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Large amounts of (often valuable) information are stored in web-accessible text databases. “Me-
tasearchers” provide unified interfaces to query multiple such databases at once. For efficiency,
metasearchers rely on succinct statistical summaries of the database contents to select the best
databases for each query. So far, database selection research has largely assumed that databases
are static, so the associated statistical summaries do not evolve over time. However, databases
are rarely static and the statistical summaries that describe their contents need to be updated
periodically to reflect content changes. In this article, we first report the results of a study showing
how the content summaries of 152 real web databases evolved over a period of 52 weeks. Then,
we show how to use “survival analysis” techniques in general, and Cox’s proportional hazards
regression in particular, to model database changes over time and predict when we should update
each content summary. Finally, we exploit our change model to devise update schedules that keep
the summaries up to date by contacting databases only when needed, and then we evaluate the
quality of our schedules experimentally over real web databases.
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1. INTRODUCTION

A substantial amount of textual information on the web is stored in databases.
While some databases are “crawlable” a significant fraction is not indexed by search
engines. One way to provide one-stop access to the information in text databases
(crawlable or not) is through metasearchers, which can be used to query multiple
databases simultaneously. The database selection step of the metasearching pro-
cess, in which the best databases to search for a given query are identified, is criti-
cal for efficiency, since a metasearcher typically provides access to a large number
of databases. The state-of-the-art database selection algorithms rely on aggregate
statistics that characterize the database contents. These statistics, which are known
as content summaries [Gravano et al. 1999] (or, alternatively, as resource descrip-
tions [Callan 2000]), usually include the frequency of the words that appear in a
database, plus perhaps other simple statistics such as the number of documents in
the database. How to update these summaries, which provide sufficient information
to decide which databases are the most promising for evaluating a given query, is
the focus of this article.

So far, database selection research has largely assumed that databases are static.
However, real-life databases are not always static and, accordingly, the statistical
summaries that describe their contents need to be updated periodically to reflect
database content changes. Defining schedules for updating the database content
summaries is a challenging task, because the rate of change of the database con-
tents might vary drastically from database to database. Furthermore, finding ap-
propriate such schedules is important to keep content summaries up to date without
overloading databases unnecessarily to regenerate summaries that are already (at
least close to) up to date.

In this article, we start by presenting an extensive study on how the content of
152 real web databases evolved over a period of 52 weeks. Given that small changes
in the databases might not necessarily be reflected in the (relatively coarse) con-
tent summaries, we examined how these summaries change over time. Specifically,
we analyzed the evolution of “complete” content summaries, which can be derived
when we have full access to the database contents (e.g., via “crawlers” [Chakrabarti
2002]), as well as the evolution of “approximate” content summaries, which are
used when database access is limited (e.g., as is the case for “hidden web” data-

ACM Transactions on Database Systems, Vol. 32, No. 3, September 2007.



Modeling and Managing Changes in Text Databases : 3

bases [Bergman 2001]). Our study shows that summaries indeed change and that
old summaries eventually become obsolete, which then calls for a content summary
update strategy.

In our approach for modeling content changes, we resort to the field of statis-
tics named “survival analysis.” Using the Cox proportional hazards regression
model [Cox 1972], we show that database characteristics can be used to predict
the pattern of change of the summaries. We then exploit our change models to de-
velop summary update strategies that work well even under a resource-constrained
environment. Our strategies attempt to contact the databases only when needed,
thus minimizing the communication with the databases. Our experimental evalua-
tion, over 152 real web databases, shows the merits of our update strategies. Our
experiments include a comparison with a technique from the literature developed
for a different but related problem, namely how to decide when to recrawl (and
update a search engine index of) crawlable web sites. We also develop and evaluate
a machine learning approach for updating content summaries. Overall, our exper-
iments show that our survival analysis approach significantly outperforms all the
alternatives that we considered.

In brief, the contributions of this article are as follows:

—In Section 3, we report the results of our extensive experimental study on how
the content summaries of 152 real web databases evolved over a period of 52
weeks.

