challenges and Opportunities in Building

Personalized Online Content Aggregators

by

Ka Cheung Sia

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2009

Professor Junghoo Cho, Chair

The emergence of “Web 2.0” services has attracted a large number of users to

publish content on the Web as blogs, social bookmarks, customer reviews, and

wiki articles. Due to the explosion of this “user-generated” content, the amount of

new data on the Web is growing rapidly, at a rate that is several times higher than

what was believed before. To help users keep up with the continuous stream of

new content, many Web 2.0 sites provide RSS feeds that return recently updated

materials based on a user’s request. Since many users often “subscribe” to a large

number of RSS, which may be on the order of hundreds, there is a need for a

new online service that helps users manage their growing subscription lists and

the constant stream of new content.

In this dissertation, I study the challenges and opportunities in building a

large-scale personalized online content aggregator. In particular, I address the

following three challenges in building such a system:

(1) A significant portion of user-generated content is updated frequently, often

several times a day, and is related to current world events whose significance

deteriorates rapidly over time. I propose an effective RSS-feed retrieval algorithm

xvi



based on the updating pattern of the feeds and the access pattern of the users.

The algorithm helps the system deliver fresh content to the users in a timely

manner even in a resource-constrained setting.

(2) In order to help users navigate the continuously updated new content, it

is important to provide a service that can prioritize and recommend what the

user is most likely to be interested in based on the user’s personal interest. I

propose a learning framework that efficiently captures a user’s interest through

an interactive process. I also develop an efficient approach to computing such

“personalized recommendations” that can scale well to a large number of users

without putting an unreasonable strain on computing resources.

(3) The data collected from such a system over time, often in the form of social

annotations, involves lots of human effort in matching the best descriptive key-

words with the corresponding Web resources. As an example of how this rich

body of data can be mined to help users, I analyze its evolution over time and

propose methods that discover the behavioral properties of evolving vocabulary

usage. I illustrate how these properties can be used to help users select the best

keywords in the online advertising context.
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CHAPTER 1

Introduction

The “Web 2.0” services, such as Blogger [Bloa], MySpace, Flickr, and deli-

cious [Del], have made it extremely easy even for non-technical amateurs and

individuals to share their content online, resulting in the explosion of new online

materials, “user-generated” content (UGC). For example, according to Ramakr-

ishnan and Tomkins [RT07], the rate that UGC is produced is 4 times larger

than that of professional Web content (written by somebody paid for this work,

such as a corporate site’s Web master). Figure 1.1 shows a study by Technorati,

a search engine targeting on blog content, that the number of blogs1 had been

doubling every 6 months for 3 years form 2003 to 2006.

The explosion of online sources of information makes it very difficult for a user

to keep up with what is new on the Web. That is, when a user has only a few

sources of interest, say, the New York Times and CNN, it is reasonable to expect

that she will visit these sites regularly to browse through new materials. When

she has hundreds of such sites, however, it is practically impossible for her to visit

each site regularly to see what is new. To help users in this context, many Web

2.0 sites provide RSS feeds [RSSa] for new content. An RSS feed returns recently

updated materials at a site according to a user’s request, and because it is based

on a standard protocol, an automatic software program, called an RSS reader,

can perform periodic retrievals of new materials from RSS feeds. An RSS reader,

1Only blog creations are counted, blogs that were abandoned are still counted.

1



Figure 1.1: Growth of new blogs by Technorati study (doubling every 6 months).

2



Figure 1.2: Usage of RSS content.

therefore, allows a user to look at new content at a single place, as opposed to at

hundreds of distributed sources that she has to visit individually.

A study by Grossnickle et al. [GBP05], shown in Figure 1.2, reveals that the

majority of content disseminated through RSS feeds are news, blogs, music /

video (podcasts), and shopping / online commerce. It suggests that RSS feeds

are mainly responsible for delivering everyday online content.

Engineers have built online RSS readers, such as Bloglines [Blob] and Google

reader [Gooc], to enable ubiquitous access to users. Figure 1.3 shows an example

of the Google reader interface. Through such an online RSS reader, users can

manage their subscribed RSS feeds (lower left pane) and follow closely any new

3



Figure 1.3: Google reader example.

articles posted. Given the increasing number of RSS feeds a user may have

subscribed, it becomes difficult to follow every piece of new articles; therefore, the

service provides users an executive-summary style of what’s new and important

(center pane). It ranks articles based on their previous reading patterns or source

popularity. Besides, it analyzes the subscribed RSS feed content and recommends

interesting topics, often in the form of key phrases and Webpage links, for users to

further explore if they are interested (top right pane). In addition, users can also

mark certain articles as their “favorites”, tagging them with their own keywords

for later reference or retrieval and share with friends (upper left pane). With all

these functionalities described, the online RSS reader helps users better manage

and access online content than using a stand-alone desktop RSS reader program.

4



Data Sources

Aggregator

Subscribers

Figure 1.4: An online personalized RSS reader.

1.1 Challenges and opportunities

In this dissertation, I study the challenges and opportunities in building an online

personalized RSS reader that provides users with the functionalities mentioned

above. As shown in Figure 1.4, such service has to periodically retrieve new

content from the list of RSS feeds that are subscribed by its users. It then actively

“pushes” the new content to each user or makes it available on a user’s next

visit, depending on the user’s preference. At the same time, it keeps track of all

users’ profiles, such as their reading patterns and interests, taggings and sharing

of articles among friends, in order to provide better user experience through

personalization.

While the benefits are enormous, the construction of a large-scale personal-

ized RSS reader raises many interesting engineering challenges. In particular, I

investigate the following challenges arising in this context:

1. Efficient Monitoring: Due to the large number of RSS feeds that the system

5



has to monitor and its limited network bandwidth, there can be a significant

delay between the publication of new content at the RSS feeds and the

retrieval by our system. Since the content published through RSS feeds is

often time-sensitive [GBP05] and their readers expect to see new content

quickly [AA05], it is of paramount importance to develop an efficient RSS

feed monitoring and retrieval policy that minimizes the retrieval delay by

the system using the available bandwidth. How should the system schedule

the monitoring and the retrieval of RSS feeds to minimize the delay?

2. Ranking of Articles: Given that a large number of articles are being gener-

ated daily by the set of RSS feeds subscribed by a user, one might find it dif-

ficult to read every piece of news. As a way to help users locate relevant and

interesting articles, the system has to provide a ranked list of articles based

on users’ interest. Unfortunately, it is well-known that an average online

user is very reluctant to specify her interest explicitly [KB04, SHY04, Hij99],

so in order to provide personalized ranking of articles to a user, the sys-

tem has to automatically infer a user’s interest based on her past activities.

How should the system learn the user’s interest from her activities? How to

derive a good ranking function of articles based on the learned user interest?

3. Efficient Computation of Personalized Recommendations: As another way

to improve user experience, the system processes content from all subscribed

RSS feeds of a user and analyze what are the most frequently mentioned

phrases and Webpages links within the feeds to provide recommendations of

interesting topics to users. Unfortunately, computing personalized recom-

mendations for millions of users is prohibitively expensive even for large-

scale online service providers. Is there a way to make personalized rec-

ommendations for every user without putting an unreasonable strain on
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computing resources?

4. Mining of User Generated Data: The data, such as taggings of Web re-

sources, that the system collects over time from both the RSS feeds and

the interactions of its users can be mined to help the users in their other ac-

tivities. How can we mine this new time-evolving data? What can we learn

from this diverse and potentially chaotic data that the system collects?

1.2 Organization of the dissertation

To address the challenges mentioned above, the remainder of this dissertation is

organized as follows:

Chapter 2: Monitoring RSS feeds - I start by analyzing the problem

faced by RSS aggregation services and also blog search engines that try to provide

users a central access point of updated content from a large number of diverse

RSS sources. I study the content generation and user-access patterns of RSS

feeds and find that they often experience fluctuating yet repeating patterns when

investigated at a time scale of hours or less. Such an observation is different from

what was previously assumed in the literature, thus, it inspires me to introduce

the periodic inhomogeneous Poisson process to better model the article-update

and user-access process.

Based on the proposed model, I then develop a new content retrieval policy

for RSS feeds to deliver “fresh” content to users with minimal delay in resource-

constrained settings. The proposed policy utilizes both resource allocation (i.e.

allocating more retrievals to sources of higher importance, such as those update

more frequently and with more subscribers) and retrieval scheduling (i.e. schedul-

ing retrievals closer to updates of articles to reduce the delay.) techniques.
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Using experiments with real dataset collected from about 10k RSS feeds and

user-access patterns from a few volunteers using a Web browser plug-in, I show

that the proposed policy significantly reduce the delay compared to existing meth-

ods. In addition, I investigate a simple change in the RSS protocol that can

potentially lead to significant improvement in retrieval delay and estimate its

benefit using the real dataset.

Chapter 3: Ranking of articles - In order for a user to keep up with

the increasing number of new articles being generated every day, the aggregator

often provides a ranked list of articles based on her interest on the front page.

This requires the aggregator to learn the user’s interest from her previous online

activities and devise a good ranking function of articles based on the learned

interest.

In Chapter 3, I, together with my collaborators, investigate how we can de-

vise a good ranking function of articles that can automatically captures the user’s

interest based on her activities in the system. In particular, we model a user’s in-

terest as a distribution over a set of pre-defined topics and propose a probabilistic

framework to model the behavior of reading and clicking of articles in a ranked

list. Under this framework, we use both Exploitation (showing articles that are

of the user’s main interest) and Exploration (preferring articles from topics that

have been less presented to the user so far in order to discover the user’s potential

interests in those topics) techniques to rank articles among different topics and

capture the user’s interest quickly through an iterative process.

A rigorous evaluation of the proposed techniques is clearly difficult due to the

subjective nature of “good” recommendations, which necessitates an evaluation

study with the participation of a large body of unbiased volunteers. Given our

limited resources for a large scale human study, we first conduct extensive simu-
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lation with synthetic data to explore the key properties of our proposed method

and how it compares with a greedy approach that utilizes Exploitation only under

simulation. We also conduct a small scale pilot user study with 10 volunteers in

technical fields. While our result is not conclusive due to the potential bias in our

evaluation group and its small scale, it hints that combining both Exploration

and Exploitation has the potential to significantly boost the overall effectiveness

of ranking of RSS articles.

Chapter 4: Efficient personal recommendations - Sometimes, online

content aggregators may provide an additional functionality to improve user ex-

perience. Such a service analyzes the content within all subscribed RSS feeds

of a users and recommends popular key phrases and Web links that are being

mentioned frequently in those feeds, for her further investigation. In Chapter 4, I

explore how we can provide personalized recommendations to users based on the

set of RSS feeds that they subscribe to. In particular, I address the scalability

issues when there are potentially millions of users and millions of sources served

by the system.

I start by modeling the personal recommendation computation as matrix mul-

tiplications and discover that users often share similar interests. Utilizing this

property, I apply the Non-negative Matrix Factorization [Hoy04] to cluster users

into different interest groups based on their subscription-list similarity. The com-

putation is then broken down into two stages: precomputation of recommen-

dations for user groups and combination of precomputed results for individual

users. The computation is further speeded up by an existing top-k computation

algorithms, Threshold Algorithm [FLN01], to avoid processing unnecessary items.

Using experiments with a dataset collected from an online content aggregator,

Bloglines, I show that the personalized recommendation approach indeed makes
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a significant difference in the set of recommended items and it is possible to

compute recommendations at a significantly lower cost than by existing methods.

In addition, I also discuss the adjustment of parameters to further improve the

efficiency of the proposed method.

Chapter 5 Social annotation analysis - Over time, the online RSS ag-

gregator collects a huge amount of user interaction data, often in the form of

social annotations. The enormous number of social annotations that are being

generated by users (e.g., the “tags” used for bookmarking blog articles) involve

significant human efforts in matching the best descriptive words with their cor-

responding Web resources. Such data provide not only rich information to orga-

nize Web resources for better retrieval performance but also important clues on

vocabulary-usage behavior in the Web information retrieval.

As an example of leveraging this rich body of data to help users, in this

chapter, I study the possibility of using the evolving online tagging data to capture

the evolutionary characteristics of words, such as their specificity, emergence, and

time-sensitivity. To investigate these properties, I apply a state-of-the-art text-

mining algorithm, Latent Dirichlet Allocation [BNJ03], to discover the hidden

topics among Web resources and their associated keywords. I also draw upon

other features extracted from this dataset such as change of keyword membership,

diversity of the membership, and change of keyword entropy, etc., then, I apply

classifier techniques to draw conclusions on three properties of a word (specificity,

emergence, and time-sensitivity) by combining the above mentioned features.
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CHAPTER 2

Monitoring RSS feeds

2.1 Introduction

As the popularity of “weblogs” (or blogs) has been growing over time and as

many users have been closely following the new postings of their favorite blogs,

there has been a dramatic increase in the use of XML data to deliver information

over the Web. In particular, personal weblogs, news Websites, and discussion

forums are now delivering up-to-date postings to their subscribers using the RSS

protocol [RSSa]. To help users access new content in this RSS domain, a number

of RSS aggregation services and blog search engines have appeared recently and

are gaining popularity [Blob, Bloc, RSSb, Tec, Gooc]. Using these services, a

user can either (1) specify the set of RSS sources that she is interested in, so that

the user is notified whenever new content appears at the sources (either through

email or when the user logs into the service) or (2) conduct a keyword-based

search to retrieve all content containing the keyword. Clearly, having a central

access point makes it significantly simpler to discover and access new content

from a large number of diverse RSS sources.

In this chapter, I investigate an important challenge in building an effec-

tive RSS aggregator: How can we minimize the delay between the publication

of new content at a source and its appearance at the aggregator and improve

the user’s experience by preventing her from missing new content? Note that
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the aggregation can be done either at a desktop (e.g., RSS-feed readers) or at

a central server (e.g., Bloglines [Blob] or Google Reader [Gooc]). In this chap-

ter, I address both the server-based aggregation and a desktop application sce-

nario. This problem is similar to the index refresh problem for Web-search en-

gines [CG00, CG03a, CN02, CLW98, EMT00, PO05, PRC03, WSY02], but two

important properties of the information in the RSS domain make this problem

unique and interesting:

• The information in the RSS domain is often time-sensitive. Most new RSS

content is related to current world events, so its value and significance

deteriorates rapidly as time passes. An effective RSS aggregator, therefore,

has to retrieve new content quickly and make it available to its users close

to real time. This requirement is in contrast to general Web search engines

where the temporal requirement is not as strict. For example, it is often

acceptable to index a new Webpage within, say, a month of its creation for

the majority of Webpages.

• For general search engines, users mainly focus on the quality of the returned

pages and largely ignore (or do not care about) what is not returned [Joa02,

LM03]. Based on this observation, researchers have argued for and mainly

focused on improving the quality of the top k result [PO05], and the page-

refresh policies have also been designed to improve the freshness of the

top-ranked pages. For RSS feeds, however, many users often have a set

of their favorite sources and are particularly interested in reading the new

content from these sources. Therefore, users do notice (and complain) if

the new content from their favorite sources is missing from the aggregator.

As we will see later, the time-sensitivity of the RSS domain fundamentally

changes how we should model the generation of new content in this domain and
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makes it necessary to design a new content-monitoring policy. In the rest of this

chapter, I investigate the problem of how to monitor and retrieve time-sensitive

new content effectively from the RSS domain:

• In Section 2.2, I describe a formal framework for this problem. In particular,

I propose a periodic inhomogeneous Poisson process to model the generation

of postings at the RSS feeds and user-access patterns. I also propose to use

a delay metric and a miss penalty metric to evaluate the monitoring policies

for RSS feeds.

• In Section 2.3, I develop the optimal ways to retrieve new content from RSS

feeds through a careful analysis of the proposed model and metric.

• In Section 2.4, I examine the general characteristics of the RSS feeds based

on real RSS-feed data and traces of user-access pattern collected by a

browser plug-in. I also evaluate the effectiveness of the retrieval policies

using real data. The experiments show that the policy significantly reduces

the retrieval delay and new content missed by users compared to the best

existing policies.

Note that while my work is primarily motivated by the desire to aggregate the

content from the RSS domain, my approach is general and independent of the

particular type of the data source (e.g., whether we monitor the content from

a general Webpage or from an RSS feed), as will be seen later. As long as

the content is time-sensitive and it is important to re-download the content fre-

quently (say, more than once a day), the homogeneous Poisson model becomes

less accurate when modeling at a finer time scale, which makes my new approach

important.
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2.2 Framework

Figure 1.4 illustrates the high-level architecture of an online RSS aggregator,

which is a distributed information system that consists of n data sources1, a sin-

gle aggregator and a number of subscribers. The data sources constantly generate

new pieces of information referred to as new postings. I assume a pull-based ar-

chitecture, where the aggregator periodically collects the most recent k postings

from each source.2 A subscriber, in turn, consumes new postings from the ag-

gregator. There does exist another push-based architecture where data sources

notify ping servers through an XML-RPC protocol whenever there is a new post-

ing. Upon receiving such messages, the aggregator then decides when to retrieve

new postings.

Resource constraints

Let’s assume that both the aggregator and the sources have limited computa-

tional and network resources for the retrieval of new postings. For example, the

aggregator may have dedicated T1 lines that allow the aggregator to contact the

sources up to one million times per day, or due to the limit of its networking

stack, the aggregator may issue up to 500,000 HTTP requests per hour. In this

chapter, I model the resource constraint by assuming that the aggregator can

contact the sources a total of M times in each period. (The notion of “period”

will become clear when I discuss the posting generation model.)

1In here, one data source typically corresponds to a single RSS feed, but if multiple RSS
feeds can be downloaded through one single HTTP connection to a Web server, they may be
grouped together and be considered as one data source.

2k is typically in the range of 10–15
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Retrieval delay

An effective RSS aggregator has to retrieve new postings from the sources quickly

and make them available to its users with minimal delay. The notion of delay

can be formalized as follows:

Definition 1 Consider a data source O that generates postings at times t1, . . . , tk.

ti is also used to represent the posting itself generated at time ti unless it causes

confusion. The aggregator retrieves new postings from O at times τ1, . . . , τm.

The delay associated with the posting ti is defined as

D(ti) = τj − ti

where τj is the minimum value with ti ≤ τj. The total delay of the postings from

source O is defined as

D(O) =
k

∑

i=1

D(ti) =
k

∑

i=1

(τj − ti) with ti ∈ [τj−1, τj]. 2

Miss penalty

In some situations where the user-access pattern is known, such as when the

aggregation is done at a desktop (e.g. an RSS reader software program) or when

the online aggregator records the access pattern of all subscribers of a feed, we

may consider another metric that resembles a user’s experience when accessing

the local copies. Figure 2.1 illustrates a scenario where a data source generates

new postings at times t′is, while the aggregator retrieves them at time τ1, and

the user accesses the local copies (as retrieved by the aggregator) at time u1.

Apparently, the user will miss two recently generated postings (t4 and t5) at u1

since the local copies were retrieved before t4.

Under this scenario, a miss penalty metric, which is the number of postings

missed by the user when she looks at the local copies, may be used to evaluate
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Figure 2.1: Illustration of relationship between number of articles missed, re-

trieval time and user-access time

the performance of the aggregator. Given a data source O and a user U 3, the

metric is defined as follows:

M(O,U) = |ti, τj < ti ≤ uk| (2.1)

where τj is the maximum value with ti > τj, and uk is the minimum value with

ti < uk.

It is also possible to use the metrics that have been widely used in the general

search-engine research [CG00, CG03b, CLW98], such as freshness and age, by

modeling the publication of new postings as modifications of a data source. For

example, the freshness, F (O; t), and age, A(O; t), of a data source O at time

instance t can be defined as

F (O; t) =







0 if ∃ti ∈ [τj, t]

1 otherwise

A(O; t) =







t − tm if ∃ti ∈ [τj, t]

0 otherwise

3A user can be an individual or a group of users who have subscribed to the same data
source.
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where τj is the most recent retrieval time and tm is the minimum of all ti’s within

[τj, t].

For illustration, Figure 2.2 (a), (b), and (c) show an example evolution of

delay, freshness, and age respectively. The data source generates five postings at

t1, . . . , t5 (marked by dashed lines). Two retrievals are scheduled by the aggre-

gator at τ1 and τ2 (marked by solid lines). The vertical axes represent the delay,

freshness, and age associated with the data source. Note that after the genera-

tion of t2, the delay metric increases twice as rapidly as before because two new

postings, t1 and t2, are pending at the source. In contrast, the age metric does

not take into account those two pending postings and still increases at the same

constant rate as before. Thus, the delay metric can be considered as an improved

version of the age metric that takes into account multiple postings pending at a

source, which is more appropriate in the context of RSS feeds.

Freshness

Age

Delay

Time

Time

Time

posting is generated
data source is retrieved

(a)t1 t2 t3 t4 t5τ1 τ2

t1 t2 t3 t4 t5τ1 τ2

t1 t2 t3 t4 t5τ1 τ2

(b)

(c)

Figure 2.2: Illustration of the delay, freshness, and age metrics

When multiple sources generate new postings, it may be more important to
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minimize the delay from one source than others. For example, if a source has

more subscribers than others, it may be more beneficial to minimize the delay for

this source. This difference in importance is captured in the following weighted

definition:

Definition 2 Let’s assume each source Oi is associated with weight wi. Then

the total weighted delay observed by the aggregator, D(A), is defined as

D(A) =
n

∑

i=1

wi D(Oi) 2

Delay minimization problem

When tij is used to represent the jth posting generation time at Oi and τij to

refer to the time of the jth retrieval from Oi by the aggregator, the problem of

delay minimization is formalized as follows:

Problem 1 Given the posting generation times tij’s, find the retrieval times τij’s

that minimize the total delay D(A) =
∑n

i=1 wi D(Oi) under the constraint that

the aggregator can schedule a total of M retrievals. 2

2.2.1 Posting generation model and user-access pattern

In practice, the aggregator does not know the future posting generation times

tij’s. Therefore, to solve the delay minimization problem, the aggregator has to

guess the future posting times based on the past posting pattern of each source.

