Efficient Monitoring Algorithm for Fast News Alert

Ka Cheung "Richard" Sia kcsia@cs.ucla.edu

UCLA

Goal

- Monitor and collect information from the Web
- Answer most of users' queries
- Challenges
 - Billions of pages to monitor
 - Information are updated frequently
 - Users want information fresh!

Information aggregator framework

• Server-based monitoring and dissemination

• Modeling the posting generation process

- Definition of delay
- Poisson process

Overview

- Modeling the posting generation process
 - Definition of delay
 - Poisson process
- Crawl scheduling
 - Resource allocation (how often to contact?)
 - Retrieval scheduling (when to contact?)

Overview

• Modeling the posting generation process

- Definition of delay
- Poisson process
- Crawl scheduling
 - Resource allocation (how often to contact?)
 - Retrieval scheduling (when to contact?)
- The collected data
 - $\sim 10k$ RSS (since September 2004)
 - \sim 40k Weblogs (since April 2004)

- Higher requirement on freshness
- Finer time granularity (will traditional assumption be valid?)

Terminology

- t_i posting generation time
- τ_j time of the j^{th} contact

•
$$D(O) = \sum_{i=1}^{k} (\tau_j - t_i)$$
, where $t_i \in [\tau_{j-1}, \tau_j]$

Posting time

Posting generation model

- Homogeneous Poisson model $\lambda(t) = \lambda \text{ at any } t$
- Periodic inhomogeneous Poisson model $\lambda(t) = \lambda(t nT)$, n = 1, 2, ...

Posting generation model

- Homogeneous Poisson model $\lambda(t) = \lambda \text{ at any } t$
- Periodic inhomogeneous Poisson model $\lambda(t) = \lambda(t nT)$, n = 1, 2, ...

Expected retrieval delay

• Inhomogeneous Poisson model rate - $\lambda(t)$ retrieval time - τ_{j-1}, τ_j

expected delay -
$$\int_{\tau_{j-1}}^{\tau_j} \lambda(t)(\tau_j - t) dt$$

Expected retrieval delay

• Inhomogeneous Poisson model rate - $\lambda(t)$ retrieval time - τ_{j-1}, τ_j

expected delay -
$$\int_{\tau_{j-1}}^{\tau_j} \lambda(t)(\tau_j - t) dt$$

• Homoegeneous Poisson model expected delay - $\frac{\lambda(\tau_j - \tau_{j-1})^2}{2}$

Maximize resource utilization to provide timely informaiton.

Maximize resource utilization to provide timely informaiton.

• Resource allocation How often to contact data sources?

Maximize resource utilization to provide timely informaiton.

- Resource allocation How often to contact data sources?
- Retrieval scheduling When to contact data sources within a day?

- Consider n data source O_1, \ldots, O_n
 - λ_i posting rate of O_i
 - w_i weight of O_i (how important)
 - N total number of retrievals per day
 - m_i number of retrievals per day allocated to O_i

- Consider n data source O_1, \ldots, O_n
 - λ_i posting rate of O_i
 - w_i weight of O_i (how important)
 - N total number of retrievals per day
 - m_i number of retrievals per day allocated to O_i
- Optimal allocation

$$m_i \propto \sqrt{w_i \lambda_i}$$

- m retrieval(s) per day is allocated for data source O, how should we schedule these m retrievals?
- m = 1
- m > 1

Multiple retrievals per period

m retrievals per period are allocated, when scheduled at time τ_1, \ldots, τ_m , the expected delay is:

$$D(O) = \sum_{i=1}^{m} \int_{\tau_i}^{\tau_{i+1}} \lambda(t)(\tau_{i+1} - t)dt$$
$$\tau_{m+1} = T + \tau_1$$

Criteria for optimality

$$\lambda(\tau_j)(\tau_{j+1} - \tau_j) = \int_{\tau_{j-1}}^{\tau_j} \lambda(t) dt$$

Multiple retrievals per period

Example: $\lambda(t) = 2 + 2\sin(2\pi t)$

- $\bullet~{\sim}10k$ RSS feeds from Sep 21 Dec 20 2004
- Characteristics of posting generation

Distribution of posting rate

- 9634 RSS feeds are used
- Power-law distribution

Is posting rate stable and predictable?

- The closer to diagonal, the more the stability and predictability
- red top 50%, green top 80%, blue rest

How much history to keep?

- Reallocate resource everyday
- 2 weeks is a good choice

What is the posting pattern?

- Periodic (daily pattern)
- inactive at night

What are the individual pattern?

- K-mean clustering
- Optimize for different patterns

Performance

- 1. Even scheduling
- 2. Retrieval scheduling only
- 3. Resource allocation only
- 4. Combined

strategy	1	2	3	4
average delay (in min)	645	581	433	395
max delay (in min)	1440	1440	9120	10073
standard deviation	392	405	542	560

Statistics breakdown of posting delay using one retrieval per day.

• Efficient Monitoring

- Resource allocation
- Retrieval scheduling
- \rightarrow Include user access pattern (extension)
- Data
 - 1 year of weblogs and half year of RSS data
 - For prototype testing