—In Section 4, we use survival analysis techniques to discover database properties
that help predict the rate of change of database content summaries. Our analysis
examines the evolution of both complete and approximate content summaries.
We show how to devise a change model and schedule content summary updates
accordingly. The resulting update strategies attempt to contact the databases
only when strictly needed, thus avoiding wasting resources unnecessarily.

—In Section 5, we outline alternative approaches for updating content summaries.
In particular, we use machine learning and cast the update problem as a binary
classification task, with classification features suitably derived from the databases
by leveraging the survival analysis framework.

—In Section 6, we present an extensive experimental evaluation that compares
the proposed survival analysis approach with the Section 5 alternatives, which
include our highly-optimized machine learning technique. The experimental re-
sults establish the superiority of our survival analysis approach.

Finally, Section 7 discusses related work, while Section 8 provides further discussion
and concludes the article.

2. BACKGROUND ON CONTENT SUMMARY CONSTRUCTION

This section introduces the notation and necessary background for this article.
We first define the notion of a content summary for a text database and briefly
summarize how database selection algorithms exploit these summaries. Then, we
review how to approximate database content summaries via querying.

Definition 2.1. The content summary C(D) of a database D consists of:
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D1, with |D1]|=51,500 Ds, with |D2]|=5,730
w f(w, Dq) w f(w, D2)
algorithm 7,210 algorithm 2
cassini 5 cassini 3,260
saturn 2 saturn 3,730

Table I. A fragment of the content summaries of two databases.

—The actual number of documents in D, |D|, and
—For each word w, the number of D documents f(w, D) that include w.

For efficiency, a metasearcher should evaluate a query only on a relatively small
number of databases that are relevant to the query. The database selection compo-
nent of a metasearcher typically makes the selection decisions using the information
in the content summaries, as the following example illustrates:

EXAMPLE 2.2. Consider the query [cassini saturn| and two databases Dy and
Dy. Based on the content summaries of these databases (Table I), a database
selection algorithm may infer that Dy is a promising database for the query, since
each query word appears in many Do documents. In contrast, D1 will probably be
deemed not as relevant, since it contains only up to a handful of documents with
each query word.

Database selection algorithms work best when the content summaries are accu-
rate and up to date. The most desirable scenario is when each database either
(1) is crawlable, so that we can (periodically) download its contents and generate
content summaries, or (2) exports these content summaries directly and reliably
(e.g., using a protocol such as STARTS [Gravano et al. 1997]). Unfortunately,
the so-called hidden-web databases [Gravano et al. 2003], which abound on the
web, are not crawlable and only provide access to their documents via querying;
furthermore, no protocol is widely adopted for web-accessible databases to export
metadata about their contents. Hence, it is generally not possible to extract the
complete content summary of a hidden-web database.

To characterize the contents of a hidden-web database, an interesting observation
is that we can easily extract document samples from the database via querying. In
turn, we can approximate the content summary of the database using the documents
in a sample. In this article, we use the “hat” notation to refer to an approzimate,
sample-based content summary:

Definition 2.3. An approzimate, sample-based content summary C’(D) of a da-
tabase D consists of:

—An estimate |D| of the number of documents in D, and
—For each word w, an estimate f(w, D) of f(w, D).
The C (D) estimates are computed from a sample of the documents in D.

In this article, we study two state-of-the-art strategies for constructing approxi-
mate, sample-based content summaries:

—Query-Based Sampling (QBS), as presented in [Callan and Connell 2001): @BS
starts by choosing words randomly from a dictionary and uses them to query a

ACM Transactions on Database Systems, Vol. 32, No. 3, September 2007.