In the context of general Web search engines, researchers have proposed that

a homogeneous Poisson process with a rate λ is a good model to be used [CG00,

CG03b]. Roughly, a homogeneous Poisson process is a stateless and time-independent

random process, where new postings always appear at a constant rate λ regardless

of the time [TK98]. A number of studies [CG00, CG03b] show that this model is
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Figure 2.3: Posting rate at different resolution.

appropriate especially when the time granularity is longer than one month. For

example, Figure 2.3(a) shows the total number of postings appearing in roughly

10,000 RSS feeds being monitored. (More details of this dataset are described

in the experiment section). The horizontal axis is the time, and the vertical axis

shows the number of postings appearing in each week of the monitoring period.

While there are small fluctuations, the total number of new postings in each week

is reasonably stable at roughly 180,000 postings, which matches with the homoge-

neous Poisson assumption. Formally, this assumption can be stated as λ(t) = λ,

where the posting generation rate at time t, λ(t), is constant and independent of

time t. Based on this homogeneous model, researchers have derived the optimal

re-download algorithms for Web crawlers [CG03b, CLW98].

Unfortunately, when the time granularity is much shorter than one month,

there exists strong evidence that the homogeneous Poisson model is no longer

adequate [BC00, GE01, GGL04]. For example, Figure 2.3(b) shows the total

number of postings appearing in the same RSS feeds when we count the number
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at a granularity of two hours. From the figure, it is clear that at this time

granularity, the time-independence property of the homogeneous Poisson model

does not hold. The posting rate goes through wide fluctuation depending on the

time of the day and the day of the week. The graph also shows a certain level

of periodicity in the posting rates. During the day, there is a significantly higher

number of postings than at night. Similarly, there are more activities during the

weekdays than on weekends. Not only the aggregated posting rate shows such a

pattern, individual RSS feeds also exhibit daily and weekly fluctuations but with

different patterns as shown in Figure 2.12. Based on this observation, I propose

using an inhomogeneous Poisson model, where the posting rate λ(t) changes over

time. Depending on whether similar patterns of λ(t) values are repeated over

time, this model can be further classified into one of the following:

1. Periodic inhomogeneous Poisson model: The same λ(t) values are repeated

over time with a period of T . That is, λ(t) = λ(t − nT ) for n = 1, 2, . . ..

This model may be a good approximation when similar rate patterns are

repeated over time, such as the burst of activities during the day followed

by a period of inactivity at night.

2. Non-periodic inhomogeneous Poisson model: This is the most general model

where no assumption is made about the periodicity in the changes of λ(t).

That is, there exists no T that satisfies λ(t) = λ(t − nT ).

Not surprisingly, user-access pattern also follows a similar trend. Figure 2.4

shows a particular user’s Webpage access activities during a 2-week time period

collected by a browser plug-in. Each bar in the figure represents the number of

Webpages accessed by the user within the corresponding 2-hour period. From the

figure, certain periodicity is observed: the user makes significantly more accesses
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Figure 2.4: A sample 2-weeks’ user-access pattern.

during the day than in the night and during the weekdays than on the weekends.

To illustrate this periodic fluctuation more clearly, Figure 2.19 shows the average

number of Webpages accessed per hour aggregated from 9 different users within

one day when we overlap their access history over 2 weeks. The graphs show

fluctuations that seem to correspond to users’ work schedule (e.g. lunch and

dinner breaks, sleeping habits, etc.). Such observations suggest that a periodic

inhomogeneous Poisson process [TK98] may be a good approximation for such a

recurring and fluctuating pattern.

Given the periodicity that is observed in the RSS posting pattern and the

user-access pattern, I mainly use the periodic inhomogeneous Poisson model in

the rest of this chapter.

2.2.2 Expected retrieval delay

Since the aggregator does not know the exact times at which new postings are

generated, it can only estimate the expected delay based on the posting generation

model of a source. In general, the expected delay can be computed as follows

under the general inhomogeneous Poisson model:
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Lemma 1 For a data source O with the rate λ(t), the total expected delay for the

postings generated within [τj−1, τj] is as follows:

∫ τj

τj−1

λ(t)(τj − t)dt. 2

Proof During a small time interval dt at time t, λ(t)dt postings are generated.

Since these postings are retrieved at time τj, their associated delays are τj −
t. Therefore, the total delay of the postings generated between τj−1 and τj is
∫ τj

τj−1
λ(t)(τj − t)dt. �

For the simpler homogeneous Poisson model, the above formula is simplified

to the following formula.

Corollary 1 When the posting rate remains constant at λ within the time pe-

riod [τj−1, τj], the total expected delay for postings generated within this period

is

λ(τj − τj−1)
2

2
. 2

2.2.3 Expected miss penalty

Likewise, the aggregator has to estimate the expected miss penalty based on pre-

viously learned user-access patterns. The following lemma shows how to compute

the expected miss penalty under the proposed model:

Lemma 2 For a data source O with posting rate λ(t) and a user U with access

rate u(t), assume the retrievals are scheduled at time τj−1 and τj. Then the

expected penalty experienced by the user during the time period within [τj−1, τj] is

as follows:

∫ τj

τj−1

u(t)(

∫ t

τj−1

λ(x)dx)dt 2
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Proof During a small time interval dt at time t, there are u(t)dt number of

user accesses. Each access will miss
∫ t

τj−1
λ(x)dx number of posts. Therefore,

the total expected miss penalty experienced by the user between τj−1 and τj is
∫ τj

τj−1
u(t)(

∫ t

τj−1
λ(x)dx)dt. �

The expected delay and miss penalty computed above will be used in the

next section when investigating the optimal retrieval policy used by the aggre-

gator. Λ(t) and U(t) are used to denote the integrals
∫ t

0
λ(x)dx and

∫ t

0
u(x)dx

respectively from now on.

2.3 Retrieval policy

I now study how the aggregator should schedule the M retrieval points τij’s to

minimize the total expected delay. This scheduling problem is broken down in

two steps:

• Resource allocation: Given n data sources and a total of M retrievals per

period T , the aggregator first decides how many times it will contact indi-

vidual source Oi. This decision should be made based on how frequently

new postings appear in each source and how important each source is.

• Retrieval scheduling: After the aggregator decides how many times it will

contact Oi per T , it decides exactly at what times it will contact Oi. For

example, if the aggregator has decided to contact O1 twice a day, it may

either schedule the two retrieval points at uniform intervals (say, one at

midnight and one at noon) or it may schedule both retrievals during the

day when there are likely to be more new postings.
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In Section 2.3.1, I start with the resource-allocation problem, then followed by

a study of the retrieval-scheduling problem in Section 2.3.2. As far as I know, my

work is the first study to develop optimal solutions for the retrieval-scheduling

problem for Web sources, while similar resource-allocation problems have been

studied before (e.g., [CG00, CG03a, CLW98]), albeit under a different metric.

Finally, in Section 2.4.4, I go over techniques to obtain an accurate estimate of

posting rates and patterns from past history.

2.3.1 Resource-allocation policy

This section investigates how to allocate the M retrievals among the data sources

to minimize the total expected delay. For this task, the simple homogeneous

Poisson process model is used because the resource allocation is done based on

the average posting generation rate and the weight of each source, both of which

are adequately captured by the homogeneous Poisson model. The more complex

inhomogeneous model will be used later when we consider the retrieval-scheduling

problem.

The main result for this resource-allocation problem is summarized in the

following theorem, which shows that the optimal allocation of resources to a

source Oi should be proportional to the square root of the product of its posting

rate λi and its importance wi.

Theorem 1 Consider data sources O1, . . . , On, where Oi has the posting rate λi

and the importance weight wi. The aggregator performs a total of M retrievals

per each period T .

Under this scenario, the weighted total delay of postings, D(A) =
∑n

i=1 wiD(Oi),

becomes minimum when the source Oi is contacted at a frequency proportional to
√

wiλi. That is, mi, the optimal number of retrievals per each period for Oi, is
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given by

mi = k
√

wiλi (2.2)

where k is a constant that satisfies
∑n

i=1 k
√

wiλi = M . 2

Proof Let’s consider the data source Oi that is retrieved mi times per day.

Under the homogeneous Poisson model, it can be shown that D(Oi), the total

delay of postings from Oi, is minimum when the retrievals are scheduled at the

uniform interval.4 In this case, D(Oi) = λiT
2

2mi
, and the total weighted delay, D(A),

is

D(A) =
n

∑

i=1

λiwiT
2

2mi

.

D(A) can be minimized by using the Lagrange multiplier method.

∂D(A)

∂mi

= −λiwiT
2

2m2
i

= −µ.

If we rearrange the above equation, we get

mi =
√

λiwiT 2/2µ = k
√

λiwi. �

As we can see from the solution, the optimal resource allocation can be com-

puted simply by multiplying the posting rate of each source with k, which can

be computed from wi’s and λi’s. Therefore, the complexity of computing the

optimal resource-allocation policy is linear with the number of data sources.

2.3.2 Retrieval-scheduling policy

I have just discussed how to allocate resources to data sources based on their

weights and average posting rates. Assuming that postings are retrieved m times

4This proof follows from a special case of the Cauchy’s inequality stating that the sum of
squares is always less than the square of sums and that equality holds when all numbers are
equal.
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from the source O, I now discuss exactly at what times we should schedule the

m retrievals. Clearly, this decision should be based on what time of the day the

source is expected to generate the largest number of postings and what time the

user is accessing local copies, so I now use the periodic inhomogeneous Poisson

model to capture the daily fluctuation in the posting generation rate and user-

access rate.

To make the discussion easy to follow, I start with a simple case when only one

retrieval is allocated per period in Section 2.3.2.1. The analysis is then extended

to a more general case in Section 2.3.2.2.

2.3.2.1 Single retrieval per period

Consider a data source O at the periodic posting rate λ(t) = λ(t − nT ). The

postings from O are retrieved only once in each period T . The following theorem

shows that the best retrieval time is when the instantaneous posting rate λ(t)

equals the average posting rate over the period T .

Theorem 2 A single retrieval is scheduled at time τ for a data source with the

posting rate λ(t) of period T . Then, when the total delay from the source D(O)

is minimized, τ satisfies the following condition:

λ(τ) =
Λ(T )

T

(

and
dλ(τ)

dτ
< 0

)

. (2.3) 2

Proof Without loss of generality, only the postings generated within a single

interval [0, T ] are being considered. The notation D(τ) is used to represent the

delay when the retrieval is scheduled at τ . The postings generated between [0, τ ]

are retrieved at τ , so their delay is
∫ τ

0
λ(t)(τ − t)dt. The postings generated

between [τ, T ] are retrieved in the next interval at time T + τ , so their delay is
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Figure 2.5: A data source going through periods of high activity and low activity.

∫ T

τ
λ(t)(T + τ − t)dt. Therefore,

D(τ) =

∫ τ

0

λ(t)(τ − t)dt +

∫ T

τ

λ(t)(T + τ − t)dt

= T

∫ T

τ

λ(t)dt +

∫ T

0

λ(t)(τ − t)dt.

D(τ) is minimum when

dD(τ)

dτ
= −T λ(τ) + Λ(T ) = 0

and d2D(τ)
dτ2 = −T dλ(τ)

dτ
> 0. After rearranging the expressions, we get Equa-

tion 2.3. �

The implication of the theorem is illustrated using a simple example.

Example 1 Figure 2.5 shows a data source that goes through a period of high

activity, λ(t) = 1, during t ∈ [0, 1] and a period of low activity, λ(t) = 0, during

t ∈ [1, 2]. The same pattern is repeated after t = 2. Its postings are retrieved

once in each period.
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According to Theorem 2, the retrieval should be scheduled at t = 1 when the

λ(t) changes from 1 to 0 and takes the average value λ(t) = 0.5. This result

matches the intuition that the retrieval should be scheduled right after a period

of high activity. The expected total delay in this case is 1
2
. Compared to the

worst case when the retrieval is scheduled right before a period of high activity

(i.e., τ = 0), we get a factor of 3 improvement. Compared to the average case,

we get a factor of 2 improvement. 2

When a user U , or a group of users, with a periodic access rate u(t) having

the same periodicity T as the periodic posting rate λ(t) of a data source O is

considered, the following theorem suggests that the best retrieval time is when the

instantaneous posting rate λ(t) is proportional to the instantaneous user-access

rate u(t) according to a value given by U(T )
Λ(T )

.

Theorem 3 When a single retrieval is scheduled at time τ , the expected penalty

M(O,U) is minimized when τ satisfies the following conditions:

u(τ)

λ(τ)
=

U(T )

Λ(T )

(

and
u′(τ)

λ′(τ)
> −U(T )

Λ(T )

)

(2.4) 2

Proof Without loss of generality, only the user accesses within a single interval

[0, T ] are being considered. The notation M(τ) represents the expected number of

postings missed by the user when the retrieval is scheduled at τ , where 0 ≤ τ ≤ T .

Between [0, τ ], the user will miss the postings generated between [τ−T, t]; between

[τ, T ], she will miss the postings generated between [τ, t], where t is the exact

time she accesses the local copies. Therefore, the expected miss penalty when we

schedule one retrieval at time τ is

M(τ) =

∫ τ

0

u(t)(

∫ T

τ

λ(x)dx +

∫ t

0

λ(x)dx)dt

+

∫ T

τ

u(t)(

∫ t

τ

λ(x)dx)dt
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=

∫ T

0

u(t)Λ(t)dt − Λ(τ)U(T ) + Λ(T )U(τ).

M(τ) is minimum when

dM(τ)

dτ
= Λ(T )u(τ) − U(T )λ(τ) = 0

and d2M(τ)
dτ2 > 0. After rearranging the expressions, we get Equation 2.4. �

The implication of this theorem is illustrated using a simple example.

Example 2 Figure 2.6 shows a data source (blue solid line) that undergoes a

period of high posting activity between t = [0, 1] and a period of low posting

activity between t = [1, 2]. Similarly, the user (red dashed line) also undergoes

a fluctuation in her access pattern, but in a reverse way from the data source.

According to the theorem, the best retrieval should be scheduled at t = 1, where

u(1) = λ(1) and u′(1)
λ′(1)

> −1. This solution matches the intuition that the crawler

should retrieve right after a large number of new postings are generated and

before the user accesses the local copies extensively in order to prevent users

from missing too many postings. 2

2.3.2.2 Multiple retrievals per period

Now, I generalize the scenario and consider the case when multiple retrievals are

scheduled within one period.

Theorem 4 Suppose m retrievals are scheduled at time τ1, . . . , τm for a data

source with the posting rate λ(t) and periodicity T . When the total delay is

minimized, the τj’s satisfy the following equation:

λ(τj)(τj+1 − τj) =

∫ τj

τj−1

λ(t)dt, (2.5)
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Figure 2.6: Example of the single optimal retrieval point.

where τm+1 = T +τ1 (the first retrieval point in the next interval) and τ0 = τm−T

(the last retrieval point in the previous interval). 2

Proof Without loss of generality, the expected total delay in postings generated

between τ1 and T + τ1 is considered:

D(O) =
m

∑

i=1

∫ τi+1

τi

λ(t)(τi+1 − t)dt

=
m

∑

i=1

(

τi+1

∫ τi+1

τi

λ(t)dt

)

−
∫ T+τ1

τ1

λ(t)tdt

=
m

∑

i=1

(

τi+1

∫ τi+1

τi

λ(t)dt

)

−
∫ T

0

λ(t)tdt.

Then D(O) is minimum when ∂D
∂τj

for every τj:

∂D

∂τj

=

∫ τj

τj−1

λ(t)dt + τjλ(τj) − τj+1λ(τj) = 0.

By rearranging the above expression, we get Equation 2.5. �

The graphical meaning of the theorem is illustrated using an example.

Example 3 Figure 2.7 shows a data source with the posting rate λ(t) = 2 +

2 sin(2πt). Postings are retrieved from the source 6 times in one period. Assume
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Figure 2.7: The optimal schedule for 6 retrievals per period for data source with

posting rate λ(t) = 2 + 2 sin(2πt).

that we have decided up to the jth retrieval point and need to determine the

(j + 1)th point. Note that the right-hand side of Equation 2.5 corresponds to the

dark-shaded area in Figure 2.7. The left-hand side of the equation corresponds

to the light-shaded area of Figure 2.7. The theorem states that the total delay is

minimized when τj+1 is selected such that the two areas are the same.

When the user-access pattern is also considered and the expected miss penalty

is being optimized, the following theorem states the optimal condition of schedul-

ing retrievals.

Theorem 5 When m retrievals at time τ1, . . . , τm are scheduled for a data source

with posting rate λ(t) based on a user-access rate u(t), where both have periodicity

T , the expected penalty is minimized when all τj′s satisfy the following equation:

u(τi)

λ(τi)
=

∫ τi+1

τi
u(t)dt

∫ τi

τi−1
λ(t)dt

(2.6)
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where τm+1 = T +τ1 (the first retrieval point in the next interval) and τ0 = τm−T

(the last retrieval point in the previous interval). 2

Proof Without loss of generality, the expected penalty of a user when she ac-

cesses the content between τ1 and T + τ1 is considered:

M(O,U) =
m

∑

i=1

∫ τi+1

τi

u(t)(

∫ t

τi

λ(x)dx)dt

=
n

∑

i=1

[(

∫ τi+1

τi

u(t)Λ(t)dt) − Λ(τi)(U(τi+1) − U(τi))].

The necessary condition for M(O,U) to be minimum is when dM(O,U)
dτi

= 0 for

every τi. By rearranging the terms, we get Equation 2.6. �

The above theorem is graphically illustrated using an example.

Example 4 Figure 2.8 shows a data source (blue solid line) with the posting rate

λ(t) = 2+sin(2πt) and a user-access rate (red dashed line) of u(t) = 2+cos(2πt).

Postings are retrieved from the source six times in one period. Assume that we

have decided up to the ith retrieval point and need to determine the (i+1)th point.

Note that the upper part of the right-hand side of Equation 2.6 is equivalent to

the dark-shaded area in Figure 2.8, while the lower part of the right-hand side of

Equation 2.6 is equivalent to the light-shaded area of Figure 2.8. The theorem

states that the expected penalty is minimized when τi+1 is selected such that

the two areas are in proportion to u(τi)
λ(τi)

, which is the ratio of the instantaneous

user-access rate to the posting rate at time τi. 2

2.3.3 Computation of schedule

The above theorems only provide analytical solutions to the optimal conditions

when λ(t) and u(t) are known. In practice, we may need to learn the two patterns
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Figure 2.8: The optimal schedule for 6 retrievals per interval.

and discretize the continuous time domain and schedule retrievals at discrete

time points. One naive solution to find the optimal schedule is to enumerate all

possible retrieval schedules and find the best one with the lowest expected delay

or expected miss penalty. In this section, I describe how to use the conditions

derived previously to compute the optimal schedules efficiently.

Suppose we have discretized one day period into 1440 slots (assuming the

resolution of retrieval time is set to be one minute). For the single retrieval case,

one can use the method of bisection to find the slot that satisfies Equation 2.3

or 2.4, which may converge to the solution faster than searching the slot linearly.

For multiple retrievals per interval case, how the condition is utilized to compute

the solution is illustrated as follows: Suppose we have picked the first two re-

trieval points; we keep applying Equation 2.5 or 2.6 iteratively to determine the

successive retrieval points. Once we have determined all retrieval points using

the conditions, we then compute the expected delay or expected miss penalty of

this particular schedule. This procedure is then repeated for all possible choices

of the first two retrieval points and choose the schedule with the lowest outcome;

the pseudo-code for this computation is illustrated in Algorithm 1. This compu-
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tation basically applies the necessary condition in Theorem 4 and 5 to prune out

unnecessary search space, as compared to a method that enumerates all possible

schedules and searches.

To learn the functions, λ(t) and u(t), from the past posting history and the

user-access history, we may count the number of postings and the number of

user accesses per hour and represent them as a 24-bin histogram. The 24-bin

histogram is then smoothed out by linear piecewise interpolation (or possibly by

some other smoothing functions) to obtain a discretized version of λ(t) and u(t).

In the following experiments, one hour is chosen as the bin size for the estimation

of λ(t) and u(t) because when the bin size is much smaller (say, a minute), the

histogram may contain many spikes, while when the bin size is much larger (say,

2 or 3 hours), the histogram may not capture the fluctuation precisely, and both

extremes will result in poor prediction accuracy.

2.4 Experiments

In this section, I show some statistics of the collected RSS-feeds data, user-access

patterns, and the result from the performance evaluation of the proposed retrieval

policies.

2.4.1 Description of RSS dataset

RSS feeds are essentially XML documents published by Web sites, news agents, or

bloggers to ease syndication of their Web site’s contents to subscribers. Figure 2.9

shows a typical RSS feed. It contains different postings in the 〈item〉 tag and

summaries in the 〈description〉 tag. Each posting is associated with a timestamp

〈dc:date〉, stating when it was generated. The postings are arranged in the
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Algorithm 1 optimal schedule algorithm

smooth the input histogram with more number of bins.

for all possible position of τ1

for all possible positions of τ2

while desired number of retrievals not reached

apply Eq. 2.5 or 2.6 to determine τj+1

if τj+1 exceed one period then

break

end if

end while

if τm−1, τm, τ1, τ2 satisfy Eq. 2.5 or 2.6 then

compute expected delay or miss penalty of the schedule

else

continue

end if

end for

end for

select the schedule with smallest expected delay or miss penalty
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reverse chronological order where new postings are prepended in the front and

old postings are pushed downwards and removed. For the majority of current

implementations, an RSS feed contains the most recent 10 or 15 postings. New

postings are added to the feed at any time without notifying their subscribers;

thus, the subscribers have to poll the RSS feeds regularly and check for updates.

The set of data used comes from a list of 12K RSS feeds listed in syndic8 [Syn]

that includes time of posting within the RSS. They were downloaded 4 times a

day between September 2004 and December 2004. Out of the 12K feeds, 9,634

feeds (about 80%) have at least one posting within this monitoring period. The

following experiments will all focus on this subset of 9,634 RSS feeds. The range

of the topics covered by this set of RSS feeds is quite diverse and the feeds come

from about five thousand different domains. Table 2.1 shows some of the frequent

domains where these RSS feeds originate from.