Modeling and Managing Changes in Text Databases : 5

given database until at least one document is retrieved. Then, (BS continues to
query the database using words that are randomly chosen from the retrieved doc-
uments. Each query retrieves up to k previously unseen documents (we set k = 4
in our implementation following the suggestions by Callan and Connell [2001],
who experimented with other values of k as well). Sampling stops after retrieving
sufficiently many documents (we stop after retrieving 300 documents, again fol-
lowing [Callan and Connell 2001]). In our experiments, sampling also stops when
500 consecutive queries retrieve no new documents. (Getting no new results for
500 random queries is a signal that @BS might have retrieved the majority of
the documents in the database.)

—Focused Probing (FPS), as presented in [Ipeirotis and Gravano 2002]: Instead of
sending (pseudo-) randomly picked words as queries, FPS derives queries from
a classifier learned over a topic hierarchy. Thus, queries are associated with spe-
cific topics. For example, a query [breast cancer] is associated with the category
“Health.” We retrieve the top-k previously unseen documents for each query
(we set k = 4 in our implementation, following the suggestions in [Ipeirotis and
Gravano 2002]) and, at the same time, keep track of the number of matches gen-
erated by each query. When the queries related to a category (e.g., “Health”)
generate a large number of matches, probing continues for its subcategories (e.g.,
“Diseases” and “Fitness”). The output of the algorithm is both an approxi-
mate content summary and the classification of the database in a hierarchical
classification scheme. In our experiments, the queries are derived from an SVM
classifier following the techniques described in [Gravano et al. 2003], over the
72-node hierarchy also used in [Ipeirotis and Gravano 2002; Gravano et al. 2003].

In addition to the @BS and FPS approximate content summaries, we also study
the evolution of the complete database content summaries (Definition 2.1), to which
we will refer as complete (CMPL). To derive the complete content summary of
a database, we retrieve all the documents from the database and compute the
document frequency of each word. This technique requires that each database either
allows direct access to its documents or supports the functionality of a protocol such
as STARTS [Gravano et al. 1997].

Next, we present the results of our study, which examined how CMPL, (BS, and
FPS content summaries of 152 text databases changed over a period of 52 weeks.

3. STUDYING CONTENT CHANGES OF REAL TEXT DATABASES

One of the goals of this article is to study how text database changes are reflected
over time in the database content summaries. First, we discuss our data set in
detail (Section 3.1). Then, we report our study of the effect of database changes on
the content summaries (Section 3.2). The conclusions of this study will be critical
for Section 4, when we discuss how to model content summary change patterns.

3.1 Data for our Study

Our study and experiments involved 152 searchable databases, whose contents were
downloaded weekly from October 2002 through October 2003. These databases
have previously been used in a study of the evolution of web pages [Ntoulas et al.
2004].
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Domain | com edu gov misc org
% 47.3% | 13.1% | 17.1% | 6.8% | 15.7%

Table II. Domain distribution in our data set.

The databases in our study were —roughly— the five top-ranked web sites in
a subset of the topical categories of the Google Directory, using the same topical
categories as in [Gravano et al. 2003]. Google Directory, in turn, reuses the hier-
archical classification of web sites from the Open Directory Project. (Please refer
to [Ntoulas et al. 2004] for more details on the rationale behind the choice of these
web sites.) From these web sites, we picked only those sites that provided a search
interface over their contents, which are needed to generate sample-based content
summaries. Also, since we wanted to study content changes, we only selected data-
bases with crawlable content, so that every week we can retrieve the full database
contents using a crawler. A complete list of the sites included in our experiments
is available at http://webarchive.cs.ucla.edu/. Table II shows the breakdown of
web sites in the set by high-level DNS domain, where the misc category represents
a variety of relatively small domains (e.g., mil, uk, dk, and jp). Similarly, Table III
shows the breakdown of web sites by topical category, as assigned by the Google
Directory. In this case, the misc category represents various small topical categories
(e.g., world, shopping, and games).

We downloaded the contents of the 152 web sites every week for a period of one
year. For each web site, we started our crawl from the root web page and continued
to download pages —in breadth-first order— until either we exhausted all pages
within the site or we downloaded 200,000 pages from the site.! By following all the
links recursively starting from the root page of each site we believe that we captured
a relatively complete version of the contents of each site.? Each weekly snapshot
consisted of three to five million pages, or around 65 GB before compression, for
a total over one year of almost 3.3 TB of history data. We treated each web site
as a database, and created —each week— the complete content summary C(D) of
each database D by downloading and processing all of its documents. This data
allowed us to study how the complete content summaries of the databases evolved
over time. In addition, we also studied the evolution over time of an approzimate
content summary C’(D) of each database D, computed weekly® using either QBS
or FPS. To reduce the effect of sampling randomness in our @BS experiments,
we create five @BS content summaries of each database each week, in turn derived
from five document samples, and report the various metrics in our study as averages
over these five summaries.

LOnly four web sites were affected by this efficiency-motivated page-download limitation: hti.
umich.edu, eonline.com, pbs.org, and intelihealth.com.

2We are not aware of any site in our data set containing pages that are not reachable from the
root page of the site.

3To compute the approximate content summaries, we indexed and queried the data using ht://Dig
(http://www.htdig.org/), an off-the-shelf indexing package.
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Category % || Category %
computers | 22.5% || reference | 7.3%
science 17.2% sports 5.3%

health 9.9% news 4.0%
arts 8.6% business | 4.0%
regional 7.9% || recreation | 2.0%
society 7.3% misc 4.0%

Table III. Category distribution in our data set.

3.2 Measuring Content Summary Change

We now turn to measuring how the database content summaries —both the com-
plete and approximate versions— evolve over time. For this, we resort to a number
of metrics of content summary similarity and quality from the literature. We discuss
these metrics and the results for the 152 web databases next.

For our discussion, we refer to the “current” and complete content summary of
a database D as C(D), while O(D,t) is the complete summary of D as of ¢t weeks
into the past. The O(D,t) summary can be considered as an (old) approximation
of the (current) C'(D) summary, simulating the realistic scenario where we extract
a summary for a database D and keep it unchanged for ¢ weeks. In the following
definitions, W, is the set of words that appear in O(D,t), while W, is the set of
words that appear in C(D). Values f,(w,D) and f.(w, D) denote the document
frequency of word w in O(D,t) and C(D), respectively.

3.2.1 Recall. Animportant property of the content summary of a database is its
coverage of the current database vocabulary. An up-to-date and complete content
summary always has perfect recall, but an old summary might not, since it might
not include, for example, words that appear only in new database documents. The
unweighted recall (ur) of O(D,t) with respect to C(D) is the fraction of words in

the current summary that are also present in the old summary: ur = %ﬂ This

metric gives equal weight to all words and takes values from 0 to 1, Witcl‘l a value
of 1 meaning that the old content summary contains all the words that appear
in the current content summary, and a value of 0 denoting no overlap between
the summaries. An alternative recall metric, which gives higher weight to more

frequent terms, is the weighted recall (wr) of O(D,t) with respect to C(D): wr =
X wewynw, fe(w,D)

Y wew, fe(w,D)
recall for a sample-based content summary OA(D7 t) of database D obtained ¢ weeks
into the past with respect to the current content summary C(D) for the same
database.

The CMPL lines in Figures 1(a) and 1(b) show the weighted and unweighted
recall, respectively, for complete t-week-old summaries with respect to the “current”
summary, as a function of ¢ and averaged over every possible choice of “current”
summary. Predictably, both the weighted and unweighted recall values decrease
as t increases. For example, on average, 1-week-old summaries have unweighted
recall of 91%, while older, 25-week-old summaries have unweighted recall of about
80%. The weighted recall figures are higher, as expected, but still significantly less
than 1: this indicates that the newly introduced words have low frequencies, but

. We will use analogous definitions of unweighted and weighted

ACM Transactions on Database Systems, Vol. 32, No. 3, September 2007.