- <rdf: R DF >

<channel rdf: about="http://slashdot.org/"/>
- <image rdf: about="http://images.slashdot.org/topics/topicslashdot.gif">

<title>Slashdot</title>

- <url>

http://images.slashdot.org/topics/topicslashdot.gif
</url>

<link>http://slashdot.org/</link>

</image>

- <item rdf: about="http://slashdot.org/article.pl?sid=05/06/21/2238256& from=rss">

<title>L egal Music Downloads At 35%, Soon T o Pass Piracy</title>
- <link>

http://slashdot.org/article.pl?sid=05/06/21/2238256& from=rss

</link>

- <description>
bonch writes "E ntertainment Media R esearch released a study stating that 35% of
strategic milestone with the population of legal downloaders close to exceeding tha

</description>

<dc: creator>timothy</dc: creator>

<dc: date>2005-06-22T 02:00:00+00:00</dc: date>

<dc: subject>music</dc: subject>

<slash: department>cars-surpass-buggies</slash: department>

<slash: section>mainpage</slash: section>

<slash: hitparade>39,39,27,17,1,0,0</slash: hitparade>

<slash: comments>39</slash: comments>

</item>

Figure 2.9: A sample RSS feed
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Count Domain

1133 scotsman.com

209 www.rss-job-feeds.org

154 newsroom.cisco.com

138 www.employmentspot.com

118 blogs.msdn.com

109 radio.weblogs.com

88 feedster.com

83 www.computerworld.com

79 www.sportnetwork.net

67 abclocal.go.com

Table 2.1: Top 10 domains hosting the RSS feeds in the dataset.

Figure 2.10 shows the distribution of posting rates among the 9,634 RSS feeds,

with the x-axis being the number of postings generated within three months and

the y-axis being the number of feeds at the given rate. Both axes are shown in

log scale. Within the 3 months, 3,116 feeds generated one or more postings per

day on average. The distribution roughly follows a straight line in the log-log

scale plot, which suggests that it follows a power-law distribution.5

2.4.2 Evaluation of policy under delay metric

In this section, I evaluate the potential improvement of the proposed policy un-

der delay metric by comparing it against the best policies in the literature. In

particular, I compare the total weighted delay D(A) (Definition 2 in Section 2.2)

achieved by the proposed policy against that of the age-based optimal crawling

5A curve fit of the data indicates that the best matching power-law curve is y = axb, with
a ≃ 376 and b ≃ −0.78.
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Figure 2.10: Distribution of posting rate of 9,634 RSS feeds.

policy in [CG03a].6 Since both policies have to know the average posting rate of

each source, the rates from the first 2-week data are first computed and then be-

ing used to simulate the policies on the remaining 11-week data.7 Equal weights

are assigned to all sources instead of weighting by the number of subscribers be-

cause we want to evaluate the improvement from the accurate modeling of the

posting generation at the sources, which is the main focus of this chapter. For

my proposed policy, both resource-allocation and retrieval-scheduling policies and

employed. Note that the delay metric measures the time between the publication

at the source and the download by the aggregator. Therefore, this set of exper-

iments measures the effectiveness of the optimization based on the data posting

pattern alone. The effectiveness of the user-access pattern based optimization

will be investigated later when I report results under the miss penalty metric.

The results from these experiments are shown in Figure 2.11. The horizontal

axis represents the resource constraint for a given experiment. More precisely, it

6Reference [CG03a] describes two policies, one for the freshness metric and the other for the
age metric. Since the result from the age-based policy outperforms the freshness-based policy
by several orders of magnitude, only the age-based policy in the comparison is shown.

7The choice of the two-week estimation window is explained later in Section 2.4.4.
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shows the average retrieval interval per source (i.e., 11 weeks divided by M/n,

where M is the total number of retrievals and n is the number of sources). Note

that even when the average retrieval interval is the same, the actual retrieval

points for each source are different under the two policies due to their different

optimization approaches.

The vertical axis represents the retrieval delay of postings under each policy

at the given resource constraint. More formally, it shows the average delay, which

is the total delay D(A) divided by the total number of postings generated by all

sources, intended for easier interpretation by the readers.
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Figure 2.11: Comparison with CGM03 policy.

Figure 2.11 shows that the proposed policy clearly outperforms CGM03; in

general, CGM03 gives a 35% longer delay than the proposed policy. Also note

that the average delay is significantly shorter than half of the average retrieval

interval, which is the expected delay when no optimization is performed. For

example, when the average retrieval interval is 10 hours, the average delay is less
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than 3 hours under the proposed policy, which is more than 2 hours shorter than

the 5-hour expected delay with no optimization.

Contribution of individual policy

To investigate further how much improvement we may get from each of the

two optimizations (i.e., the resource-allocation policy in Section 2.3.1 and the

retrieval-scheduling policy in Section 2.3.2), I now compare the average delay of

the following four policies:

1. Uniform scheduling: Neither the resource-allocation nor the retrieval-scheduling

policy is employed. That is, all sources are retrieved the same number of times,

and the retrieval points are scheduled at uniform intervals. This can be consid-

ered as the baseline.

2. Retrieval scheduling only: Only the proposed retrieval-scheduling policy is em-

ployed. That is, all sources are retrieved the same number of times, but the

retrieval points are optimized based on their posting patterns.

3. Resource allocation only: Only the proposed resource-allocation policy is em-

ployed. That is, depending on the posting rates of the sources, different numbers

of times are allocated for each source, but the retrieval points are scheduled at

uniform intervals for each source.

4. Combined: Both of the proposed policies are employed. The sources are retrieved

different numbers of times and the retrieval points are further optimized based

on their posting patterns.

Again, the first two-week data is used to learn the posting rates and the posting

patterns, and the remaining 11 weeks are used to to simulate the retrieval policies
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and to compute the average delay. Every source is assigned an equal weight in

this experiment.

Average retrieval interval 6hr 8hr 12hr 24hr

Uniform 180 256 352 645

Retrieval scheduling 159 211 310 518

Resource allocation 109 145 217 433

Combined 101 133 197 395

Table 2.2: Performance of 4 retrieval policies under different resource constraints.

Table 2.2 shows the average delays (reported in minutes) for the four policies

under different resource constraints (from one retrieval per every 6 hours per

source up to one retrieval per every 24 hours per source). For example, the

number 180 in the second column of the second row means that the average

delay is 180 minutes under the uniform policy when the average retrieval interval

per source is 6 hours.

As shown in the table, the average delay under the uniform policy is close

to half of the average retrieval interval. For example, when the average retrieval

interval is 6 hours, the average delay under the uniform policy is 180 minutes (or

3 hours). This result is expected because when the postings are retrieved every 6

hours from a source, the maximum delay will be 6 hours and the minimum delay

will be 0 hours, with the average being 3 hours.

The results also show that both resource-allocation and retrieval-scheduling

policies are effective in reducing the average delay. For example, when new post-

ings are retrieved once every 24 hours on average (the last column), retrieval

scheduling and resource allocation decreases the delay by 20% and by 32%, re-

spectively, from the uniform policy. Combined together, a 40% reduction is
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observed in the average delay compared to the uniform policy.

While both the resource-allocation and retrieval-scheduling policies are effec-

tive in reducing the average delay, the improvements are observed to be obtained

through different mechanisms. Under the resource-allocation policy, resources are

taken away from the sources of low posting rates (or of low importance) and are

allocated to the sources of high posting rates (or of high importance). Thus, while

the average delay is decreased, it ends up increasing the maximum delay of post-

ings (for the sources of low posting rates). In contrast, the retrieval-scheduling

policy improves the delay simply by selecting the best retrieval time for a source

without reallocating resources among the sources, so the maximum delay do not

vary much among the sources under this policy. For example, under the resource

constraint of one retrieval per day per source, the maximum delays of a posting

was 1440 minutes for the retrieval-scheduling only policy, while the maximum

delay was 9120 minutes for the resource-allocation policy. Given this result, em-

ploying only the retrieval-scheduling policy is recommended when a tight bound

on the maximum delay is important.

2.4.3 Evaluation of policy under miss penalty metric

In this section, I evaluate the performance of the proposed policy under miss

penalty metric. Note that the miss penalty metric enables optimization based on

both the data posting pattern and the user-access pattern. In order to measure

the improvement from these two optimizations separately, the results from the

following three policies are compared:

• Uniform - a simple method that schedules retrievals evenly spaced. For ex-

ample, with 3 retrievals per day, all are spaced 8 hours apart. The majority

of client-side RSS-feed readers employ this policy.
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• Data only - the retrieval-scheduling method that optimizes based on the

miss penalty metric by considering only the posting patterns of data sources

and assuming a constant user-access pattern.

• User+data - the retrieval-scheduling method that optimizes based on the

miss penalty metric by considering both the posting patterns of data sources

and the user access pattern.

Dataset collection

The objective of this experiment is to show that, when user-access patterns are

considered in retrieval scheduling, the number of articles missed by users can be

further reduced when compared to using data posting patterns alone. Given the

difficulty of obtaining actual user-access patterns from online content aggregators,

I solicit individual users to supply their own user-access patterns using a browser

plugin.

The user-access patterns were collected from nine volunteers from staff mem-

bers of the NEC Labs America and students of the UCLA CS department who

have installed a firefox browser plugin that records the time, the content, and the

referring URL of the Webpages8 a user has browsed. Their browsing activities

were collected for 3 consecutive weeks to be used as the user-access patterns to

compute the optimal schedules and to evaluate the miss penalty experienced by

users.

Note that due to the small sample size and the inherent bias in the user selec-

tion, the findings in this experiment may not be conclusive enough to predict the

8Certain Webpages, such as those starting with https in the URL and those coming from
well-known Web-based e-mail services, are not captured. Users are also given the option to
exclude Webpages from certain domains from being captured due to privacy concerns.
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performance gain in a more general setting. Thus, the primary goal of this small

pilot study is to obtain a preliminary indication on the potential improvement

brought by retrieval scheduling under the miss penalty metric when user-access

patterns are considered. Interestingly, as I report later in Section 2.4.4, it is

observed that the aggregated user-access pattern among the nine sampled users

and the Web usage activities captured from a much larger pool of users both

exhibit a similar pattern. Therefore, it is my expectation that a general online

RSS aggregator is likely to benefit from the proposed policy as well, even though

the degree of improvement may be significantly different from what I report here.

The user patterns were collected in 2007. In order to match the same time

frame, the postings from a collection of 1.5K frequently updating RSS feeds

published in the blogger.com domain were downloaded at the same period of

time to be the data posting patterns when evaluating the proposed scheduling

algorithm; hence, it is different from the one described in Section 2.4.1. Despite

the difference in collection time, their composition and characteristics are similar,

with a power-law like posting frequency distribution and fluctuating yet repeating

patterns. Authors on blogger.com come from different parts in the world and the

posting update times specified in the RSS feeds are expressed in their respective

time zones, in both the experiment and graphs shown in this section, they are

normalized to the Pacific Daylight-savings time (PDT).

Performance evaluation

The data posting patterns and the user-access pattern are computed based on

the data collected in the first two weeks. The posting patterns are clustered into

20 groups, and the class centroids are used as representatives when computing

their optimal schedules respectively. (Samples of common posting patterns are
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shown in Figure 2.12.) After the retrieval schedule is derived, the trace of data

posting times and user-access times in the third week are used to compute the

miss penalty under different resource constraints (from 2 to 5 retrievals per RSS

feed per day).

For every user access, the miss penalty (the number of postings missed among

the 1.5k RSS feeds) is counted to evaluate the performance. Figure 2.13 shows the

comparison of the three methods. To make it easier to comprehend the numbers,

the miss penalty metric is scaled with respect to the performance achieved by the

uniform schedule and average the percentage reduction of miss penalty over the

9 users. It is observed that, in general, user+data reduces 40% of the number of

postings missed as compared to uniform; when compared to data only, it reduces

roughly 25% on average.

2.4.4 Learning posting rates, posting patterns, and user-access pat-

terns

In order to implement the resource-allocation and retrieval-scheduling policies,

the aggregator has to learn the average posting rate and the posting pattern λ(t)

of each source. Assuming that they do not change rapidly over time, they may

be estimated by observing the sources for a period of time and the estimations

are used to determine the optimal monitoring policies.

Measuring the posting rate can be done simply by counting the total number

of postings generated within a particular learning period and dividing it by the

length of the period. Learning the continuous posting pattern λ(t) is more diffi-

cult, because only discrete events of posting generation are observed. Therefore,

we first count the number of hourly postings at every source and build a daily his-

togram of hourly postings for the sources. We then overlap the daily histograms
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Figure 2.12: Samples of data posting patterns.
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Figure 2.13: Comparison of three methods under the miss penalty metric.

for k-week data for each source and obtain a graph similar to Figure 2.16. This

discrete posting histogram can then be smoothed by a interpolation method and

be applied in the algorithm described in Section 2.3.3.

Note that there exists a clear tradeoff in deciding how long should we choose

to monitor a source to estimate λ(t); if the length is too short, the estimated λ(t)

may be inaccurate due to the randomness in the posting generation. However, if

it is too long and if the posting pattern itself changes over time, the estimated

λ(t) will become obsolete by the time it is obtained (making the monitoring policy

based on the estimated λ(t) ineffective). The length of the estimation period is

referred as the estimation window. Later in the experiment section, we evaluate

the impact of the length of estimation on the effectiveness of the policies and

empirically determine the optimal estimation period.
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Learning posting rates

I first study the optimal window length for learning the average posting rate λi

for source Oi. To investigate this, at the beginning of each day, the past k-day

history data is used to estimate the posting rate of each source and decide the

optimal number of retrievals per day for each source. This process is repeated

over the entire 3-month data and the average delay at the end of the 3-month

period is measured.
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Figure 2.14: The effect of estimation window width.

Figure 2.14 shows the average delay of postings for different k values.9 The

graph shows that average delay decreases as the estimation window gets longer,

which indicates more accurate estimation of the posting rates. However, there is

no more improvement beyond k =14, which suggests that a 14-day worth of data

is adequate to smooth out fluctuations and get reasonable estimates.

9The graph is obtained when postings are retrieved 4 times per day per feed on average.
The results were similar when different numbers of retrievals per day are used.
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In addition, the fact that the delay does not increase after k = 14 suggests

that the posting rate of a source is stable and does not change significantly over

time. To further investigate the change in the posting rate, we plot the following

graph: the posting rate of each source using the first 14-day trace is calculated

and used as the x-coordinate. The posting rate based on the last 14-day trace is

again calculated and used as the y-coordinate. Based on the two coordinates, an

x-y scatter plot is drawn and shown in Figure 2.15. In this graph, if the posting

rates are stable, all dots should be aligned along the diagonal line y = x. Different

colors for the dots are used depending on their proximity to the diagonal line.

• Group A (darkest): the top 50% of dots that are the closest to the diagonal,

• Group B (lightest): the top 50%–90% of dots closest to the diagonal, and

• Group C (medium light): the rest

In the graph, it shows that most of the dots are very close to the line y = x; more

than 90% of the dots are tightly clustered in a narrow band around y = x. This

result indicates that the posting rates of most sources are stable, at least within

the RSS sources that are monitored in the experiments.

Learning posting patterns

I now study the optimal window size for learning the posting pattern λ(t). For

this task, the number of hourly postings at every source is counted and used to

build a daily histogram of hourly postings. The daily histograms for the k-week

data for each source is then overlapped and a graph similar to Figure 2.16 is

obtained, which is used as the λ(t) graph of the source. Different k values are

used to obtain this cumulative count graph. The retrieval-scheduling policy is

then applied, and the average delay is measured for each k value setting. The
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Figure 2.15: Correlation between posting rates measured at different times.

result of this experiment is shown in Figure 2.17, with the x-axis showing the

k value used to obtain the λ(t) graph and the vertical axis showing the average

delay at the given k value. The graph shows that the size of k does not affect the

final delay too much, which indicates that the accuracy of the posting pattern

estimation is not affected by the estimation window size much. Given this result

and the result from the posting rate estimation, a past 14-day history data seems

to be a good choice in learning both the posting rate and the pattern of each

source.

Learning user-access patterns

I use a similar technique that learns the posting pattern λ(t) to estimate a user’s

access pattern u(t) based on the data collected by the browser plugin. Fig 2.18

shows four samples of the user-access patterns obtained from the volunteers.
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Figure 2.16: Aggregated posting pattern of 5,566 RSS feeds.

They all demonstrate the periodicity as described in Section 2.2.1. The daily

access activity overlapped over 2 weeks closely resembles a user’s work schedule.

The proposed algorithm can exploit such fluctuations to devise tailor-made crawl

schedules that prevent users from missing fresh content.

Besides the individual user-access patterns, I also present their aggregated

pattern in Figure 2.19, which also shows a similar fluctuating pattern but at a

lesser degree because they are combined from multiple users. In addition, Fig-

ure 2.20 shows the daily Web search activities to Google captured among all users

in the UCLA CS department network over a 7 month period in 2004 with a total

of 237k searches. The two patterns illustrate that the aggregated user-access pat-

tern, either from a lesser number of users or from a much larger population, both

experience similar behavior. I believe the retrieval scheduling policy under miss

penalty metric can achieve similar level of performance improvement, as in Sec-

51



0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

350

400

Length of past history used (weeks)

A
ve

ra
ge

 d
el

ay
 (

m
in

ut
es

)

Figure 2.17: Effect of different learning periods of posting patterns.

tion 2.4.3, when online content aggregators use the aggregation of all subscribers

to an RSS feed as the user-access pattern.

When retrieval schedules are optimized based on the user-access pattern,

which is obtained from past history, it is important for the pattern to be pre-

dictable. To investigate this issue, I compare the correlation between the hourly

number of Webpage accesses across two consecutive days in the 2 weeks’ browsing

activities obtained. Figure 2.21 shows the correlation of all the 9 users’ hourly

Webpage access rates 24 hours apart. Suppose a user accesses 10 Webpages be-

tween 3pm and 4pm on day 1, and she accesses 15 Webpages between 3pm and

4pm on day 2. Her activity will be recorded as a point with coordinate (10, 15) in

the graph. The points are then sorted according to their proximity to the diagonal

line x = y, where the closer the points are to the diagonal, the more predictable

the access pattern is. To better visualize the data, the strata of points that are
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Figure 2.18: Samples of user-access patterns.
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Figure 2.19: Aggregated user-access pattern of nine users.

0 5 10 15 20
0

20

40

60

80

100

120

140

Hours

N
um

be
r 

of
 w

eb
 s

ea
rc

h 
ac

tiv
iti

es
 p

er
 h

ou
r

User web search patterns in UCLA CS network

Figure 2.20: Aggregated user-access pattern from UCLA CS departments Google

traffic.

54



0 50 100 150
0

50

100

150

Hourly access rate

H
ou

rly
 a

cc
es

s 
ra

te 50%

90%

rest

90%

90%

rest

Figure 2.21: Correlation of user-access rate in consecutive days.

within 50% to 90% proximity to the diagonal are shown in different colors. From

this observation, the user-access pattern is not as predictable as the posting rate

shown in Figure 2.15; thus, a shorter history is recommended for modeling the

user-access pattern in order to adapt to changes more quickly.

2.4.5 Potential saving by push-based approaches

Other than the pull-based approach that I have mainly investigated in this chap-

ter, there can be a push-based approach where the data sources notify the aggre-

gator whenever a new posting appears. Under this approach, the aggregator no

longer needs to poll the sources regularly or maintain the posting-pattern profile

of each source. Furthermore, since only new postings can be pushed to the ag-

gregator, no resource will be wasted retrieving previously downloaded postings.

In the dataset, it shows that, on average, each RSS feed contains the 12 most
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recent postings on average.10 However, each feed only generates 4.3 new postings

per day on average; therefore, if the aggregator retrieves from the data sources

once a day under the pull-based approach, about 7.7/12 = 64% of the band-

width will be wasted in retrieving previously downloaded postings, which will be

saved when a push-based approach is employed. Furthermore, if implemented

correctly, a push-based approach can potentially eliminate any noticeable delay

of new postings at the aggregator, which is very difficult to achieve under the

pull-based approach. For example, given the experimental results, if we want to

achieve the average delay of less than an hour, the aggregator needs to contact

the sources at the average rate of once every three hours under the pull-based

approach, which corresponds to 8 retrievals per day. In comparison, a push-based

approach will deliver a new posting to the aggregator only 4.3 times per day on

average given their posting generation rate, which is roughly a 50% reduction in

the number of retrievals per day.

These estimates show that a push-based approach is clearly beneficial to the

aggregator in saving both bandwidth and the number of retrievals. However, it

remains to be seen how widely a push-based approach will be deployed on the

Internet, given the dominant adoption of the existing pull-based protocols and

a number of potential problems that a push-based approach entails (such as the

problem of spamming by certain RSS feeds that generate bogus spam postings

in order to be shown more prominently at the aggregator and the problem of the

additional cost at the sources for maintaining the list of subscribed aggregators

and their preferences).

10The majority of implementation is to return either the 10 or 15 latest postings.
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2.5 Related work

Web crawling is a well-studied research problem. References [CG00, CG03a,

CG03b, CN02, CLW98, DKP01, EMT00, GE01, PRC03] investigate the problem

of maintaining a fresh copy of Webpages for search engines. While the general

problem is similar, the exact model and overall goals are significantly different

from ours. For example, references [CG00, CG03a, CG03b, CLW98, PRC03]

assume the homogeneous Poisson model to describe Webpage changes (which does

not consider the fluctuations in the change rate as discussed in Section 2.2.1).

References [BNW03, CG02] investigate the problem of minimizing the time to

download one snapshot of the Web by efficiently distributing the downloading

task to multiple distributed processes.

In more recent work [PO05, WSY02], researchers have proposed new crawling

strategies to improve the user satisfaction for Web search engines by using more

sophisticated goal metrics that incorporate the query load and the user click-

through data. Since this body of work mainly focuses on getting improvement

by exploiting the user behavior in the context of a Web search, it still assumes

a relatively simple model to predict the changes of Webpages. For example,

reference [PO05] assumes that Webpages always change in the same manner

after every refresh. I believe that a more sophisticated change model such as the

periodic inhomogeneous Poisson process can further improve the results of these

studies and is complementary to this body of work.

In terms of improving the user’s browsing experience in the time perspective,

pre-fetching is a technique commonly used to reduce the wait-time of loading

Webpages. Such a technique can be deployed at different locations on the Web.

In particular, when deployed on the client side [EGS98], pre-fetching algorithms

predicts the links on the current page that are likely to be accessed by the user
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in the future and requests them in advance; hence, it reduces the waiting time of

the user when loading pages. In the case of deployment on the server-side[Mar96,

YZ01], pre-fetching works by analyzing the Web access log for document access

patterns; it then pre-fetches subsequent documents from disk into main memory

to reduce the access time when they are requested by the clients afterwards.

Similar techniques can also be deployed on proxy servers [DPS04] that serve a

collection of users within a subnet.

In the context of a relational database, reference [GE01] has studied the use

of periodic inhomogeneous Poisson process (referred to as Recurrent Piecewise-

Constant Poisson process in the reference) to model record updates in a database.

Due to the difference in the general goal and user requirements, however, its

overall problem formulation and final solutions are significantly different from

ours.

Researchers [DKP01, OW02] have also studied a source-cooperative approach

where data sources actively push new changes to the aggregator. While these

push-based approaches have significant benefits, whether they will be widely

adopted for the general Web remains to be seen because it requires additional

adminstrative work for publishers to adpot such scheme.

There have been recent efforts to make Web crawling more efficient by im-

proving the underlying protocol. For example, Google sitemap protocol [good]

allows a site administrator to publish the list of pages available at her site at a

predefined location together with the last modification dates of the pages. While

this new protocol helps a crawler discover new Webpages and their changes more

efficiently, it is still based on the pull architecture, where a Web crawler is still

responsible for periodically contacting the sites and downloading changes. There-

fore, even if this protocol is widely deployed, the proposed monitoring policy will
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still be helpful in reducing the retrieval delay of new postings.

Researchers have studied publisher-subscriber systems [AF00, CDT00, FJL01,

LPT99, SDR03, YG00] and proposed strategies for the efficient dissemination of

information in these systems. This body of work mainly focuses on the efficient

filtering of the overwhelming incoming data stream against a large pool of existing

subscriber profiles and on the efficient data delivery method in the Internet scale;

different from this body of work, our aggregator is not passively waiting for new

data to come in; instead, the aggregator monitors and actively pulls from different

data sources to collect new postings.

Researchers in the information-retrieval communities have also tackled the

similar problem of monitoring multiple data sources but from the perspective

of improving information relevance, which complements the information fresh-

ness issue addressed in this chapter. Under the federated search and P2P search

framework, references [LC05, NF03, SC03] have proposed algorithms for query-

ing a subset of data sources while maintaining a high quality of search results.

Reference [Hos05] has provided a theoretical study on the trade-off between wait-

time in querying the underlying data sources and providing a reasonable quality

of results to users. In terms of efficient content delivery, reference [TIK05] has

extended the publish/subscribe model on the DHT network that considers the

data and language model in the data-placement process.

Google Alerts [Goob] and a number of blog aggregation services [Blob, Bloc]

provide ways for users to subscribe to a set of news sources and get notified

of any new articles. Unfortunately, the details of their implementation are a

closely guarded secret. Besides, many interesting WWW applications, such as

blogging and semantic Web [KQ04], semantic information retrieval based on XML

data [CPC06], and the recently emerged Mashup [mas06] technology, can all bene-
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fit from a more efficient dissemination and exchange of content in the XML/RSS

format. I believe that this work can be helpful to further improve these sys-

tems by providing the formal foundation and a disciplined solution to the delay-

minimization problem in order to provide timely service.

2.6 Summary

In this chapter I have investigated the problems related to an RSS aggregator that

retrieves information from multiple RSS sources automatically. In particular, I

have developed a new RSS monitoring algorithm that exploits the non-uniformity

of the generation of new postings and user-access patterns and is able to collect

and deliver update content to users using minimal resources. The results have

demonstrated that the aggregator can provide news alerts faster than the best

existing approach under the same resource constraints. In addition, based on

the analysis of the collected RSS data, it suggests that the posting rate follows a

power-law distribution and that the posting rate and pattern remain fairly stable

over time. A pilot user study also demonstrated the potential improvements when

user-access patterns are taken into consideration. Finally, I have estimated the

potential benefit of a push-based approach to the aggregator by measuring its

savings in bandwidth and the number of retrievals per day.

The ability to provide timely information to Web users is of high commercial

value to a Web service provider in both attracting user traffic and mining user

behavior. I believe that existing RSS aggregators and blog search engines will

benefit from the proposed monitoring policy to provide up-to-date information

to users.
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CHAPTER 3

Ranking of articles

3.1 Introduction

With the growing amount of user-generated content, it becomes difficult for a

user to keep up with every piece of news closely, even if she only subscribe to

a handful of RSS sources using an online content aggregator. In view of this,

it becomes an issue for online content aggregators to rank new articles among

different information sources subscribed by a user based on her reading interest.

The top ranked list of articles is then presented to users as recommendations, in

hope of improving user experience by filtering the largely irrelevant or uninterest-

ing articles. Finding a good ranking function based on a user’s interests is always

a challenging issues in personalization recommendation systems. Such systems

intend to provide a user with recommendations on news articles, documents, or

products that are tailored toward the user’s personal interests. They are used

extensively in news portals (e.g., CNet and Google’s personalized news search),

RSS aggregators (e.g., Google reader), and e-commerce Websites (e.g., Amazon

and Netflix’s recommendation lists). In these systems, a key research issue is how

to capture the users’ interests effectively in order to rank the items.

Many important issues, such as the scalability of the system and the effec-

tiveness of the recommendation, rely on how accurately we can capture a user’s

interests, which are not usually stated explicitly, such as by a subscription list
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that is going to be described in Chapter 4. In general, different forms of personal

information manager rely on ranking pieces of information from a large knowl-

edgebase, which can be news articles, technical documents, or even gossips in

online social applications, to serve as an information filtering process. Although

the settings may be different from a server-based aggregation model described in

Chapter 1, they share the same motivation to provide better personalized rec-

ommendations through mining a user’s interests based on her interaction with

a large pool of information sources. Some challenging issues in capturing user

interests are listed as follows.

Unobtrusive and quick detection

It is obtrusive to solicit users about their interests explicitly, though the result

may be more accurate. To avoid being obtrusive, most real applications adopt

implicit feedback by, for example, checking whether a user purchases a given prod-

uct. However, such passive methods usually capture user interests very slowly,

because whether a user makes a purchase cannot be controlled by the recom-

mendation system. The challenge here is how to get user feedback quickly in an

unobtrusive way.

Focused vs. diversified recommendation

Traditional recommendation systems, such as collaborative filtering systems, em-

phasize measures such as accuracy, precision, or recall. To score high in these

measurements, systems usually recommend items with very focused topics in or-

der to cater to users’ main interests. However, users’ satisfaction depends on

both precision and diversification [ZMK05]. That is, a recommendation list that

matches a user’s multiple interests is preferable to a list with a single topic,

62



although the single topic may be the one in which she is mostly interested.

Drift of user interests

A user’s interests are likely to change over time. For example, soccer fans may

temporarily lose interest in the World Cup when the World Cup is finished. As a

matter of fact, the drift of user interests (concept drifts) has been designated as

one of the top four machine learning challenges for user modeling [WPB01]. As

a result, a system that captures user interests should adapt itself to the changes

of user interests as well as to the emergence of new user interests.

To solve the above challenging issues, I, together with my collaborators, pro-

pose a learning framework and an algorithm to rank articles by actively capturing

user interests through an unobtrusive interactive recommendation process. Un-

like a naive greedy algorithm, which only exploits the model of users’ interests, the

proposed algorithm takes into account exploration, i.e., discovering user potential

interests, as well. Therefore, the proposed algorithm can discover diversified rec-

ommendation while it focuses on users’ main interests. Due to the exploration,

the algorithm can quickly adapt to the drifting of user interests as well.

The rest of this chapter is organized as the following. In Section 3.2 we

build a model for ranking articles based on user behaviors. In Section 3.3 we

describe the details of our algorithm. A pilot user study to demonstrate the

idea and effectiveness of our proposed method is given in Section 3.4. Finally, in

Section 3.6, we provide a summary and future directions after the discussion of

related work in Section 3.5.
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3.2 User model

As depicted in Figure 1.3, an online content aggregator proveds a user with a

ranked list of articles that are tailored toward her personal interests. The system

observes the user’s activities while she reads through different articles and rec-

ommends the user a list of new articles, which are often blog postings. Assuming

that clicking the link to a recommended item after reading a short description of

it indicates that she likes the topic of the item recommended, the system learns

a user model from this observation and better ranks the recommendation list in

the future.

In this section, we model the user-interests component in the recommendation

system. We assume that user’s interests are represented by a combination of K

general topics. Let the K topics be {topic 1, · · · , topic K}, where K could be

a large number. We further assume that each item, that can potentially be

recommended, belongs to only one topic to simplify the model and the analysis.

When the description of an recommended item of topic i is read by the user,

the user clicks the link to the recommended page with probability θi, that is,

θi = Pr(click|read, topic i). (3.1)

Then the user’s interests can be represented by the parameter Θ = {θ1, · · · , θK},
which is going to be estimated.

When a recommendation item is shown to the user, it has different chances to

attract user attention, depending on its position in the ranked list. In the Web

search-engine community, it is well-known that the position of an entry in the

query result list heavily affects its chance to be clicked by the user[ABD06b]. We

capture this phenomenon by a probability model; we denote the probability that
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the user read a recommendation at the j-th position of the list as

g(j) = Pr(read|j), for 1 ≤ j ≤ K. (3.2)

Of course, we do not expect the content of all K topics to be in the list, which

means that g(j) = 0 for j greater than the length of the list. In addition, we

assume the probability, g(j), is independent of the user’s interest and usually

decreases monotonically as j increases.

Let variable R = {r1, · · · , rK} be the ranking order given to the K topics.

Then we can write the utility of this ranking order as

U(R; Θ) =
K

∑

i=1

Pr(click|read, topic i; θi) Pr(read|ri) =
K

∑

i=1

θi · g(ri). (3.3)

Given a user model, Θ, the goal of the system is to maximize the utility, U(R, Θ).

3.3 Learning user profile by exploitation and exploration

To maximize the one-step expected utility, we recommend and rank topics ac-

cording to their expected utilities, {θi · g(ri)} — the probability that the user

reads the recommendations times the probability that the user clicks the topics.

This approach is to exploit the best estimation of the user model, Θ, to gain the

optimal one-step utility. We call it the greedy approach.

Because the greedy approach uses the estimated user model, Θ, not the true

user model, the overall utility usually is not optimal. Such an approach puts the

best estimated θ’s on the list, which may deprive the opportunity of showing the

true optimal θ’s. Without these being shown, we are unable to get an accurate

estimate of the actual best θ’s, which lowers the utility gain in the later steps.

Showing the topics of non-optimal estimated θ’s is known as exploration. There-

fore, we face a trade-off between exploitation and exploration to gain the optimal
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overall utility. This was also illustrated in the well-known multi-armed bandit

problem [GJ74].

We assume the prior of θi follows the beta distribution, B(θi|αi, βi), where

αi and βi can be initially set to some fixed constants. The reason for using the

beta distribution is that the beta distribution is a conjugate distribution of the

Bernoulli distribution (see [GCS95]), which gives us a posterior distribution in

the same form. When the recommendation is ranked at ri and is not clicked, we

have

d Pr(θi|¬click, ri) ∝ [1 − Pr(click|θi, ri)] d Pr(θi)

= [1 − Pr(click|read, θi) Pr(read|ri)] d Pr(θi)

= [1 − θig(ri)] d Pr(θi) = [1 − θig(ri)] B(θi|αi, βi)dθi

≈ [1 − θi]
g(ri) B(θi|αi, βi)dθi ∝ B(θi|αi, βi + g(ri))dθi,

in which we used the approximation (1−x)y = 1−xy+O(y ∗x2) ≈ 1−xy. Since

B(θi|αi, βi + g(ri)) is normalized, we have

d Pr(θi|¬click, ri) ≈ B(θi|αi, βi + g(ri))dθi.

That is, the posterior distribution of θi follows B(θi|αi, βi +g(ri)) if the user does

not click the recommendation of topic i at position ri in the list. If the recommen-

dation of topic i is clicked, the posterior distribution of θi follows B(θi|αi +1, βi).

Thus, we have the update formula for the distribution of each θ.

Given the distribution of each θ in parameter Θ, we design an algorithm

that actively probes user interests by presenting a list of recommendations to the

user. The algorithm should achieve two goals at the same time. The first goal is

exploitation, that is, to recommend contents that the user is likely to click. The

second goal is exploration, that is, to reduce the variance of Θ by presenting to the
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user those topics whose θ’s have the largest variances and uncertainty. To achieve

both goals, when ranking a given topic, we use its expected utility plus a term

related to its variance instead of solely using the expected utility as in the greedy

approach. The term related to the variance is known as the exploration bonus

[Sut90]. For our case, given θi ∼ B(·|αi, βi), the expected utility is αi/(αi + βi),

and its variance is αiβi/[(αi + βi)
2(αi + βi + 1)]. We define the exploration bonus

as the variance scaled by a weight parameter λ. Hence, the ranking score, a

combination of the expected utility and the exploration bonus, is

αi

αi + βi

[

1 + λ
βi

(αi + βi)(αi + βi + 1)

]

.

Another benefit of our algorithm, which handles both exploitation and explo-

ration in a comprehensive way, is that it adapts itself more quickly to user-interest

drifts than the greedy algorithm. There are two factors to be considered in in-

terest drifting — discovering new interests and forgetting old ones. In terms of

discovering new interests, the exploration nature of our algorithm helps quickly

pick up new user interests. The following example illustrates how our algorithm

forgets old interests. Consider there are two topics, a and b, to be ranked and

displayed in a one-item-at-a-time recommendation list, where αa = 10, βa = 1,

αb = 1, and βb = 1. For the exploitation part, αa/(αa + βa) = 10/11 and

αb/(αb + βb) = 1/2. If the user stops being interested in topic a, for the greedy

algorithm, it takes 10 more rejections of a for topic b to replace a’s position.

However, since topic b has only been rejected once, it is not certain that topic

a is superior to topic b. In our algorithm, when λ = 3, it takes only 4 more

rejections of a for topic b to replace a’s position.
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3.4 Simulation and User Study

We use both simulation and a user study experiment to evaluate the performance

of our recommendation strategy. The reason for using simulation is that user

study may involve many hidden factors that are not fully captured by our model.

Therefore, we use simulation as a better-controlled environment to demonstrate

some properties of our proposed recommendation strategy (referred to as Ex-

ploitation and Exploration, E&E in short, hereafter). For comparison, we also

implement two naive baselines:

• random - it presents topics in a random order, where every topic is shown

to a user the same number of times on average.

• greedy - it ranks and presents topics based on their learned θ′i respectively

(i.e. αi/(αi + βi)). Where displayed items always come from topics with

the top j θ value, j is the size of the recommendation list.

The random method is a simple strategy without exploitation. However, as shown

below, it shows good performance in terms of the accuracy of parameter estima-

tion. The greedy strategy is a strategy without exploration, i.e., a special case

of the E&E strategy with the exploration bonus weight λ set to 0. That is, the

greedy strategy exploits user click history without actively exploring previously

unknown user interests. By comparing the E&E strategy with these two base-

lines, we show that exploration does help in terms of quickly capturing diversified

user interests, which may drift over time.

3.4.1 Simulation

Parameters of the simulation are shown in Table 3.1. The settings are to simulate
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Total number of topics (K) 45

Size of display list (j) 7

Read probability (g(j)) [1 0.95 0.9 0.85 0.8 0.75 0.7]

Initial α, β values α = 1, β = 3

Click probabilities of 7 are uniformly distributed between [0.9,1]

interested topics (θ’s) 13 are uniformly distributed between [0.4,0.7]

Table 3.1: Parameters used in simulation.

the environment of the user study described in Section 3.4.2. We simulate 2000

users, each for 100 iterations. Θ = {θ1, . . . , θ45} consists of 7 large values and

13 medium ones, while the remaining 25 are zeros. We use this simulation to

show that E&E, through exploration, can discover topics with the highest θi

values while the greedy strategy may, instead, remain at suboptimal. We compare

the performance of the three algorithms in three different aspects, namely, click

utility, estimation accuracy, and tracking interest drift.

Click utility

Click utility is a commonly used metric for measuring user satisfaction on recom-

mendation systems or search results [Hij99, QC06]. It can be considered as the

attractiveness of display items to convince users to click. Figure 3.1 shows the

average number of clicks per iteration for the three algorithms in the first 100

iterations of the simulation. For E&E, we used two different exploration bonus

weights (λ = 10 and λ = 20, respectively). Both E&E and greedy outperform

random because they learn and display items matching a user’s interests to max-

imize the likelihood of being clicked. We observe that although E&E achieves

a lower click utility initially, it scores higher values in a long run (after the 10th
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Figure 3.1: Click utility of simulated users. For E&E, different exploration bonus

weights (λ).

iteration). This result indicates that in E&E, some exploration cost is paid in

the initial phase to identify topics with potentially high θi value and that such

exploration pays off in the long run.

Estimation error of Θ

Other than the click utility, we use the estimation error of Θ (user interest)

to evaluate the performance of the three recommendation algorithms. At each

iteration, we compute the normalized mean absolute error (MAE), which is com-

monly used in recommendation systems literature [HKT04], of the learned θ′i as

follows,
∑K

i=1 |θ′i − θi|/θi, where topics with θi = 0 are omitted in the calculation.

Figure 3.2 shows the change of estimation accuracy along the iterations. Gen-

erally, the estimation accuracy improves (i.e., the estimation error reduces) as

the learning process proceeds, where E&E shows a performance in between the

worst (greedy) and the best (random), depending on the λ value. This observa-

tion suggests that more exploration gives better estimation accuracy; however,
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Figure 3.2: Estimation error of θi. For E&E, different exploration bonus weights

(λ). The lower estimation error is the better.

although E&E gives better estimation accuracy, it does not sacrifice click utility,

as random does.

Interest drift

The idea of exploration can be best illustrated by an interest-drift scenario: at

every 30 iterations, we randomly replace 2 of the currently interesting topics with

2 that were previously uninteresting to the user. The simulation lasts 150 itera-

tions with interest drift at the 30th, 60th, 90th, and 120th iterations. When a user

drifts her interests to some less explored topics (higher variance of θ), E&E can

capture these changes faster and improve the click utility accordingly. Figure 3.3

shows that, immediately after the user’s interests drift, the click utilities of both

E&E and greedy decrease due to the dominance of the previously learned profile.

E&E, however, adapts to the drift much faster than greedy because of its explo-

ration component, and the click utility rises back to the optimum level. Again,

this effect is more significant when λ is larger.

From these controlled simulation studies, we can see that our E&E algorithm
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Figure 3.3: Click utility of simulated users with different exploration bonus

weights under interest-drift scenario.

outperforms the greedy algorithm, which exploits but does not explore. By com-

bining both exploitation and exploration, our E&E recommendation strategy

generates higher click utility, has lower estimation error, and tracks user–interest

drifts more accurately.

3.4.2 User Study

The simulation has revealed some properties of the E&E recommendation strat-

egy; we now investigate the potential of the E&E strategy through a small-scale

pilot study. As I will explain shortly, the findings from this experiment may

not be generally valid due to the small number of participants in our experi-

ments and the high concentration of their interest in technology field. Despite

this shortcoming, it is our hope that this experiment will shed a light on the

potential effectiveness of our strategy in a more realistic setting than simula-

tion. We have recruited 10 users from the staffs of NEC Labs and students of

the UCLA CS department to participate in the pilot study. In the experiment,
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Arts/Animation Arts/Architecture

Arts/Photography Computers/Algorithms

Computers/Data Communications Computers/E-Books

Computers/Hacking Computers/Human-Computer Interaction

Games/Board Games Games/Game Studies

Health/Beauty Health/Mental Health

Health/Occupational Health and Safety News/Analysis and Opinion

News/Magazines and E-zines Recreation/Autos

Recreation/Travel Science/Biology

Science/Math Science/Physics

Shopping/Clothing Shopping/Consumer Electronics

Society/History Society/Law

Society/Politics Sports/Baseball

Sports/Cycling Sports/Football

Sports/Squash Sports/Tennis

Table 3.2: The selected topics from ODP.

we randomly select 45 categories and their respective Webpages from the Open

Directory Project [DMO], which is a repository of pre-categorized Webpages, in

level 2 of its hierarchy. A sample of which is shown in Table. 3.2 and a screen-shot

of the interface is shown in Figure 3.4.

Before the experiment begins, we ask the users to indicate, on a scale of 1 to

9, their interest level on each topic as the ground truth (θi). This ground truth

is not used by any algorithm but used only for computing performance. In each

iteration of the experiment, the URLs of 7 Webpages, together with their titles

and descriptions, are presented to the user. Each of them comes from a different

category. The user is instructed to click on the URLs that interest her. When no
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Figure 3.4: User interface of the user study experiments.
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more URLs are found interesting, the user will click the next button to proceed

and get the next recommendation list. Each click by the user expresses a user’s

interest. At the same time, the fact that the user did not click some links in

a list indicates that the user is not interested in those topics. Both pieces of

information are used to update the αi, βi values of the corresponding topics.