8 : Panagiotis G. Ipeirotis et al.

s CMPL
= FPS
4~ QBS

Weighted Recall

Unweighted Recall

o

o
©

o
@

°
o

o
>

o
o

°
by

03

s CMPL
= FPS
- QBS

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
t t

(a) Weighted Recall (b) Unweighted Recall

Fig. 1. The weighted and unweighted recall of content summary O(D,t) (CMPL), and of the
approximate content summaries O(D,t) (QBS and FPS), with respect to the “current” content
summary C(D), as a function of time ¢t and averaged over each database D in the data set.

constitute a substantial fraction of the database vocabulary as well.

The @BS and FPS lines in Figure 1 show the corresponding results for @QBS and
FPS content summaries. As expected, the values for all the approximate, sample-
based summaries are substantially smaller than those for the complete summaries.
Also, the recall values of the sample-based summaries do not change much over time,
because the sample-based summaries are only marginally complete to start with and
do not suffer a significant drop in recall over time. This shows that the inherent
incompleteness of the sample-based summaries “prevails” over the incompleteness
introduced by time.

Another interesting observation is that recall figures initially decrease (slightly)
for approximately 20 weeks, then remain stable, and then, surprisingly, increase, so
that a 50-week old content summary has higher recall than a 20-week old one, for
example. This unexpected result is due to an interesting periodicity: some events
(e.g., “Christmas,” “Halloween”) appear at the same time every year, allowing
summaries that are close to being one year old to have higher recall than their
younger counterparts. This effect is only visible in the sample-based summaries,
which cover only a small fraction of the database vocabulary, and is not observed in
the complete summaries, mainly because they are larger and are not substantially
affected by a relatively small number of words.

3.2.2  Precision. Another important property of the content summary of a da-
tabase is the precision of the summary vocabulary. Up-to-date content summaries
contain only words that appear in the database, while older summaries might in-
clude obsolete words that appeared only in deleted documents. The unweighted

precision (up) of O(D,t) with respect to C(D) is the fraction of words in the old
(WonW.|

A Wol -
This metric, like unweighted recall, gives equal weight to all words and takes values

from 0 to 1, with a value of 1 meaning that the old content summary only contains
words that are still in the current content summary, and a value of 0 denoting no
overlap between the summaries. The alternative precision metric, which —just as
in the weighted recall metric— gives higher weight to more frequent terms, is the

content summary that still appear in the current summary C(D): up =

ACM Transactions on Database Systems, Vol. 32, No. 3, September 2007.



Modeling and Managing Changes in Text Databases . 9

Weighted Precision
-y

Unweighted Precision
°
4
3
.
1 ]
1 »
./

o 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
t t

(a) Weighted Precision (b) Unweighted Precision

Fig. 2. The weighted and unweighted precision of content summary O(D,t) (CMPL), and of the
approximate content summaries O(D,t) (QBS and FPS), with respect to the “current” content
summary C(D), as a function of time t and averaged over each database D in the data set.

weighted precision (wp) of O(D,t) with respect to C(D): wp = Ziew";"v;:";ofzj(%f)

We use analogous definitions of unweighted and weighted precision for a sample-
based content summary O(D, t) of a database D with respect to the correct content
summary C(D).

The CMPL lines in Figures 2(a) and 2(b) show the weighted and unweighted pre-
cision, respectively, for complete t-week-old summaries with respect to the “current”
summary, as a function of ¢ and averaged over every possible choice of “current”
summary. Predictably, both the weighted and unweighted precision values decrease
as t increases. For example, on average, a 48-week-old summary has unweighted
precision of 70%, showing that 30% of the words in the old content summary do
not appear in the database anymore.

The @BS and FPS lines in Figure 2 show the corresponding results for @QBS and
FPS content summaries. As expected, precision decreases over time, and decreases
much faster than recall. For example, almost 20% of the words in a 15-week-old
@BS content summary are absent from the database. The periodicity that appeared
in the recall figures is not visible for the precision results: the sample-based content
summaries contain many more “obsolete” words that do not appear in the database
anymore, so a small number of words that appear periodically cannot improve the
results.