We interleave 3 different strategies randomly throughout the iterations with-

out informing the users to reduce the bias that can be introduced by different

groups of users and ordering effects, while each strategy updates its parameters

independently of the others. The experiment lasts 75 iterations, with 3 strategies

run 25 iterations each. Such experiment settings minimize any potential bias by

comparing the strategies without dividing users into groups or dividing the test

into phases.

Click utility

Figure 3.5 shows the click utility (as the fraction of improvement of cumula-

tive clicks over random) averaged over 10 users, with 3 users with an extremely

small number of clicks dropped1. The behavior of each strategy is similar to the

simulation prediction, where E&E performs noticeably better than greedy.

Estimation error of Θ

Since users indicate their interest level (ground truth) on a scale of 1 to 9, we map

these levels to click probabilities (θi) by using x−lb
ub−lb

, where x is the level selected,

lb is the lowest level selected, and ub is the highest level selected by the user. We

1The reasons for low click utility were later found to be that 1) although the URLs do come
from a user’s interested categories, their quality is not high enough to be clicked, and 2) some
topics are too broad to capture a specific interest (e.g., Sports-basketball encompasses various
basketball pages instead of the well-known NBA).
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Figure 3.5: Comparison of click utility of E&E, greedy, and random strategies.

apply the equation for measuring estimation error and compute the values at the

25th iteration of (i.e., the end of) the experiment. The estimation error values

of random, E&E, and greedy are 21.6, 23.8, and 24.3, respectively. The relative

performance is similar to the prediction from simulation; however, the absolute

difference in performance is less noticeable. Even the random strategy cannot

show a significant improvement in the estimation accuracy, which suggests that

the interest levels indicated in the survey may not truly reflect the user’s interest

as captured by clicks. This discrepancy may be resulted from the mismatch

of interest between users, which are mostly of Computer Science background,

and the diverse range of topics selected. Nonetheless, we believe that the result

averaging from multiple users gives certain support to our conclusion drawn from

the simulation experiment that the accuracy of E&E in capturing user interest

is in between of the random and the greedy strategies.
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Figure 3.6: Comparison of click utility of E&E, greedy, and random strategies

under interest-drift scenario.

Interest drift

In user study, it is hard to force a user to change her interests intentionally and

record what has been changed. Therefore, to analyze interest drifts in user study,

we design an experiment in which, after a user finishes the 75 iterations of her test,

a different user (with substantially different interests according to her answers in

the beginning survey) continues the test for another 75 iterations. This switch of

users is used to simulate the case in which the user has interest drift at the end

of the 25th iteration. Figure 3.6 shows the average click utility (as the fraction of

improvement of cumulative clicks over random) of 5 users, from the 26th to 50th

iterations. The results show that E&E adapted faster than greedy and further

improved the click utility towards the end in our pilot study.

While we cannot extend the results of this pilot study to general settings due

to the inherent limitation of our experimental setup, the results confirm the con-

clusions drawn from the simulation study. That is, our E&E algorithm outper-
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forms the exploitation-only greedy algorithm in terms of click utility, parameter

estimation error, and adaptation to user-interest drift.

3.5 Related Work

In an invited talk at the 2005 User Modeling Conference, Jameson [Jam05] enu-

merated five major usability goals for user-adaptive systems as privacy, controlla-

bility, unobtrusiveness, breadth of experience, and predictability and comprehen-

sibility. The personal information manager is designed to address the last three

usability goals by the E&E recommendation strategy.

Learning users’ interests and profiles has been studied extensively in vari-

ous areas such as information retrieval, Web search and mining, etc. In the

information-retrieval area, relevance feedback has long been used for improv-

ing the quality of retrieval [Eft00, KDF05]. A relevance feedback system is an

interactive system in which queries are expanded by terms discovered from the

documents that the user found useful, and therefore, it is a process of user-interest

modeling. In the Web search and mining area, personalization has been one of

the most important research topics [MCS00, MDL02]. In [Bro02, LLC05, RL04],

the intentions of a user of a Web search engine are categorized into either naviga-

tional, where the user has very clear Website targets in mind, or informational,

where the user’s intention is to explore information on a topic, and various tech-

niques are proposed to detect these intentions. In [ABD06a, ABD06b, QC06],

techniques are proposed to incorporate personal interests into ranking algorithms

to reflect a user’s model where the user’s interests are learned from the user’s

click history. Many other forms of information from users, such as display time

[KB04] and user profiles [SHY04], have also been used to induce user interests,

and various mathematical models, such as those in [JZM05] and [Joa02], have
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been proposed to describe user preferences. While these different approaches

have proved effective in various areas, a key point that limits their flexibility is

that they are all passive in nature. That is, all these approaches exploit historic

data while ignoring exploring additional information about users. In comparison,

user interests are actively explored in our approach.

In [SZ05], an active feedback framework is proposed for probing user prefer-

ence where the documents to be probed are selected based on a statistical decision

theory. However, there are two limitations in this work. First, it requires explic-

itly asking users for feedback, and second, it assumes that the ground truth,

i.e., if a document is relevant, is available. In our algorithm, the active prob-

ing is achieved implicitly. Furthermore, we do not assume unambiguous ground

truth and instead adopt a probabilistic model to describe the uncertainty in user

preference.

3.6 Summary

In this chapter, we studied how to rank articles by capturing user interests ef-

fectively in a personalized recommendation system. We started by building a

probabilistic model to model a user’s interaction with the personalized recommen-

dation system. Based on this user model, we proposed an algorithm in a learning

framework that rank articles by actively capturing user interests through an in-

teractive recommendation process. The proposed algorithm takes into account

both exploitation, i.e., recommending items according to user interests that are

currently known, and exploration, i.e., actively exploring potential user interests

that are currently unknown. We designed simulation experiments to compare the

performance of our algorithm with that of a random algorithm, which does not

exploit, and a greedy algorithm, which does not explore. The experimental re-

79



sults demonstrated that by incorporating both exploration and exploitation, our

recommendation algorithm achieved higher click utility, lower parameter estima-

tion error, and more agile adaptation to user-interest drift. We have also carried

out a small-scale pilot user study. While the results cannot be generalized due to

the limitation of the experiment setup, the conclusion drawn is similar to those

found in the simulations.

There are several future research directions. In this chapter, we assumed

that each recommended item can match only a single interest of the user. This

assumption can be too simplistic in practice, and currently we suggest to incor-

porate multiple topics to a single user click in our model as a future extension.

Another future research direction is to study and incorporate dependency among

items in the same list.
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CHAPTER 4

Efficient personal recommendations

4.1 Introduction

The amount of user-generated content on the Web is exploding as the broadband

Internet connection becomes ubiquitous and many “Web 2.0” services, such as

Blogger, MySpace, Flickr, and delicious, make it extremely easy even for novice

users to post and share their own creations on the Web. As discussed in Chapter 1,

even an user subscribes to only a few of these information sources, it becomes

very difficult for her to keep up with all the new information constantly being

generated. To deliver better personalization, it becomes useful for online content

aggregators to provide recommendations of popular topics (either as key phrases

or links to Web resources) on the Web that users may not aware of to draw their

interests.

These user-generated contents can be considered the expressions of individu-

als’ opinions on various issues and items around them. For example, a technical

blogger may write his opinion on a new and highly-anticipated gadget on his blog,

and a delicious user may “bookmark” a page if she finds it worth a later visit.

The participation of a large number of users in sharing their opinions on the Web

has inspired researchers to build an effective “information filter” by aggregat-

ing these independent opinions. For example, delicious and Digg – two popular

online bookmarking sites – count how many times a page is “bookmarked” or
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“digged” by their users and prominently show the most popular pages on their

front pages. The hope behind these aggregation services is that by leveraging

the independent judgment of millions of users, we can tap into the wisdom of the

crowds and make a good collective judgment on what items and/or topics are

truly interesting.

Such aggregation service is shown to be effective in finding the popular and

interesting items from the Web. However, this approach suffers from two short-

comings: (1) a particular user’s interest may be significantly different from the

interest of the general public (2) it may be vulnerable to spam. For example,

a group of users can collaborate to promote pages to the front page of Digg for

their own benefit. Also, given the diverse groups of users on the Web nowadays,

a Webpage that has been recommended by a particular group of users may not

be of much interest to different groups of users.

In this chapter, to address the abovementioned problems, I explore the pos-

sibility of computing the personalized aggregation of the opinions expressed on

the Web. Under our approach, I assume that each user indicates how much the

user “trusts” each information source1 — either explicitly or implicitly. Then as

each source “mentions” or “endorses” different items2 over time, the user gets

a personalized recommendation of items based on how many times each item is

endorsed by her trusted sources. By employing this “personalized” aggregation,

it makes the recommendation more likely to align with the user’s interest and less

vulnerable to spam created by distrusted sources. In fact, in the experiments, it

is observed that the proposed personalized aggregation approach indeed makes a

1An information source can be any independent source of information, such as a blog page
maintained by a particular blogger or the bookmark page maintained by a particular delicious
user.

2An item can be any potential object of interest, such as a Webpage mentioned on blogs or
a hot topic or gadget being discussed on blogs.
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significant difference in the items that are recommended and captures the user’s

interest much better than an overall aggregation service.

Although such an idea can be extremely effective, one important challenge in

providing personalized aggregation is the problem of scalability. Given that there

are potentially millions of users who may use the system and millions of sources

to get the opinions from, computing the personalized aggregation every time a

user requests causes significant computational cost, as we will see later. The

main focus of this chapter is to address this scalability issue. Roughly, my idea

for addressing this challenge is to model the personalized aggregation problem as

a matrix multiplication and apply an effective matrix decomposition method to

reduce the multiplication cost. As we will see later, the proposed approach for

personalized aggregation reduces the computational cost significantly, often more

than 75%, while the result of personalized aggregation is kept accurate enough.

The rest of the chapter is organized as follows. In Section 4.2, I formulate

the personalized aggregation as the problem of weighted sum computation and

present two basic methods to perform this computation. I then present a matrix

representation of this problem and propose an efficient method to support per-

sonalized aggregation. In Section 4.3, I will describe the experiments with a real

dataset to show the impact of personalization and the efficiency of our proposed

method. Finally, I provide concluding remarks and a brief discussion of some

possible future investigations in Section 4.5 after briefly going over related work

in Section 4.4.
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4.2 Framework

In my model, I assume that we want to compute personalized recommendations

for n users (U = {u1, u2, . . . , un}) by aggregating opinions from m different in-

dividual bloggers (B = {b1, b2, . . . , bm}). While the method is general enough,

I focus on blogs to make the discussion more concrete. It is straightforward to

apply our framework to other application domains. We assume that each user

ui has expressed his level of interest on each blogger bj as the subscription score

T (ui, bj). We refer to the set of subscription scores that the user ui places on

bloggers b1, . . . , bm

~Ti = 〈T (ui, b1), T (ui, b2), . . . , T (ui, bm)〉

as the subscription vector of ui. These subscription scores may be provided ex-

plicitly by the users (e.g., users may subscribe to a list of blog RSS feeds, indi-

cating their interest in those blogs), or the subscription scores may be estimated

by analyzing the past behavior of the users (e.g., by monitoring how frequently

a user reads articles from each blog). I assume that there are l items of in-

terest (O = {o1, o2, . . . , ol}) that bloggers mention and that can potentially be

recommended to the users. The exact definition of an item is application depen-

dent. For example, for a system that recommends Webpages, an item will be a

Webpage; for a system that recommends electronic gadgets, an item will be an

electronic gadget that is mentioned on the blogs. Whenever a blogger bj mentions

an item ok on his blog and expresses his opinion, I assume that he provides a

certain degree of “reference” for ok, represented as the reference score E(bj, ok).

For example, when a blogger bj includes a link to the Webpage ok in one of his

articles, we may assume that bj is giving the reference score 1 for ok. The set of
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all reference scores for the item ok by the bloggers b1, . . . , bm

~Ek = 〈E(b1, ok), E(b2, ok), . . . , E(bm, ok)〉

is referred to as the reference vector of the item ok.

Under this notation, the problem of computing the personalized aggregate

recommendation can be stated as follows:

Problem 2 For each user ui and each item ok, we want to compute the person-

alized reference score R(ui, ok)

R(ui, ok) =
m

∑

j=1

T (ui, bj)E(bj, ok), (4.1)

and return items with the highest personalized scores to the user. Equation 4.1

can be restated using the following vector notation:

R(ui, ok) = ~Ti · ~Ek. 2

In order to compute the personalized reference score for each user, we have to

maintain the subscription score T (ui, bj) for every (ui, bj) pair and the reference

score E(bj, ok) for every ok endorsed by bj. These scores can be recorded in the

following two tables:

• Subscription(user id, blog id, score)

• Reference (blog id, item, score)

Each tuple in the Subscription table records a user’s subscription score on a

blogger in the score attribute. Each tuple in the Reference table records the

reference score by a blogger for an item in the score attribute.

Given the above two tables, computing the items with highest personalized

reference scores for user ui can be expressed as the following SQL query Q1:
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Q1: SELECT t.item, sum(t.score*e.score) AS score

FROM Reference e, Subscription t

WHERE e.blog id = t.blog id AND

t.user id = ui

GROUP BY t.item

ORDER BY score DESC LIMIT 20

Here, I assume that we want to return the top 20 items, using the syntax

ORDER BY score DESC LIMIT 20, for the user ui.

4.2.1 OTF and VIEW

One simple way of returning the items with the top personalized reference scores

is to compute the answer for the query Q1 on the fly when the user wants a

personalized recommendation. This approach is illustrated in Figure 4.1(a) and

is referred to as OTF (short for on the fly). Under OTF, one global Reference

table is maintained, where a new tuple is inserted (or an existing tuple is updated)

whenever a blogger posts a new article and provides a reference for an item.

Using this global Reference table, we then execute Q1 by joining the table with

a user’s subscription scores in the Subscription table when the user asks for a

recommendation.

Unfortunately, repeatedly executing Q1 for every user’s request can be pro-

hibitively expensive. Because there are millions of bloggers who keep posting

new articles (and thus providing new references) and a user may subscribe a

large number of bloggers and have many non-zero entries in his subscription vec-

tor, the join in Q1 may involve millions of tuples, which will be too expensive to

perform on the fly.

Alternatively, to avoid this runtime query execution cost, we may proactively
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Figure 4.1: The graphical illustration of three different methods.
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precompute the personalized reference scores for every user. That is, for each user

ui, we maintain his personalized reference score table,

• PersonalizedReference(item, score)

as shown in Figure 4.1(b). Under this approach, whenever a blogger bj provides

a new reference for the item ok, all PersonalizedReference tables for the users

with non-zero trust on bj are updated to reflect this new reference. This ap-

proach is referred as VIEW, since this approach maintains a materialized view of

personalized reference scores for every user.

Under this VIEW approach, a user’s personalized reference scores are al-

ways precomputed and are available in the user’s PersonalizedReference table,

so the user’s request for a recommendation can be handled quickly. We simply

need to look up the top-scored items from the user’s PersonalizedReference table.

However, maintaining the PersonalizedReference tables will result in significant

update cost, because whenever there is a new update on a blog with a large num-

ber of subscribed users, all corresponding PersonalizedReference tables should be

updated.

4.2.2 Matrix representation

In the previous section, I described the two baseline approaches for computing

the personalized reference scores: OTF and VIEW. The main problem of OTF

is that the query execution cost is too high due to a join between two large

tables, whereas the main problem of VIEW is that the maintenance cost of the

PersonalizedReference tables is too high because one new reference may trigger

updates on a large number of tables. In this section, I investigate how to minimize

both the table update cost and the query computation cost. In order to develop
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an approach with lower costs, I first reformulate the execution of query Q1 as a

matrix multiplication problem.

It is easy to see that the subscription scores in the Subscription table can be

viewed as an (n × m) matrix T , where each entry (i, j) represents the user ui’s

subscription score on the blog bj. Similarly, the reference scores in the Reference

table can be viewed as an (m × l) matrix E, where each entry (j, k) represents

the blogger bj’s reference score for the item ok. Then from the definition of the

personalized reference score R(ui, ok) in Equation 4.1, we see that R(ui, ok) can

be computed from the matrix multiplication of T and E:

Proposition 1 The personalized reference score of the item ok for the user ui,

R(ui, ok), is the (i, k) entry of the matrix multiplication of T and E. That is,

R(ui, ok) = (TE)(i,k), (4.2)

where M(i,k) represents the (i, k) entry of the matrix M . 2

I use the following example to illustrate this matrix interpretation of the

problem.

Example 5 Suppose that there are 3 users, 4 bloggers, and 3 items. The user

ui’s subscription score on the blogger bj is given in the subscription matrix T

in Figure 4.2. For example, the value of the (1,2) entry, 0.8, indicates that u1

subscribe b2 with the score 0.8. Also, the blogger bj’s reference to the item ok is

given in the reference matrix E in the figure. For example, the value, 2, of the

(4,2) entry indicates that the blogger b4 refer to the item o2 with the score 2.

Note that each row in the subscription matrix T corresponds to the subscrip-

tion vector ~Ti of the user ui. Also each column in the reference matrix E corre-

sponds to the reference vector ~Ek of the item ok. Given that R(ui, ok) = ~Ti · ~Ek,
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T b1 b2 b3 b4

u1 0.8 0.8 0 0

u2 0.2 0.2 0.6 0.6

u3 0 0 0.5 0.5

E o1 o2 o3

b1 3 2 0

b2 0 3 0

b3 1 0 1

b4 1 2 3

Figure 4.2: Subscription matrix T and reference matrix E.

TE o1 o2 o3

u1 2.4 4 0

u2 1.8 2.2 2.4

u3 1 1 2

Figure 4.3: The result of the matrix multiplication TE.

we see that R(ui, ok) is simply the (i, k) entry of the matrix multiplication TE.

That is, computing the personalized reference score R(ui, ok) is equivalent to per-

forming the matrix multiplication of T and E. Figure 4.3 shows the result of this

multiplication. 2

Given this matrix formulation, OTF can be viewed as follows: T and E

matrices are maintained separately as new reference are provided by the bloggers

by updating the E matrix. Then, when the users request their personalized

reference scores, the multiplication of T and E is performed on the fly. The cost

for updating the E matrix, therefore, will be low, because a new reference from a

blogger causes an update to a single entry in the matrix E; when the blogger bj

provides the reference to ok, only the (j, k) entry of the E matrix will be updated.

The computation cost of the personalized reference scores, on the contrary, will

be very high because of the high cost of the multiplication of two large matrices.
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The other VIEW approach can also be seen as the following matrix operations:

Only the single matrix TE is maintained. New references provided by the bloggers

are recorded by updating the appropriate entries in TE. Since all personalized

scores R(ui, ok) are precomputed in the matrix TE and are readily available, the

cost for answering a user’s request for R(ui, ok) will be low. By contrast, the

cost for maintaining the matrix TE will be high, because a single reference from

a blogger may trigger multiple updates on a large number of entries in the TE

matrix. For example, a reference from bj who has 1,000 subscribed users will

incur updates to 1,000 entries in the TE matrix.

The above two extreme approaches, either precomputing the entire matrix

multiplication TE or performing it lazily at the user’s request, suggest exploring a

possible middle ground, where part of the multiplication is performed proactively

before the user’s request and the rest of the multiplication is finished on the fly.

In the next section, we will see that finding this middle ground is equivalent to

finding a good low-rank decomposition of the matrix T .

4.2.3 Matrix decomposition for efficient computation

To understand how matrix decomposition can be used to find the middle ground,

Let us consider the subscription matrix T in Figure 4.2 of Example 5. From the

Subscription table, it is observed that even though there are 3 users with different

subscription vectors, the user u2’s vector ~T2 is simply a linear combination of ~T1

and ~T3. That is,

~T2 = 0.25 ~T1 + 1.2 ~T3. (4.3)

Now, given that R(u2, ok) = ~T2 · ~Ek, it is observed that R(u2, ok) can actually be

computed from R(u1, ok) and R(u3, ok). That is,

R(u2, ok) = ~T2 · ~Ek
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= (0.25 ~T1 + 1.2 ~T3) · ~Ek

= 0.25~T1 · ~Ek + 1.2~T3 · ~Ek

= 0.25R(u1, ok) + 1.2R(u3, ok).

This observation hints at a possible modification to the VIEW approach: instead

of maintaining one PersonalizedReference table for every user, maintain the table

only for the two “representative users,” u1 and u3. The personalized reference

score for u2 is then computed indirectly by combining the personalized scores for

u1 and u3. This modification to the VIEW approach has the following two merits

in terms of its update and the query computation cost:

1. Update cost: The update cost for the PersonalizedReference tables is sig-

nificantly reduced from the VIEW approach. That is, according to the

subscription matrix T in Figure 4.2, every blogger bj is subscribed by two

users (i.e., for every column bj in T , there are 2 non-zero entries). There-

fore, under the VIEW approach, a new reference made by the blogger bj

will trigger updates to two Reference tables. In contrast, under the mod-

ified approach, we maintain only two PersonalizedReference tables for u1

and u3. Now, because bj is subscribed by only one of u1 and u3, a new

reference made by by bj will trigger just a single update to one of the two

PersonalizedReference tables.

2. Query computation cost: The computation cost for personalized reference

scores of the modified approach is also significantly lower than that of OTF.

Under OTF, the computation of R(ui, ok) values involves the multiplication

of T and E matrices. Under the modified approach, by contrast, R(ui, ok)

scores for the user u1 and u3 have already been precomputed. For the

remaining user u2, the computation of R(u2, ok) can also be done cheaply
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by taking the weighted sum of R(u1, ok) and R(u3, ok). In short, the query

computation cost of the modified approach is significantly lower than that

of OTF and is close to the cost of VIEW.

The modified approach to computing R(ui, ok) can be viewed as the following

matrix decomposition of T into W and H:

T = WH










0.8 0.8 0 0

0.2 0.2 0.6 0.6

0 0 0.5 0.5











=











1 0

0.25 1.2

0 1















.8 .8 0 0

0 0 .5 .5



 .

Here, each row of the second matrix H corresponds to the subscription vector

of the two “representative” users, u1 and u3. Each row of the first matrix W

then represents how each user ui’s subscription vector can be obtained from the

subscription vectors of the two representative users. For example, the first row

of W is 1 for the first entry, indicating that u1’s subscription vector is identical

to the subscription vector of the first representative user. The second row has

0.25 and 1.2 as its entries, indicating that the subscription vector of u2 is the the

linear combination of the subscription vectors of the two representative users,

weighted by 0.25 and 1.2, respectively.

Given this decomposition, we see that maintaining the PersonalizedReference

tables for the two representative users u1 and u3 is equivalent to precomputing

the multiplication of H and E. Note that each row of the HE matrix has the

R(ui, ok) scores of each of the two representative users. Then during the query

time, R(ui, ok) of ui is computed by multiplying the precomputed HE with W

as follows:
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TE = (WH)E = W (HE)

=











1 0

0.25 1.2

0 1































0.8 0.8 0 0

0 0 .5 .5





















3 2 0

0 3 0

1 0 1

1 2 3

































=











1 0

0.25 1.2

0 1















2.4 4 0

1 1 2



 .

The main benefit of this approach comes from the fact that the number of

rows in H is much smaller than the number of rows in T , so a much smaller

number of PersonalizedReference tables are needed. More formally, both the

update and the query computation costs for personalized reference scores are

reduced by decomposing the (n×m) matrix T into (n× r) and (r×m) matrices

W and H, where r ≪ n, and by precomputing the multiplication HE.

In general, this process of matrix decomposition has the following intuitive

interpretation: The representative groups of users who have similar subscription

vectors are first identified so that we can precompute the personalized reference

scores for each representative user group. Then during the query time, we com-

pute the personalized reference scores of each user by combining his scores on the

representative user groups. Figure 4.1(c) graphically illustrates this interpreta-

tion. Note that, in the figure, we maintain one PersonalizedReference table per

user group, not per user. Since the number of user groups is much smaller than

the number of users, this approach is likely to lead to significant improvement in

the update and the query computation cost compared to VIEW and OTF.
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4.2.4 SVD and NMF

The previous discussion shows that we can reduce the costs of multiplication by

finding a way to decompose (n×m) matrix T into (n× r) matrix W and (r×m)

matrix H where r ≪ min{n,m}. Since r corresponds to the number of “rep-

resentative” user groups for which we maintain separate PersonalizedReference

tables, one would like to find a decomposition WH such that r is minimal. Unfor-

tunately, it is known that the minimum r value for the decomposition WH is the

rank of the matrix T . That is, for a matrix T whose rank is close to min{n,m},
it is not possible to obtain a decomposition WH with a low r value. Given that

exact decomposition is almost impossible, we relax our goal to find the closest

approximation of the subscription matrix T with WH for a given r value.

Desiderata 1 Given the desired rank r of the matrix decomposition of T , find

the W and H such that WH is closest to T :

T ≈ WH. 2

One well-known method for low-rank matrix approximation is Singular Value

Decomposition (SVD). If SVD is used to decompose matrix T into two orthogonal

matrices, the decomposition is guaranteed to be the best in terms of the Forbenius

norm, at any given rank approximation. Unfortunately, the decomposed matrices

W and H result in significant update and query execution cost due to the high

density of the matrices; almost all entries in the W and H are non-zero, which can

be interpreted to mean that every blogger bj is subscribed by every representative

user group and that every user ui belongs to every representative user group to

a certain extent. Therefore, an update from blogger bj results in updates to the

PersonalizedReference table of almost every user group. Also, the computation

of R(ui, ok) for the user ui requires us to combine the scores from almost all
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PersonalizedReference tables.

The high update and query costs resulting from the SVD decomposition led

us to introduce the second desiderata for the matrix decomposition:

Desiderata 2 Given the desired rank r of the matrix decomposition of T , find

the W and H, T ≈ WH, such that matrices W and H are as sparse as possible.

2

Intuitively, by making most of the entries of W and H zero, it is trying to identify

the user groups such that each blog bj is subscribed by only a small number of

groups and each user ui belongs to only a small number of groups.

Non-negative Matrix Factorization (NMF) is one of the methods with both

properties. In fact, NMF allows us to specify the desired sparsity of the resulting

matrix W and H for a given rank value r. Later in Section 4.3, I will provide

the experimental comparison between SVD and NMF, in terms of their approxi-

mation accuracy and the sparsity of the decomposed matrices. In the rest of this

chapter, I refer to the approach of using NMF for the matrix decomposition and

the R(ui, ok) computation as the NMF method.

4.2.5 Efficient computation of top K items

Once the PersonalizedReference tables are precomputed for every user group us-

ing the NMF method, we can compute R(ui, ok) for ui by combining the scores

from the tables ui belongs to. In most cases, as the query Q1 suggests, users are

interested in top K items with the highest personalized reference scores instead of

every item referenced by bloggers. This suggests another possibility for optimiza-

tion under the NMF method. Instead of computing R(ui, ok) for every item ok,

we compute R(ui, ok) only for the items that are likely to have high scores. More
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specifically, from each PersonalizedReference table that ui belongs to, we obtain

only those items with high R(ui, ok) scores in each table. We then compute the

personalized R(ui, ok) values only among these items and return the top K. This

way, we can further reduce the execution cost of Q1 because only a few tuples

from each PersonalizedReference table are read instead of scanning most of the

tuples in the tables.

In [FLN01], Fagin et al. proposed an algorithm, called Threshold Algorithm,

suitable for this optimization. Through a careful analysis of the algorithm, the

authors have shown that we can indeed compute the correct top K items op-

timally, by looking at just the top few entries from each PersonalizedReference

table. More formally, they have shown that when the score of an item oi is com-

puted by a monotone aggregate function t(oi) = t(x1, . . . , xm), where x1, . . . , xm

are the basis scores from which the final score is computed, we only have to

read the top items with the highest x1, . . . , xm scores until a certain threshold

condition is met. See [FLN01] for more detailed description of the algorithm.

Later in the experiment section, I implement Threshold Algorithm for the top K

item computation and report the performance numbers with this optimization.

Note that the optimization based on the Threshold Algorithm does not involve

any approximation, because the returned top K items are guaranteed to be the

correct top K items.

4.2.6 Hybrid approach

The NMF method brings advantages by approximating and decomposing a dense

user-blog subscription matrix into fewer numbers of user groups; hence, there is

no need to update a large number of PersonalizedReference tables or to aggregate

a large number of tuples in the Reference table at query time. However, the user-
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blog subscription matrix may not be dense over all users and blogs. In a real-world

dataset, some users may only subscribe to a few blogs, while some blogs may only

have a few readers. For these kinds of users and blogs, the two baselines, OTF

and VIEW, can already handle the personal aggregate query efficiently.

As shown in the literature [JKF07] (and also in the experiments afterwards),

the user-blog subscription matrix is usually skewed and shows a power-law-like

distribution. Figure 4.5 shows a subscription matrix with rows and columns as

the blogs and users respectively. When the rows and columns of the matrix are

ordered by the number of non-zero entries, it may be divided roughly into three

regions, as illustrated in Figure 4.4. In the figure, the region marked as “1. OTF”

corresponds to the users that subscribe to just a small number of blogs. The other

two regions, “2. VIEW” and “3. NMF,” correspond to the users who subscribe

to a large number of blogs, where “2. VIEW” indicates the blogs with just a few

subscribers and “3. NMF” indicates the blogs with many subscribers.

Based on such division of users and blogs, different methods can be applied

to process aggregate queries. For the region “1. OTF,” OTF is efficient enough;

since the users in the region subscribe to a small number of blogs, personalized

reference score is computed from just a small number of blogs. For the other two

regions, the query computation cost can be high if OTF is used, since these users

subscribe to a large number of blogs. Fortunately, for the region “2. VIEW,”

the VIEW method can be used to precompute the PersonalizedReference table

for each user whenever there is a new reference made by each blog; the blogs

in this region are subscribed by a small number of users, so an update from a

blog in this region triggers updates to just a few PersonalizedReference tables.

The third region, “3. NMF,” however, results in too much cost if either OTF or

VIEW method is used, so we apply the NMF method to this region to reduce the
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1. OTF

2. VIEW

3. NMF

Users with wider spectrum of interest

Blogs
with more
followers

Figure 4.4: Three different regions of the user-blog subscription matrix.

query computation cost. Later, in Section 4.3, we experimentally investigate how

the relative size of the three regions impacts the query and update performance

of the overall system.

Under such a partitioning scheme, whenever new users or blogs are added,

they can first be handled in region “1.OTF” and “2.VIEW” because they are

assumed to have a smaller number of subscriptions and subscribers respectively,

for which the query cost and update cost are low. Either periodically or after the

subscription data has changed from the previous version beyond a threshold, the

subscription matrix is repartitioned and the region “3.NMF” is recomputed again

to update these changes. In the proposed model, I assume that the subscription

matrix is fairly stable and will leave the study of handling a dynamic subscription

matrix as future work.
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4.3 Experiments

In this section, I evaluate the effectiveness of the proposed NMF method. In

Section 4.3.1, I first describe the dataset used for the experiments. Then in

Section 4.3.2, I investigate how much difference personalization makes in the

recommendation quality by comparing recommended items with or without per-

sonalization. In Sections 4.3.3 and 4.3.4, I evaluate the effectiveness of the NMF

method by measuring the accuracy of the NMF method in approximating the

top k popular items (Section 4.3.3) and by comparing the query and update

cost of the NMF method to the other two baseline methods (Section 4.3.4). Fi-

nally, in Section 4.3.5, I measure how different choices of parameters affect the

performance of the NMF method.

4.3.1 Description of dataset

Subscription matrix The users’ subscription information on the blogs is ob-

tained by collecting a snapshot of the user-blog subscription data from Blog-

lines [Blob]. Bloglines is a Web-based online RSS reader, where users can specify

the list of RSS feeds that they are interested in so that they can access new

articles from the subscribed blogs at a single location.

This subscription dataset contained 91,366 users who subscribed to 487,694

distinct RSS feeds on the Web.3 On average, one user subscribed to 30 distinct

RSS feeds, leading to a total of 2.7 million user-blog subscription pairs. Fig-

ure 4.5 shows the collected subscription matrix, where the users and the feeds are

sorted by their number of subscriptions and subscribers, respectively. The sub-

scription pattern follows a power-law distribution as reported in similar previous

3Only users with public profiles are considered.
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Figure 4.5: Subscription matrix with rows and columns ordered by the number

of subscribers and subscriptions, respectively.

studies [JKF07]. The matrix is indeed very sparse, with most of the subscrip-

tion pairs located in the lower right-hand corner. (This may not be noticeable

because of the printing difficulty) There were 24,340 users with more than 30

subscriptions and 10,152 blogs with more than 30 subscribers, which corresponds

to the box in the lower right corner in Figure 4.5. This region consists of roughly

1 million subscription pairs. Since the Bloglines users do not indicate their levels

of interest over the feeds, the subscription matrix is a degenerate version of the

user-blog subscription matrix having values of either zero or one.

Reference matrix In order to obtain the reference matrix for the experiments,

all articles posted at the 487,694 RSS feeds are collected between October 2006

and July 2007 and their contents are analyzed. Again, we consider that when

the item oi appears in an article posted by the blogger bj, the blogger “reference”

the item. Still, an important decision that we have to make is what constitutes
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an item. For the experiments, I explored two possibilities – the URLs appearing

on blog articles and the keywords appearing on the blog articles, only results

obtained from keywords are shown in this chapter. This choice of item may

be interpreted as identifying “popular buzzwords” within the subscribed blogs

for each user. To assign the reference score for every keyword appearing in the

blog articles, we extracted only the nouns from the articles, using a basic NLP

part-of-speech tagger and used the standard tf.idf score of those nouns, where

idf is calculated from all the blog entries published on the same day. There

are other methods like n-grams technique and KL-divergence with background

corpus [GHT04], to extract key phrases from blog articles to improve the quality

of recommendation; I apply the tf.idf method for simplicity and focus my work

on the query optimization.

4.3.2 Does personalization make a difference?

To quantitatively show how much difference personalization makes in the overall

recommendation, I first present the top few recommended items when they are

computed globally by aggregating the reference scoress from all bloggers with

equal weights and when they are computed individually for each user by weighting

the reference scores with each user’s subscription vector. Table 4.1 shows the list

of top 10 recommended keywords among all RSS feeds and for three sample users

in the week between 2007-01-07 and 2007-01-13. This is the week when Apple

Inc. announced its iphone.

From this list we can see that personalizing the aggregation based on a user’s

interest does make a big difference in terms of the recommendation. Globally, the

announcement of iphone by Apple was indeed very popular among bloggers and

showed up as one of the top 10 recommended keywords. This globally popular
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event, however, was essentially filtered out for the recommendations for the user

90550 and the user 91017, whose interests seem to be less technology-oriented,

but more towards media/entertainment (user 90550) and politics (user 91017).

We also show the same list computed in the week between 2007-04-01 and 2007-

04-07. The global top keywords, again, pick up an important event happened in

the week (the Easter holiday), while top keywords for individual users are less

sensitive to the change of the global trend and continue to be related to their

personal interests.

To quantitatively measure the difference of the recommended keywords among

the users, I compute the following metrics. Let LG be the set of global top 20

keywords and Li be the set of top 20 keywords of the user i. Then the average

overlap between the global recommendation and the individual recommendations

can be measured by 1
n

∑ |LG∩Li|, and the overlap of the recommendations among

the users can be measured by 2
n(n−1)

∑

i6=j |Li ∩ Lj|, where n is the number of

users. When we measure these overlaps, they were 1.12 and 1.13, respectively,

for the top 1000 users with the largest number of subscriptions, indicating that

the recommended keyword lists shared only one keyword, on average.4

The shared-keyword count distributions in shown in Figure 4.6(a) and 4.6(b).

As we can see, even among users with a large number of subscriptions (that are

likely to have overlapping interests), their personalized answers differ significantly

from the global answer and also among the users themselves.

4.3.3 Accuracy of approximation

The NMF method attempts to compute the aggregation quickly, at the cost of

losing the accuracy of the aggregation. In this section, I investigate the accuracy

4These numbers were even smaller for the users with fewer subscriptions.
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Global user 90439 user 90550 user 91017

2007-01-07 to 2007-01-13

sales cattle brazil yorker

iphone beef iguazu iraq

apple iphone reuters bush

manager chicago search president

iraq iraq vegas views

management bush argentina avenue

development apple kibbutz dept

software companies video troops

business prices cathartik saddam

phone quarter google iran

2007-04-01 to 2007-04-07

easter bush angeles yorker

news iraq google views

google campaign kibbutz rock

sales president premiere theatre

business slashdottit entourage critic

description money photo/gus iran

york chicago ruelas paul

police plans shop fiction

security zell reuters southern

quality mccain actress stage

Table 4.1: Global and individual lists of top keywords during the weeks of

2007-01-07 to 2007-01-13 and 2007-04-01 to 2007-04-07.
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Figure 4.6: Distribution of the number of overlapping top 20 keywords among

top 1000 users.

of the approximated result computed by the NMF method.

I first compare NMF with SVD on how close they can approximate the orig-

inal matrix when both are approximated to the same rank.5 Since NMF does

not necessarily produce orthogonal matrices as the output, when the SVD ap-

proximation is done to rank-r, I choose n × r and r × m to be the size of W

and H used in NMF, for a fair comparison with the r rank SVD approximation.

Table 4.2 reports the accuracy of these two methods. The first column shows the

rank of the approximated matrix. The second column shows the Frobenius norm

of the difference between the original matrix and the SVD-approximated matrix

(i.e., |T − USV T |), and the third column shows the Frobenius norm under the

NMF approximation (i.e., |T − WH|). From this result, we can see that SVD

and NMF both result in roughly the same accuracy in terms of the Frobenius

norm; the NMF approximation is only 1% worse than that of the SVD; however,

5SVD is proven to provide the best approximation under the Frobenius norm for a given
rank.
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SVD NMF

rank norm norm (sparsity of W,H)

80 848.5 856.9 (25.0%,14.4%)

90 841.6 850.1 (24.7%,13.6%)

100 835.1 844.6 (23.2%,13.3%)

110 829.0 837.9 (22.7%,12.9%)

120 823.2 833.0 (21.5%,12.7%)

Table 4.2: Comparison of the accuracy and sparsity between SVD and NMF at

different rank approximation.

NMF significantly outperforms SVD in terms of the sparsity (the percentage of

non-zero entries) of the decomposed matrices. From the third column of the ta-

ble, we see that NMF gives an average sparsity of 23% in W and 13% in H, while

the sub-matrices decomposed from SVD contain almost 100% non-zero entries.

To make the accuracy of the approximation easier to see visually, Figure 4.7

shows the density map of the subscription matrix (only the dense region) com-

paring the original subscription matrix, the SVD, and the NMF approximations.

From the figure, we can see that both NMF and SVD leads to a very close ap-

proximation of the original subscription matrix.

In addition to measuring the accuracy in terms of the subscription matrix

approximation, I investigate NMF’s accuracy in terms of the top 20 recommended

items to the users. To quantify this, suppose Ai and Ti are the top k recommended

items computed with and without using the NMF approximation method for

the user ui. Then the degree of overlap between the correct and approximated

recommendations, Ai∩Ti

Ti
, is measured. It is observed that, averaging among the

top 1000 users (those with the largest number of subscriptions), 70% of the
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Figure 4.8: Approximation accuracy as a function of rank.

recommended items were shared between the two lists. Figure 4.8 shows that

this overlap varies as we change k in the top k. From the figure, we can see

that the higher-ranked items, which are considered more important to the users,

are more likely to be approximated by the NMF method. For example, the top-

ranked item was recommended by the NMF method in about 90% of the cases.

4.3.4 Efficiency of the NMF method

I now compare the update and query performance of NMF with two other base-

lines, OTF and VIEW. To compare their update performance, I assume that

we monitor the blogs for one week from 2007-01-07 to 2007-01-13, and as new

items appear in the blogs, we update the Reference table in OTF, the Personal-

izedReference table of users in VIEW, and the group tables in NMF. From this

measurement, we see that the total numbers of updates for OTF, VIEW, and

NMF are roughly 222K, 23.6M, and 3.2M, respectively, for the region where the

NMF approximation is applied. That is, while the update cost of NMF is higher

than that of OTF, NMF still reduces the update cost by an order of magnitude
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Method avg std max min

OTF 2.05s 3.60s 84.42s 0.037s

NMF 0.46s 0.53s 2.84s 0.007s

Table 4.3: Statistics of time taken by OTF and NMF (among the top 1000 users).

compared to VIEW.

Table 4.3 reports the query response time of OTF and NMF for top 1000

users (with a large number of subscriptions). The result from VIEW is not

reported here, because answering a query under VIEW is a simple table lookup.

The response time of OTF is measured by running the Q1 in Section 4.2 on

MySQL, and that of NMF is measured by a python implementation of the NMF

and Threshold Algorithm interfacing a MySQL 5.0.27 server (with a 600MB main

memory as index key cache) running on an AMD Dual Core Fedora machine with

database files residing on a RAID disk. On average, the OTF method spends

2.05s to answer a query, while the NMF method spends 0.46s. The table shows

that the reduction in the query response time is even more significant when we

compare the maximum response time; NMF reduces the maximum from 84.42s

to 2.84s and allows all users to get results within a reasonable amount of time in

an interactive setting.

In summary, we can see the NMF method is a middle ground between OTF

and VIEW in trading more update cost for a faster query response time.

4.3.5 Sensitivity analysis of NMF region size

I have previously studied using an arbitrary choice (users with >30 subscriptions

and feeds with >30 subscribers) of the dense subscription region to apply the
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boundary size # subscription pairs

(feeds, users) (m × n) (sparsity)

> 30, > 25 10, 152 × 28, 236 1,070,130 (0.37%)

> 30, > 30 10, 152 × 24, 340 1,004,908 (0.41%)

> 30, > 35 10, 152 × 21, 182 944,385 (0.44%)

> 30, > 40 10, 152 × 18, 600 885,581 (0.47%)

> 30, > 45 10, 152 × 16, 392 834,423 (0.50%)

> 25, > 30 12, 470 × 24, 340 1,060,292 (0.35%)

> 30, > 30 10.152 × 24, 340 1,004,908 (0.41%)

> 35, > 30 8, 514 × 24, 340 958,789 (0.46%)

> 40, > 30 7, 275 × 24, 340 918,483 (0.52%)

> 45, > 30 6, 315 × 24, 340 883,324 (0.57%)

Table 4.4: Characteristics of different sizes of NMF region.

NMF method. In this experiment, I empirically try different sizes of the NMF

region and study its impact on the query cost, update cost, and approximation

accuracy. Table 4.4 shows the size and sparsity of the NMF region under different

choices of boundary. For each of these settings, the NMF method is applied with

the same parameter r = 100.

Figure 4.9 shows how the update cost (as the number of SQL update state-

ments used to process one week of data) changes with the size of the NMF region.

It is observed that changing the NMF region size along the users and feeds di-

mension has an opposite effect on the update cost. The blue solid line shows that

when fewer users are included in the NMF region (i.e., more users are handled by

the OTF method), the update cost is lower because users handled by the OTF

method do not require their PersonalizedReference table to be maintained. The
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Figure 4.9: The impact of NMF region size on update cost.

red dashed line shows that when fewer feeds are included in the NMF region

(i.e., more feeds are handled by the VIEW method), the update cost is higher

because fewer feeds are benefited from the NMF method to reduce the number

of updates. This relationship suggests that we ought to include fewer users but

more feeds to be approximated by the NMF if update cost minimization is the

desirable objective.

Next, I examine the impact of the size of the NMF region on the query ef-

ficiency and accuracy of approximation. Since the evaluation focuses on the set

of users with the largest number of subscriptions, changing the NMF boundary

along the user dimension will not affect the group of users evaluated; therefore,

I investigate only the change along the feed dimension that determines the pro-

portion of feeds to be handled by VIEW and the NMF method.