3.2.3  Kullback-Leibler Divergence. Precision and recall measure the accuracy
and completeness of the content summaries, based only on the presence of words in
the summaries. However, these metrics do not capture the accuracy of the frequency
of each word as reported in the content summary. For this, the Kullback-Leibler
divergence [Jelinek 1999] of O(D,t) with respect to C'(D) (KL for short) calculates
the “similarity” of the word frequencies in the old content summary O(D, t) against
the “current” word frequencies in C(D): KL = Y7 cw . Pe(w|D) - log ﬁi?ﬂg%’

fe(w,D)
w! EWoNWe fe(w’,D)

Po(w|D) = fo(w.D) is the probability of observing w in O(D,t). The

w! EWoNWe fo(w/vD)
KL divergence metric takes values from 0 to infinity, with 0 indicating that the two

where p.(w|D) = 5 is the probability of observing w in C(D), and
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Fig. 3. The KL divergence of the content summary O(D,t) (CMPL), and of the approximate
content summaries O(D,t) (QBS and FPS), with respect to the “current” content summary
C(D), as a function of time ¢ and averaged over each database D in the data set.

content summaries being compared are equal.

The CMPL line in Figure 3 shows that the KL divergence of old content sum-
maries increases as t increases. This confirms the previously observed results and
shows that the word frequency distribution changes substantially over time. Fur-
thermore, the KL divergence of the old approximate summaries (lines @BS and
FPS) also increases with time, indicating that approximate content summaries be-
come obsolete just as their complete counterparts do.

3.2.4 Conclusion. We studied how content summaries of text databases evolve
over time. We observed that the quality of content summaries (both complete
and sample-based) deteriorates as they become increasingly older. Therefore, it is
imperative to have a policy for periodically updating the summaries to reflect the
current contents of the databases. We now turn to this important issue and show
how we can use “survival analysis” for this purpose.

4. PREDICTING CONTENT SUMMARY CHANGE FREQUENCY

In the previous section, we established the need for updating database content sum-
maries as the underlying text databases change. Unfortunately, updating a content
summary involves a non-trivial overhead: as discussed, the content summaries of
hidden-web text databases are constructed by querying the databases, while the
summaries of crawlable databases are constructed by downloading and processing
all the database documents. Therefore, in order to avoid overloading the data-
bases unnecessarily, it is important to schedule updates carefully. In this section,
we present our “survival analysis” modeling approach for deciding when to update
content summaries. First, Sections 4.1 and 4.2 review the necessary background
on survival analysis and the Cox regression model from the literature [Cox 1972].
Then, Section 4.3 shows how we can use this material for our own scenario, to
model content summary changes, and Section 4.4 shows how to use the modeling
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results for scheduling content summary updates.

4.1 Survival Analysis

Survival analysis is a collection of statistical techniques that help predict the time
until an event occurs [Marques De S& 2003]. These methods were initially used
to predict the time of survival for patients under different treatments, hence the
name “survival analysis.” For the same reason, the “time until an event occurs”
is also called survival time. For our purposes, the survival time of a database D is
the minimum number of weeks ¢ such that O(D,t) becomes “sufficiently different”
from the current content summary C(D) for the database. (We formally define the
survival time of a database in Section 4.3.)

Survival times can be modeled through a survival function S(t) that captures the
probability that the survival time of an object is greater than or equal to ¢. In the
survival analysis literature, the distribution of S(t) is also described in terms of a

hazard function h(t), which is the “rate of failure” at time ¢, conditional on survival
das(t

4as(t)
until time ¢: h(t) = —5( and, equivalently, S(t) = exp (7 foth(z)dz). A common

modeling choice for S(t) is the exponential distribution, where S(t) = e~ and

so the hazard function is constant over time (h(¢f) = A). A generalization of the
exponential distribution is the Weibull distribution, where S(t) = e=**", and so the
hazard function varies over time (h(t) = Ayt?~!). (The exponential distribution
corresponds to the case where v = 1.) Recent findings indicate that the exponential
function is a good model to describe changes in web documents [Brewington and
Cybenko 2000a; Cho and Garcia-Molina 2003]. While these findings suggest using
the exponential distribution to model the survival time of a database, we will see in
Section 4.3 that the exponential distribution does not accurately describe changes
for summaries of web databases. So, instead, we will use the Weibull distribution.