Figure 4.10 shows the average approximation accuracy (with ±1 standard

deviation) of the top 1000 users under different sizes of the NMF region. It is
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curacy.

observed that when fewer feeds are being approximated by the NMF method,

the approximation accuracy is higher because more feeds are now handled by

the VIEW method without any approximation. Other than this, it shows that

the query response time remains similar regardless of the NMF region size. This

can be explained by the fact that the Threshold Algorithm is combining from a

similar number of ordered lists because the sparsity of the factorized matrices is

similar when the same r parameter is used for different NMF region sizes.

Based on the above observation, when we want to best leverage the advantage

brought by the NMF method, we should aim at including fewer users but more

feeds in the NMF region so that we can reduce the update cost while still giving

good approximation accuracy.
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4.4 Related Work

The work presented in this chapter spans over several areas such as Web data min-

ing, personalization, and query optimization, the related literature falls roughly

into three categories: 1) Web mining for trends, 2) Web personalization and

collaborative filtering, and 3) OLAP and query optimization of aggregates and

ranking operations.

Blogging activities have brought to the Web a huge amount of user-generated

content. There have been research efforts [GHT04, GGL04, MLS06, WZH07]

on mining Web data for trends and information retrieval specific to blog data.

For example, Gruhl et al. [GGL04] describe several techniques to find represen-

tative keywords and phrases (memes) that correspond to discussion topics in the

blogosphere and present methods to trace the spreading of information among

blogs. Wang et al. [WZH07] have proposed a method to correlate similar trends

from multiple sources. The majority of the prior work on Web mining focuses on

finding a set of global trends by aggregating a large number of sources, while my

work further extends this idea to provide more personalization to improve user

experience.

There is a significant amount of work on Web personalization and collabora-

tive filtering, ranging from the fast learning of accurate user profiles [QC06] to

personalized recommendation through collaborative filtering [PP07] to the op-

timization of complex systems [KI05, DDG07]. Recently, Das et al. [DDG07]

describe how Google News provides personalized news feed items. It addresses

the implementation of PLSI and EM algorithm using the map-reduce program-

ming paradigm and user profile management within the Google cluster. We see

that applying the NMF method in a distributed environment to further improve

efficiency will be an interesting investigation.
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Optimization of aggregation and ranking query has long been studied in the

database community, especially in the OLAP context. Recently, Li et al. [LWL07]

have introduced an extension to the SQL semantics to support the custom cluster-

ing method using “group by” and to support the general ranking function using

“order by.” Qu and Labrinids [QL07] describe how to optimize the scheduling

process of a streaming database engine to accommodate different user preferences

for freshness and accuracy of results. While some other previous work [QQZ06,

KWF06, LCI06] on efficient aggregate query processing may differ from applica-

tion domains and assumptions, they share the same line of thought to improve

query processing through approximation and reusing partially computed results

among queries.

My work benefits from two existing prior arts: 1)The core technique, Non-

negative Matrix Factorization, had been applied by machine learning researchers

in various application domains such as pattern recognition [Lin07], computer

vision [Hoy04], and clustering [XLG03, DLP06]. 2) The Threshold Algorithm is

an efficient method proposed by Fagin et al. [FLN01] to rank objects by merging

from multiple sorted attribute lists.

4.5 Summary

In this chapter, I formalized the problem of personalized aggregation. I presented

two baseline approaches and discussed their limitations. I then presented a matrix

representation of the problem and proposed a method that uses Non-negative Ma-

trix Factorization and Threshold Algorithm to speed up the query processing and

reduce the update cost. Using experiments on a real-life blog dataset, I showed

that the personalized aggregation is able to provide different results among users.

I also demonstrated the effectiveness of my proposed solution through an analysis
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of update cost based the bloglines dataset and a prototype implementation on a

commercial database to evaluate query cost. In particular, the NMF method is

able to cut the query response time by 75%, at the expense of paying a reasonable

amount of update cost, while maintaining an approximation accuracy of roughly

70%. Some interesting future directions include investigating the optimal choice

of the number of users and blogs to be included in the NMF approximation,

the effect of matrix sparsity on query efficiency, and the application of the NMF

method in a distributed computing environment.
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CHAPTER 5

Social annotation analysis

5.1 Introduction

The online content aggregator collects a lot of user activity data over time, for

example: What materials are marked as her favorite? What keywords does she

use as tags? These data not only serve as the basis for providing personalized rec-

ommendations but also provide information about Web-resource categorization

and vocabulary usage in the information-retrieval process. Social annotations,

such as bookmark tags, video annotations, and query logs of search engines, are

being generated both implicitly and explicitly every day. Such data involve in-

tensive human effort to match the best set of descriptive keywords with their

corresponding Web resources. The word-usage patterns learned from such so-

cial annotations can then be transferred to improve other online applications, for

instance, online advertising keyword selection.

Search engine’s sponsored search services, such as Microsoft’s adCenter [Mic]

and Google’s Adwords [Gooa], provide advertisers a convenient way to reach a

potentially much larger and highly targeted audience as compared to traditional

media advertising. Moreover, such search engines make it easier to measure the

effectiveness of the advertisement. These factors all contribute to the emergence

of online sponsored search markets, with an estimate of over 17 billion dollars

spent in 2006 at a growth rate of 20% [AFJ07]. A simplified but typical sponsored
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search activity requires advertisers to design an advertisement snippet and bid

on a set of selected keywords, while search engines select and show the relevant

snippets 1 whose bidding keywords match users’ queries. Besides relying on search

engines to match relevant queries to advertisements, advertisers can play an active

role by identifying a good set of keywords to improve the effectiveness. Selecting a

good set of advertising keywords, however, is never an easy problem and requires

considerable human effort. For example, a large retail store may have to identify

and choose thousands of keywords manually to bid in an advertising campaign,

while a typical online store might be looking for automatic ways to analyze its

Website to mine for possible advertising keywords. These factors drive us to

apply social annotations for selecting effective advertising keywords.

An advertiser would like to maximize his benefit by bidding the best set of

keywords to catch user attention and attract relevant traffic to his Website. For

example, some of the questions he has in mind will be: 1) Is the word specific

enough to ensure that my advertisements will be shown to my target audience?

2) Does the word correspond to some emerging topics in which users are more

willing to explore new pages, such as the one on which I am advertising? 3)

Will the word drift its meaning and topic association over time, thus lowering its

effectiveness in bringing relevant traffic to my Website? How can we use social

annotations to detect keywords with these properties?

In this chapter, I present methods that intend to help advertisers select ef-

fective advertising keywords based on social annotations collected by an online

content aggregator by making the following contributions:

• I study a social annotation dataset, delicious [Del], and apply a state-of-

the-art text-mining algorithm to demonstrate its power to categorize both

1Search engines may also consider the CTR (click through rate) of advertisement snippets
as a form of relevance in order to maximize their income.
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Web resources and word-usage behavior in Section 5.2.

• I identify three desiderata of advertising keywords selection that are fa-

vorable to online advertisers and explore the corresponding features in the

social annotation data to characterize them in Section 5.3.

• I conduct an experiment, presented in Section 5.4, to solicit users’ judgment

on the three desiderata of advertising keywords. The ground truth obtained

is used to build an advertising keywords classifier with good accuracy. A

correlation analysis also confirms that the appropriate features are chosen

to characterize effective advertising keywords.

5.2 Social annotations

Social annotations involve considerable human effort to associate the best set

of descriptive words with their corresponding Web resources over time, such as

annotations of videos, bookmark taggings, and query-click logs. Many of them

can be viewed as 4-item tuples 〈user, item, tag, time〉 (〈u, d, w, t〉), which means

that at time t, user u annotates an item d using a word w. Take the search-engine

query-click log for example. When a user clicks on a result, it can be considered

as annotating the corresponding Web-resource URL with the query term(s) he

issued. In this chapter, I analyze the delicious bookmark because of its wide

availability to the public, while keeping the analysis model generic enough to be

applicable in other social annotation domains as well.

I first investigate the bookmark frequency distribution. Not surprisingly, it

follows a power-law-like distribution (Figure 5.1a); only a few URLs are book-

marked by (or known to) a large number of users, while the majority are book-

marked by only a few users. This is likely to be the result of a preferential
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Figure 5.1: Power-law distribution of URL/Tag usage frequency vs count.

attachment process [BA99] where existing popular URLs are bookmarked more

over time. The word-frequency distribution also follows a power-law-like distri-

bution, as in many text collections; one interesting thing to note is that the most

frequently used words are design, software, and tools in the delicious dataset in-

stead of words like the, be, and to in normal English text, indicating that social

annotations differ significantly from the general text corpora assumed in common

information-retrieval practice and require unconventional mining techniques.

Such a social annotation dataset provides invaluable information on users’

perceptions of Web resources and clues to better categorize and rank these re-

sources for retrieval. For example, Wu et al. [WZY06] and Zhou et al. [ZBZ08]

both use the delicious bookmark data to improve the accuracy of information

retrieval. For instance, when we collapse the data on the user and time dimen-

sions, a URL d can be viewed as a document containing words that are the tags w

annotated by different users u over time. When the annotation data is modeled

in such a way, a document generative model, such as Latent Dirichlet Allocation
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(LDA) [BNJ03], can be applied to discover the hidden topics among the set of

URLs being annotated.

The LDA model is based on the idea that the composition of words in a docu-

ment are determined by an underlying generative process, in which, a document

consists of a mixture of topics and a topic is represented as a probability distri-

bution over words. The LDA process intends to recover the hidden topics and

the parameters that govern this generative process. Figure 5.2 shows the plate

notation of the LDA model, which illustrates the dependency between hidden

and observable variables. α and β are the parameters of the uniform Dirichlet

prior on the per-document topic distribution and the per-topic word distribution

respectively; wij are the observable variables that indicate word wj occurs in doc-

ument di when given a collection of documents. When given a number of hidden

topics, the LDA model infers the following two conditional probabilities:

• p(z|d) - the topic distribution for document d

• p(w|z) - the word distribution for topic z,

while the other two probabilities p(d|z) and p(z|w) referred to later in this chapter

are then estimated by Bayes’ Theorem.

Table 5.1 shows samples of 10 topics found by applying the LDA algorithm2

2A modified implementation of the LDA model by Steyvers and Griffiths [GS04] is used.
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on the delicious bookmark data, with 250 hidden topics used. Each topic is listed

together with the words having the highest p(w|z) values, and the topic names

are given manually after we examine the top associated words. Table 5.2 also

shows the list of the top 5 URLs, those with the highest p(d|z) values, in topic

#103 (photography related).

In the above example, we see that social annotations, together with an appro-

priate analysis model, are useful and effective for Web-resource categorization.

By the same token, it is also a good source of information on the word-usage

behavior in the annotation process. Any usage pattern discovered from such a

dataset will shed light on selecting advertising keywords automatically.

5.3 Desiderata of advertising keywords

An advertiser wishes to bid on keywords that will be most effective in bringing

relevant traffic to his Website. In his search for these words, he may potentially

ask the following questions:

• Do the words have specific semantic meanings covering topics in my domain

of interest? Or are they too generic?

• What are the words that correspond to an emerging topic for which users

are more likely to explore new pages? And what are the commonly used

words that lead users to my competitors’ pages instead of mine?

• Are the words sensitive to change in their meaning over time? For example,

holiday may be associated more with Christmas gift shopping towards the

end of the year but with vacation travel at other times. It will be useful to

bid for if I advertise Christmas gifts, but what if I advertise travel packages
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ID topic top tags

19 Copyright copyright law legal creativecommons drm workflow rights freedom license cc

31 Viral marketing marketing advertising ads viral pr ad affiliate branding commercials commercial

46 Autos cars car auto beer alcohol automotive drinks silverlight party motorcycle

75 Freeware download download downloads warez imported rapidshare cracks shareware crack

descargas serial

103 Photography photography photo camera photos digital photographer fotografia foto

photoblog cameras

127 Sciences science biology evolution nature chemistry death genetics interesting serials

154 Machine learning ai simulation datamining applescript intelligence complexity bandslash

algorithms bayesian machinelearning

184 Wikipedia wiki wikis collaboration tiddlywiki mediawiki wikipedia information

socialsoftware wikimedia

216 Computing security security hacking password antivirus passwords spyware virus crack

sysadmin seguridad

246 Adobe products adobe vista air beta dreamweaver apollo lightroom labs fireworks macromedia

Table 5.1: Samples of topics found by LDA from delicious bookmark data.
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Rank of p(d|z) URL

1 http://www.dpreview.com/

2 http://www.cambridgeincolour.com/tutorials.htm

3 http://www.digital-photography-school.com/blog/

4 http://www.flickr.com/

5 http://www.morguefile.com/archive/classroom.php

Table 5.2: Top 5 URLs with highest p(d|z) values in Topic 103 (photography

related).

for summer vacation? Will it still be effective?

With this in mind, the following sections present the analysis on the delicious

bookmark in search of answers to the above questions.

5.3.1 Specific words

Since advertisers prefer reaching the target audience that is searching for their

products or services, it is beneficial to select the correct set of advertising key-

words that are specific in their domain of interest, rather than generic keywords

that can be applied in many other contexts.

In information-retrieval common practice, a stop-word list is one technique

used to filter out words that carry little or no conceptual meaning, such as the,

and, and or. In addition, the inverse document frequency (idf), the logarithm

of the ratio of the number of all documents to the number of documents con-

taining a word, is used to demote words that are less distinguishable among

documents in the TF×IDF document vector model when computing document-

document or document-query similarity. However, social annotations differ sub-
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stantially from the generally assumed document model, because the words are

generally mnemonics carefully selected by users to characterize documents for

easier retrieval. Moreover, the vocabulary is continually evolving, with new tags

constantly being introduced [CM07]. It would become tedious to maintain a

stop-word list to filter out words that have non-specific meanings. This drives us

to explore new measures to characterize words based on the “specific” property.

As an output of the LDA model described in Section 5.2, a word can be

expressed as a probability distribution over topics, p(z|w), which indicates its

degree of association with each hidden topic found. Such a distribution serves as

an indicator of how likely a word is to be associated with many different concepts.

By measuring the entropy of this distribution, as in Equation 5.1, where T is the

number of topics, this metric captures how much a word is spread out across

different concepts.

H(w) = −
T

∑

i=1

p(zi|w)log(p(zi|w)) (5.1)

Table 5.3 shows two samples of words that are found to be the least specific

using the entropy measure and the traditional idf measure, which is inversely

proportional to the number of documents annotated by the word, respectively.

Despite the effectiveness of idf in demoting words with less distinguishing power

in traditional document retrieval applications, this metric tends to select popular

tags that still carry a specific meaning, such as blog, music, web, and programming,

etc. The words selected by the entropy metrics are generic words like temp,

important, good, and misc that can be applied in many different contexts.

Figure 5.3 shows the probability distribution over topics, p(z|w), of 6 sample

words, 3 from each list. Despite the words “web”, “design”, and “programming”

having a low idf value, they all strongly associate with one or two topics only,

which can be considered useful to advertisers in reaching the target audience in
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Entropy Tag # URL tagged ∝ 1
idf

Tag

6.39 temp 178,837 imported

5.75 for 153,890 web

5.74 important 150,224 reference

5.74 and 129,919 software

5.62 good 128,781 design

5.47 imported 128,223 tools

5.24 tocheckout 118,870 blog

5.22 misc 104,520 programming

5.18 followup 100,773 toread

5.07 great 94,710 howto

Table 5.3: Sample of least specific words found by different metrics.

a search activity, but not the other three words good, general, and other.

5.3.2 Emerging vs. established

In addition to choosing specific words to reach the target audience, advertisers

have an incentive to pick words that correspond to emerging topics within their

domain and for which Internet users are willing to explore new pages.

There have been efforts in identifying trendy topics both in a search-engine

query stream and from the Web content. For example, the increase in query

frequency in a query stream, the increased usage of key phrases in an article

collection such as the daily blog posts, or the daily fluctuation of these frequen-

cies and any metrics that characterize the burstiness may all serve as indicators

of emerging topics. While these techniques were proven useful in the litera-
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Figure 5.3: Distribution of p(z|w) values of six word samples.

ture [GGL04, GHT04, AWB07], they were designed from the search engine’s or

Internet user’s perspective and may not be directly applicable to online adver-

tisers. For example, a sudden increase in the query volume of a newly released

movie may not necessarily imply that people are exploring on this topic but just

that they are visiting the official page for the trailer or for a few critics’ Websites.

From the online advertiser’s perspective, a good set of keywords that correspond

to emerging topics may need to satisfy at least the following two criteria:

• Increase in usage: Intuitively, an increase in either query frequency or

tag usage in annotation implies that there is a large pool of Internet users

interested in the associated topic, which will, in turn, guarantee a higher

visibility of the advertisement placed.

• Diversity: The increase in usage may not be a good enough indicator

alone. For example, an advertiser that sells e-books may prefer bidding on
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kindle3 than some other related terms such as literature, palm, pdf. Since

Kindle is just released and emerging, people are keener to explore relevant

pages on this topic than others; thus, the chance of an advertisement being

clicked increases.

To capture the second criterion above, let us consider social annotations as

a random process consisting of two discrete random variables, D and W . D

represents a random variable whose sample space is the entire set of URLs, and

W represents a random variable whose sample space is the entire set of tag

vocabulary. Their probability mass functions are computed from the counts of

page annotating and tag usage, respectively. For example, the value P (W =′′

www′′) estimates the probability of a user using “www” to annotate any URL

without any prior information given. When we consider the conditional entropy

H(D|W = w) of a given word w, it estimates how “diverse” documents being

annotated by w are. This measure is indeed very useful to determine if a word

corresponds to emerging topics as illustrated in the two examples below.

Example 6 Suppose a tag, w, is used to annotate two items, A and B, each

with one annotation, at time t1. Its conditional entropy, Ht1(D|W = w), at t1 is

measured as 1. Then at time t2, two more users annotate item A with the same

tag, w. The conditional entropy Ht2(D|W = w) now becomes 0.811. 2

The above example shows that users tend to associate w with item A more

than B, which means that, given a tag, w, the certainty of finding the best

associated page increases over time. Indeed, such change is reflected as a de-

crease of the conditional entropy of w from 1 to 0.811, which deviates from the

usual phenomenon that entropy tends to increases over time. Contrary to the

3Kindle is the e-book reading device introduced by Amazon in November 2007.
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one above, the following example illustrates a scenario in which the conditional

entropy increases.

Example 7 Suppose a tag, w, is used to annotate two items, A and B, once for

each, at time t1. The value Ht1(D|W = w) at t1 is measured as 1. While at time

t2, two new items, C and D, appear and they are also annotated by the tag, w,

once each. The conditional entropy now becomes 2. 2

In this example, the tag, w, is used to annotate new pages rather than existing

ones and is evenly distributed among them. It suggests that the topic associated

with w is under development where there are no well-established authority pages

corresponding to it, which makes users continue to explore different pages in

search of a better one. In a probabilistic sense, such change implies that the

uncertainty of finding good pages to match the given tag, w, has increased over

time.

To further quantify this measure, the change in conditional entropy is divided

by the logarithm of the change in the number of times a tag is used, which

indicates how much entropy is changed per annotation made. Mathematically,

this ratio is expressed as the following:

C(a, ti) = |〈u, d, w, t〉|, where t < ti, w = a (5.2)

R(a, ti, tj) =
Htj(D|W = a) − Hti(D|W = a)

log2(C(a, tj) − C(a, ti))
, (5.3)

where C(a, ti) is the number of times a tag a had been used on or before ti, and

R(a, ti, tj) is the entropy change rate of a tag, a, between ti and tj.

Figure 5.4 shows the conditional entropy change distribution between Decem-

ber 2007 and March 2008 of a set of popular tags (the top 40 words in each topic

found by the LDA). It follows a typical bell-shaped distribution centered around
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Figure 5.4: Distribution of entropy change of tags.

0.14. Samples of tags in two extremes of the distribution are listed in Table 5.5

and 5.4, respectively.

Words listed in Table 5.4 all correspond to certain emerging topics within the

investigation period, for example, “2008” (new year), “rails2.0” (Ruby on Rails

2.0 released on Dec 20, 2007), “kindle” (e-book device released by Amazon on

Nov 19, 2007), and “obama” (Barack Obama and Hillary Clinton, Democratic

presidential candidates). For words listed in Table 5.5, although there has been

an increase of annotation usage, the conditional entropy decreases, which implies

that annotations all go to the same set of pages. Examples include “arc” (anno-

tating the Arc programming language official page arclanguage.org), “iplayer”

(annotating the BBC iplayer programs page www.bbc.co.uk/iplayer), and “

4It implies that the conditional entropy of words increase by 0.1 over three months on
average.
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Tag Ht1 Ht2 C(w, t1) C(w, t2)

2008 8.03 10.67 3514 15038

bookmarksbar 9.11 10.95 605 2630

rails2.0 3.79 5.12 262 1266

kindle 3.86 5.14 610 1285

itouch 6.25 7.48 348 849

eeepc 5.07 6.22 968 4669

obama 5.41 6.54 1188 4134

jailbreak 5.45 6.44 907 2223

eee 5.40 6.39 701 2765

1.1.2 3.96 4.89 62 285

Table 5.4: Samples of tags with large conditional entropy change.

tomato” (annotating a guide to upgrade linksys router with tomato firmware

www.polarcloud.com/tomato).

Besides using entropy change to identify good emerging keywords for ad-

vertisers, other metrics have also been studied, including the maximum daily

annotation frequency change and percentage increase in tag usage, but their ef-

fectiveness is not as good. They, however, are also included these features in

training classifiers, which will be discussed in Section 5.4.

5.3.3 Time sensitivity

As social annotations accumulate and new tags and documents are introduced

into the collection, it is not surprising to see words that change in meaning over

time. For example, when Christmas is approaching, the word holiday, which is

normally associated with topics like vacation travel and airline booking, may be
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Tag Ht1 Ht2 C(w, t1) C(w, t2)

openstandards 7.12 4.24 274 755

apology 4.27 2.25 87 480

arc 7.73 6.00 401 1097

Internet tools 8.22 6.88 348 768

iplayer 3.78 2.49 188 486

deadpixel 3.67 2.44 68 364

r2d2 3.59 2.41 130 579

tomato 6.11 5.13 748 1335

screensharing 5.31 4.37 469 1012

dingbats 5.09 4.14 830 1459

Table 5.5: Samples of tags with negative conditional entropy change.

drifted towards a topic on Christmas holiday shopping. To ensure the efficacy

of selected advertising keywords in a campaign and to identify new and useful

words in a domain, it is crucial for advertisers to know which words are more

susceptible to change in meaning over time, and which are more “stable.”

I study two metrics in order to characterize the time-sensitive property of

words, namely Jaccard coefficient and KL-divergence, in the following:

[Jaccard coefficient] I first attempt to quantify this property by examining

how the set of co-occurring words of a word change. Co-occurring words are

defined as the set of words that are used to annotate the same URL by the same

user. Suppose A is the set of top K co-occurring words of w at time t1, while B

is the set at time t2; the metric is defined as the Jaccard coefficient as follows:

|A ∩ B|
|A ∪ B| . (5.4)
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I assume that when a word changes its topic association, it will also be used

together with a different set of words to annotate Webpages; thus, the above

metric will give a lower score to such a time-sensitive word than a stable one.

[KL-divergence] As an output of the LDA model, a word can be represented

by a probability distribution over topics, which indicates its degree of association

with each of them. The change of a word’s topic association can then be captured

by comparing the difference of such distributions measured at different times.

Consider the following example:

Example 8 At time t1, the probability distribution of a word w over 5 topics

is [0, 0, 0, 1, 0], respectively, while at time t2, its probability distribution becomes

[0, 0.4, 0, 0.6, 0]. Over time, w becomes more associated with topic #2 and less

with topic #4. 2

The above example shows that a word changes its association from one topic

(#4) to two topics (#2 and #4) between t1 and t2. Such change are captured by

measuring the difference between the two distributions. Suppose Pt1 denotes the

probability distribution over topics of a word at time t1, i.e. Pt1 = {pt1(zi|w)|i =

1..T}, where T is the number of topics. The KL-divergence measure used to

quantify the change is defined as follows:

DKL(Pt1||Pt2) =
T

∑

i=1

pt1(zi|w)log
pt1(zi|w)

pt2(zi|w)

D =
DKL(Pt1 ||Pt2) + DKL(Pt2 ||Pt1)

2
. (5.5)

The computation of KL-divergence requires matching topics found at two differ-

ent time points. For simplicity, topics are matched by ordering on the p(zi|w)

values, under the assumption that topic association will not change drastically

over time. Moreover, since there is randomness involved in the LDA process,
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multiple runs of LDA are performed and the median of the D values is used to

characterize how likely a word is to change its topic association over time.

Figures 5.5 and 5.6 show the distribution of the Jaccard coefficient and KL-

divergence measures. It is observed that the majority of the words may not be

sensitive to change in meaning over time, as the percentage of words with low

Jaccard coefficient and high KL-divergence is comparatively small.

I present an example from the set of tags that are considered to be sensitive

to change in meanings based on the KL-divergence measure. Figure 5.7 shows

the probability distribution over 100 topics of the word programmers in October

2005 and January 2006, respectively. (The top three graphs are different runs of

LDA in October, while the bottom three graphs are in January). It was originally

associated with one topic (programming related), but after three months, it be-

came associated with an additional topic (career and job hunting related). This
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Figure 5.6: Distribution of KL-divergence of popular tags.

can be explained by the hiring season of college graduates during that period,

where users tend to associate programmers with the concept of job hunting. In

this example, we see that it is crucial for online advertisers to identify words with

such time-sensitive properties either to avoid (for those who advertise program-

ming tools) or emphasize (for those who advertise for job hunting) in the bidding

process, depending on their domain of interest.

5.4 Experiments

In this section, I describe how to build a word classifier that answers these ques-

tions: (1) Does a word have a specific meaning? (2) Does a word represent a

hot topic? (3) Are the concepts associated with a word stable over time? First,

I describe the process of obtaining the annotation data and the set of features

extracted to represent a word. Then, I describe a user experiment that captures

the ground truth of users’ judgments on words. Lastly, I present the details of
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building such a classifier and report the results.

5.4.1 Data Preparation

Using a set of popular URLs5 in February 2008, I started crawling the deli-

cious Website, from which a set of users that have annotated these URLs is

collected. By iteratively following the set of URLs tagged by users and users who

annotated the URLs, a dataset consisting of 322,657,413 annotations made by

600,000+ users on 36,435,340 URLs, using 4,560,695 distinct tags is obtained.

The URLs are normalized by some basic rules like removing the trailing “/” and

“/index.html,” and the tags are all lower-cased. After filtering out the unpopular

URLs and tags that had been annotated or used fewer than 20 times in the entire

collection, it resulted in a dataset consisting of 537,114 URLs and 346,555 tags

to be used in the experiment. The growth of the delicious bookmark data from

2004 to 2007 is shown in Figure 5.8. Based on the sampled data, delicious was

growing very fast in the years 2004 and 2005 and has slowed down to a linear

growth since 2006. In addition, the daily number of bookmarks also follows a

regular weekly pattern, with substantially more bookmarks on weekdays than

weekends.

5.4.2 Feature extraction

As discussed in Section 5.3, there are several key features that characterize the

three properties well. The following additional features are also included in order

for a classifier to pick up all necessary signals to determine a word’s properties.

1. NUM PAGE : The number of unique URLs annotated within a period. This

5Those URLs listed on the delicious Website as popular bookmarks.
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feature follows the intuition that a word is likely to be non-specific if it

is used to annotate many different items, which is similar to the inverse

document frequency concept.

2. PZW ENT : The entropy measure of the p(z|w) distribution of a word, as

discussed in Section 5.3.1.

3. ENT CHG : The change in conditional entropy H(D|W = w), discussed in

Section 5.3.2.

4. ENT CHG RATIO : The relative change in conditional entropy, which at-

tempts to factor in the base conditional entropy as well.

5. BURST : The ratio of maximum daily change in annotation counts to the

total annotation counts within a period. It tries to capture the scenario

where a surge in word usage may correspond to emerging events.

6. KL DIV : The KL-divergence of two p(z|w) distributions measured at dif-

ferent times, as discussed in Section 5.3.3.

7. TOPIC CHG : The change in the number of topics having p(z|w) > 0.1

across a period of time. If a word is sensitive to changing topic association,

this count may also change when it is associated with more or fewer topics

over time.

8. COOC JACCARD : The amount of overlap between the top 30 co-occurring

words at different times as discussed in Section 5.3.3.

9. ASSOTAG JACCARD : The amount of overlap between associated tags at

different times. Associated tags refer to the set of top 30 tags with highest

p(w|z) values in the topics z with which a word is associated (i.e. p(z|w)
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> 0.1). This is similar to co-occurring tags above, but applied in the LDA

domain.

5.4.3 Web-user evaluation experiment

To obtain the ground truth and a training dataset to build the word classifier, I

design an experiment that asks users to judge words based on three questions that

correspond to the properties in Section 5.3 (1) Does it have a specific meaning?

(2) Does it represent a hot topic? (3) Is the concept associated with it stable

over time?

5.4.3.1 Pairwise comparisons

Because it may sometimes be difficult to judge the properties given one single

word alone, the experiment, instead, presents pairs of words and ask users to

compare them based on the three properties in question, using the following

procedure:

1. 420 words are sampled to be evaluated. Words are sampled from those with

extreme values, both in the high and low range, among the features that

are considered previously (to ensure that we cover the entire spectrum of

words in the three properties under investigation), and some are sampled

randomly.

2. The users are shown with instructions and examples describing the three

properties that they are going to judge.

3. The users are then presented 5 pairs of words at a time and asked to finish

a questionnaire that has four options, as shown in Figure 5.9. Take the

specific question about specificity, for example. Choosing option A for the
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Word A Word B Question A B C D

More specific?
⊗

© © ©
superbowl advanced Hot topic?

⊗ © © ©
Time-sensitive? © © ⊗ ©

Figure 5.9: A sample pair-wise comparison question and its answers.

“More specific?” question indicates that Word A, “superbowl,” has a more

specific meaning than Word B,“advanced,” and option B is the opposite.

Option C indicates that they are similar, while option D allows users to

skip this question when they do not understand either one of the words.

4. Since a complete pair-wise comparison is expensive, 1 word is compared

with 10 other randomly selected words in the pool. For each pair, 3 distinct

users are selected as judges. Answers with option D are discarded, which

covers 12% of the total judgments.

To expedite the process of gathering user judgments, the questionnaires is sub-

mitted to the Amazon Mechanical Turk platform [Mtu], which is a marketplace

for outsourcing tiny tasks, typically repetitive and labor-intensive work that is

done better by humans than computers, for example, object recognition from pic-

tures. A reward of USD $0.02 is given for every five questions and gathered 1,263

pairs of judgments in roughly 66 hours. Figure 5.10 shows the time distribution

to complete an assignment. The average time used to finish five questions is 77

seconds. In order to ensure the quality of labeling, answers that are completed

in fewer than or exactly 30 seconds are rejected.
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Figure 5.10: Distribution of the time spent on each MTurk assignment.

5.4.3.2 Training of classifiers

To combine all pair-wise comparisons into a single ranking of words on each of

the three properties, I attempted the following two methods:

• Topological sort : Options A and B in the questionnaires generate a

partial ordering, w1 ≺ w2, between the two words under comparison. Sup-

pose we gather three pairwise comparisons, like w1 ≺ w2, w2 ≺ w3, and

w2 ≺ w4; the topological sort will generate a global ranking, w1 ≺ w2 ≺
w3 ≺ w4, from which we can order the words based on each of the proper-

ties investigated. To ensure the quality of the partial ordering judgments,

only those with at least two distinct users in agreement on option A or B

are considered.

• Scoring : A score of 1 is assigned for option A, 0 for option B, and 0.5

for option C. By taking the average score of words for ten pair-wise com-
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Least specific Most emerging least stable most stable

great jailbreak fav websearch

for socialnetworking kde4 official

totry wiki eeepc subway

howto beef rasterbator comics

the airfare colinux software

fav ipodtouch lpi animation

todo timemachine jsonp baseball

Table 5.6: Samples of words found using the scoring based method.

parisons, we generate a global ranking on each of the three properties. The

distribution of the average scores is shown in Figure 5.11. While the ma-

jority of words have scores around 0.5, we select words in the two extremes,

those having scores > 0.6 and < 0.4, as the positive and negative training

samples, respectively.

While topological sort and scoring both produce similar ranking, the scoring

method is used for its simplicity and stability6. Table 5.6 shows samples of tags

with extreme values on each of the properties based on the scoring approach.

Using this method, a training dataset is compiled for each property, where the

class distribution is listed in Table 5.7.

For each of the training datasets, 7 different classifiers in Weka [Wek] are

used, namely, SVM, Simple Logistic regression, C4.5 classification tree, Random

forest, K-nearest neighbors, Back-propagation neural network, and Naive Bayes

classifiers. To further improve the performance, we combine the best 5 classifiers

6Topological sort may generate many possible solutions given the same set of partial
orderings.
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erties.

Classes Specific Emerging Stable

Positive 91 103 95

Negative 78 99 88

Table 5.7: Distribution of training data class label after thresholding on scoring

method.
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Classifier Specific Emerging Stable

SVM 65.7% 70.3% 63.9%

Logistic regression 66.3% 69.8% 60.7%

C4.5 64.5% 73.3% 59.0%

Random forest 65.1% 73.3% 57.4%

K-nn (k=5) 60.1% 67.3% 64.5%

Multilayer perceptron 60.3% 63.9% 60.1%

Naive Bayes 67.4% 59.9% 63.4%

Best 5 combined 66.3% 73.8% 63.4%

Table 5.8: Performance of individual and combined classifiers in 10-fold

cross-validation.

using the majority-vote method. The performance on a 10-fold cross-validation

is listed in Table 5.8. The accuracy is not as good as it is expected to be. This is

partially due to the labeling quality in the training dataset where we have little

control over the “real” effort spent by MTurk users. Nonetheless, it serves as a

good starting point for incorporating additional information sources in effective

advertising keywords selection. Additional features may be added to improve the

overall classification accuracy in the future.

5.4.3.3 Correlation analysis

Based on the same training dataset obtained in the user experiment, I apply

the Logistic regression model to identify features that correlate most with the

three advertising keyword properties among the ones described in Section 5.4.2.

Table 5.9 shows the top four features that have the largest absolute regression

coefficient in the Logistic regression model. It shows that specific correlates most
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Property Features Regression coef.

Specific PZW ENT -0.24

Emerging COOC JACCARD -0.96

PZW ENT -0.38

KL DIV -0.23

ENT CHG 0.23

Stable ENT CHG -0.35

ASSOTAG JACCARD -0.29

TOPIC CHG 0.26

KL DIV -0.24

Table 5.9: Top four correlated features in each property.

with PZW ENT, but not with anything else. The correlated features of emerging

and time-sensitive are tightly coupled, which indicates that they are somewhat

interchangeable. For example, an emerging keyword can also be considered as

time-sensitive to change in meanings because it might be associated with different

subtopics as the topic develops. Nonetheless, the result still indicates important

features to consider when selecting effective advertising keywords.

5.5 Related Work

With the emergence of online sponsored search advertising, there is much ongoing

research in different research communities, such as economics, social networks,

and information retrieval.

Based on a game-theoretic approach, mainly driven by the economics commu-

nity, the generalized second-price-auction method [EOS07] proposes to maximize
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the income of a search engine by application to the keyword bidding process of

sponsored search activities. Recently, Auerbach et al. [AGS08] have also studied

the bidding behavior of advertisers in maximizing their return on investment. Vi-

ral marketing is also a closely related area where researchers focus on optimizing

the placement of advertisements in a network in order to maximize the overall

impact [DR01, RD02].

In the information-retrieval community, there has been research on selecting

advertisement keywords on Webpages to match with advertisements, as in the

contextual advertisement model [YGC06, AFJ07, WB08], while research on the

sponsored search model mainly focuses on understanding the commercial inten-

tion of queries [DZN06] and matching relevant advertisement snippets with the

queries [RDR07]. I believe my work complements existing literature by exploring

additional information sources for more effective advertising keywords selection.

Social annotation begins to play an important role in the Internet search

activities since it involves more user participation than ever. Recently, Wu et

al. [WZY06] and Zhou et al. [ZBZ08] have studied how to leverage the delicious

bookmark data, using a document generative model, to improve the relevance of

information retrieval on the Web. In addition, Millen and Feinberg [MF06] have

also applied it to assist information sharing within an organization. Chi and

Mytkowicz [CM07] have studied the bookmark data in an information theoretic

approach to show that its usability as an information-retrieval tool alone decreases

over time. Nevertheless, social annotation still remains a powerful tool to organize

Web resources.

One aspect of the proposed keyword selection method focuses on detecting

emerging topics. There has been research on detecting trendy topics on the Web,

using variants of phrases occurring frequency on blog and news content. [GGL04,
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GHT04]. Recently, Adar et al. [AWB07] attempt to correlate query streams with

blog and news content to understand the behavioral properties of Web searches.

I believe the study on social annotations not only benefits advertisers in choosing

better keywords but also improves on identifying trendy topics on the Web.

5.6 Summary

In both contextual advertising and sponsored search activities, considerable re-

search has been focusing on finding the best matching advertisement to a Web-

page or a search query respectively. Consequently, search engines maximize their

revenue and improve user experience by providing fewer annoying advertisements.

However, there is not much emphasis on the advertiser’s perspective in deter-

mining better advertising keywords and to incorporate additional information

sources, such as user-generated content.

In this chapter, I studied social annotations, collected from users’ interactions

with an online content aggregator, as an extra information source for analyzing

word-usage behavior on the Web. In addition to its application in Web-resource

categorization and information retrieval. I aimed to utilize this information in

the domain of effective advertising keyword selection. I discussed three criteria,

namely, specificity, emergence, and time-sensitivity, that observed from the tag

usage of an online social bookmark Website, for selecting effective advertising

keywords. I have also applied features extracted from social annotation data to

characterize them. I conducted an online experiment to solicit user’s judgment

on words and build a classifier for identifying keywords based on three proper-

ties with fairly good accuracy. A correlation analysis also revealed the suitable

features to characterize each of the criteria.
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CHAPTER 6

Conclusion

With the growing popularity of “Web 2.0” services, it has become easy and

convenient for less technically savvy users to publish content on the Web, leading

to the explosion of user-generated online content. However, such an increase in

quantity does not guarantee an improvement in the quality. Oftentimes, users find

themselves overwhelmed by the magnitude of new information being generated

every day.

Researchers and engineers have been building online content aggregators that

help users better manage their subscribed RSS feeds and tap into Web 2.0 infor-

mation easily. Such aggregators, when supporting a large number of users with

diverse interests and subscriptions, face many challenges and opportunities such

as: delivering updated content, providing good personalization efficiently and

accurately, and datamining user generated content for improving the system.

In this dissertation, through an analysis of existing online content aggregators,

I studied the challenges and opportunities in delivering fresh and personalized

content to users and how to make use of the data collected from users’ interactions

with the systems. More specifically, I addressed the following technical challenges

in this dissertation:

• Monitoring RSS feeds - I studied the content generation and user-access

patterns of RSS feeds and showed that these patterns, when investigated
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at a finer time scale, are different from what was previously assumed in

the literature. The observed patterns are often fluctuating (within one

day) and repeating (everyday), which are best modeled by the periodic

inhomogeneous Poisson process as proposed in this dissertation.

After developing the new model based on this observation, I proposed an

optimal RSS-feed monitoring policy that significantly improves the “fresh-

ness” of the content delivered to the users in resource-constrained settings.

The proposed policy utilizes better resource allocation (i.e. allocating more

retrievals to sources of higher importance, such as those with more sub-

scribers or update more frequently), and better retrieval scheduling (i.e.

scheduling retrievals closer to source updates to shorten the delay). I have

demonstrated its effectiveness and properties through experiments with a

real-life dataset, which is collected from 10k RSS feeds (data posting pat-

terns) and a few volunteers (user access patterns), and also investigated the

potential improvement brought by a proposed change in the RSS protocol.

• Ranking of articles - In order for online-content-aggregator users to keep

up with the growing number of new articles being generated every day

in her subscription list, oftentimes, an aggregator provides a ranked list

of articles based on the user’s interest on her front page. Generating this

ranked list requires the system to learn the user’s interests from her previous

online activities because users are often reluctant to express their interests

or provide any feedback explicitly as shown in the literature.

I, together with my collaborators, introduced a learning process that uses

a probabilistic framework to model the user reading and clicking behavior

of articles in a ranked list. Based on this framework, we introduced an

Exploitation (weighting topics that are known to be a user’s interest higher)
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and Exploration (weighting topics that are less shown to a user higher)

strategy to rank articles among different topics in order to learn a user’s

profile quickly through an iterative process.

While the results are not conclusive due to the potential bias and small size

of our experiments, through simulations and a small-scale pilot user study,

we showed that the proposed E&E strategy has the potential to improve the

likelihood of a user clicking articles in the ranked list and to learn the user

profile more quickly and accurately when compared to a Exploitation-only

greedy approach.

• Efficient personal recommendations - As an additional functionality

for online content aggregators to improve user experience, it may analyze

the content within all subscribed RSS feeds of a user and recommends

popular key phrases and Web links, that are being mentioned frequently in

the subscribed sources, for her further investigation. In Chapter 4, I studied

the problem of making such personalized recommendations based on users’

RSS feed subscriptions and addressed on the scalability challenges faced by

these systems in supporting a large number of users with diverse individual

interests.

I started by modeling the personal recommendation computation as matrix

operations and observed that users often share similar interests, hence, sub-

scription lists. I applied the Non-negative Matrix Factorization to cluster

users into different interest groups based on their subscription similarity;

thus, the computation can be separated into two stages, precomputation

of results for user groups and combination of precomputed results for in-

dividual users. The process is further speeded up by applying a top-k

computation algorithm, Threshold Algorithm.

150



I showed that it is possible to compute personalized recommendations for

users at a much lower cost than by existing methods and discussed the

adjustment of parameters to further improve the efficiency. I also demon-

strated that personalized recommendations generate results that are very

different from non-personalized recommendations and among users.

• Social annotation analysis - When such an aggregator grows over time,

it collects a huge amount of user interaction data within the system, which

is often in the form of social annotations. It involves tremendous human ef-

forts in matching the best descriptive keywords with the information sources

on the Web. Such data, when utilized appropriately, can greatly improve

the Web information retrieval process.

As an example of applying this rich body of data to help users, I studied the

evolution of the online tagging data to select effective advertising keywords.

I first applied the Latent Dirichlet Allocation to discover hidden topics

among Web resources and their associated keyword membership. By taking

into account other features, such as entropy change of tags and diversity of

tag membership, in addition to the topic membership discovered through

Latent Dirichlet Allocation, I investigated three properties of keyword usage

in tagging, namely: specificity, emergence, and time-sensitivity.

These properties match closely with the criteria of choosing effective key-

words in an advertising campaign. Using a dataset collected from an online

social bookmarking service, delicious, I explored on combing existing clas-

sifier methods to automatically detect keywords with such properties from

the evolving tagging data and illustrated the best corresponding features

in identifying each property mentioned.

Through the investigations presented in this dissertation, I aim to solve the
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engineering challenges faced by building a personalized online content aggregator

and explore the opportunities of mining the collected user interaction data. My

hope is that, the methods and results presented in this dissertation not only help

researchers build better online content aggregators but also provide insight for

upcoming researches on information retrieval of Web 2.0 user-generated content.

The primary focus of this dissertation is the investigation of technical chal-

lenges, so some of the experiments that are presented in this dissertation do not

provide a generally applicable conclusion due to the potential bias in the sample

selection and the small size of the participants. It will be an interesting future

work to extend these experiments and validate the effectiveness of some of the

approaches proposed in this dissertation in more general settings and explore

further issues discovered through this process.
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