As described so far, the survival function S(t¢) and the hazard function h(t) are
used to describe a single database, and are not “instantiated” since we do not know
the values of the configuring parameters. Of course, it is important to estimate
the parameters of the survival function S(t) for each database, to have a concrete,
database-specific change model. FEven more imperative is to discover predictor
variables that can influence the survival times. For example, when analyzing the
survival times of patients with heart disease, the weight of a patient is a predictor
variable and can influence the survival time of the patient. Analogously, we want
to predict survival times individually for each database, according to its character-
istics. Next, we describe the Cox proportional hazards regression model that we
use for this purpose.

4.2 Cox Proportional Hazards Regression Model

The Coz proportional hazards regression model [Cox 1972] is widely used in statistics
for discovering important variables that influence survival times. This model is
non-parametric, because it makes no assumptions about the nature or shape of
the hazard function. The only assumption is that the logarithm of the underlying
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hazard rate is a linear* function of the predictor variables.

Let x be a predictor variable, and z, and x; be the values of that variable for
two databases D, and Dy, respectively. Under the Cox model, the hazard functions
ha(t) and hy(t) can be expressed for databases D, and Dy as:

ha(t) = €% ho(t) = Inha(t) = Inho(t) + Bia (1a)

hy(t) = €% ho(t) = In hy(t) = Inho(t) + By (1b)

where hg(t) is a baseline hazard function, common for all the members of the pop-
ulation, and ( is the model coefficient. We can generalize the Cox model for n
predictor variables: in this case Inh(t) = Inho(t) + > ., Biz;, where the x;’s are
the predictor variables, and the (3;’s are the model coefficients. Then, the survival
function for a database has the form:

S(t) = exp < exp (Z ﬁﬂ:}) /0 ho(z)dz> =
In S(t) =exp (i ﬁixl) In Sp(t)

where So(t) = exp (f fgho(z)dz) is the baseline survival function, common for all

2)

the members of the population. The algorithm presented by Cox [1972] shows how
to compute the J; values.

The Cox model, as presented so far, seems to solve the same problem addressed
by multiple regression. However, the dependent variable (survival time) in our
case is not normally distributed, but usually follows the exponential or the Weibull
distribution —a serious violation for ordinary multiple regression. Another im-
portant distinction is the fact that the Cox model effectively exploits incomplete
or “censored” survival times, from cases that “survived” the whole study period.
Excluding these cases from a study would introduce a strong bias in the resulting
model. Those observations are called censored observations and contain only par-
tial information, indicating that there was no failure during the time of observation.
The Cox model effectively uses the information provided from censored cases. (For
more information, see [Cox 1972].)

The Cox proportional hazards model is one of the most general models for work-
ing with survival times, since it does not assume any specific baseline hazard func-
tion. This model allows the extraction of a “normalized” hazard function hg(t) that
is not influenced by predictor variables. This allows for easier generalization of the
results, since ho(t) is not dependent on the distribution of the predictor variables
in the data set used to extract ho(t). The only requirement for the applicability
of Cox’s model is that the predictor variables follow the “proportional hazard” as-

sumption, which means that, for two individual databases D, and Dy, the hazard
h(t)

is constant over time.
h (t)

ratio

4The “linearity” or “proportionality” requirement is essentially a “monotonicity” requirement
(e.g., the higher the weight of a patient, the higher the risk of heart attack). If a variable
monotonically affects the hazard rate, then an appropriate transformation (e.g., log(-)) can make
its effect linear.
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An interesting variation of the Cox model that overcomes the proportional hazard
assumption is the stratified Cox model [Stablein et al. 1981], which is used to account
for variables that do not satisfy the proportionality assumption. In this case, the
variables that do not satisfy this assumption are used to split the data set into
different “strata.” The §; Cox coefficients remain the same across the different
strata, but each stratum now has a different baseline function hg(t).

Next, we describe how we use the Cox regression model to represent changes in
text database content summaries.

4.3 Using Cox Regression to Model Content Summary Changes

Before using any survival analysis technique for our problem, we need to define
“change.” A straightforward definition is that two content summaries C(D) and
O(D,t) are “different” when they are not identical. However, even a small change
in a single document in a database will probably result in a change in the content
summary of the database, but such change is unlikely to be of importance for
database selection. Therefore, we relax this definition and say that two content
summaries are different when KL > 7 (see Section 3.2 for the definition of KL
divergence), where 7 is a “change sensitivity” threshold.® Higher values of 7 result
in longer survival times and the exact value of 7 should be selected based on the
characteristics of the database selection algorithm of choice. We will see how we
can effectively use the Cox model to incorporate 7 in our change model. Later, in
Section 4.4, we show that we can define update schedules that adapt to the chosen
value of 7.

Definition 4.1. Given a value of the change sensitivity threshold 7 > 0, the
survival time of a database D at a point in time —with associated “current” content
summary C'(D)— is the smallest time ¢ for which the KL divergence of O(D, t) with
respect to C(D) is greater than 7.

Note that we define the survival time of a database with respect to its complete
content summary. An alternative that we do not explore in this article is to define
survival time over approximate content summaries whenever we use @BS and FPS
to construct the summaries; note, however, that this alternate definition would
be problematic for QBS, where randomization can cause successively computed
(approximate) content summaries to differ even if the underlying database has
remained unchanged.

Now that we have a definition of the survival time for a content summary, we
describe our survival analysis approach in detail. Our approach consists of the
following steps:

(1) Compute the survival times for all the databases and all points in time in our
data set (Section 4.3.1).

(2) Select the useful database features (across a variety of candidate features) for
predicting the survival time of the database content summaries (Section 4.3.2).

5We use KL divergence for our change definition (as opposed to precision or recall) because KL
depends on the similarity of word-frequency distributions. As our later experiments show, an
update policy derived from the KL-based change definition improves not only the KL divergence
but also precision and recall.
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(3) Use the survival times from Step 1 and the useful features from Step 2 to run
a Cox regression analysis, with the survival times as dependent variables and
the useful database features as independent variables (Section 4.3.3).

We now describe each of these steps in detail, and finally discuss our modeling
conclusions (Section 4.3.4).

4.3.1 Computing Survival Times. Using the study of Section 3 as well as Def-
inition 4.1, we computed the survival time of each content summary for different
values of the change sensitivity threshold 7. For some databases, we did not detect
a change within the period of the study. As explained in Section 4.2, these “cen-
sored” cases are still useful since they provide evidence that the content summary
of a database with the given characteristics did not change within the allotted time
period and for the change sensitivity threshold 7 of choice. The result of our study
is a set of survival times, some marked as censored, that we use as input to the Cox
regression model.

4.3.2  Feature Selection. After extracting the survival times, we select the da-
tabase features that we pass as parameters to the Cox model. We use two sets of
features: a set of “current” features and a set of “evolution” features. The current
features are characteristics of the database at a given point in time. For example,
the topic of the database (e.g., “health”) and its DNS domain (e.g., “.gov”) are cur-
rent features of a database. On the other hand, we extract the evolution features
by observing how the database changes over a (training) time period.

In our study, the initial set of current features that we used was:

—The change sensitivity threshold 7.

—The topic of each database, defined as the top level category under which the
database is classified in the Open Directory. This is a categorical variable with 16
distinct values (e.g., “Arts,” “Sports,” and so on). We encoded this variable as a
set of 16 dummy binary variables: each variable has the value 1 if the database
is classified under the corresponding category, and 0 otherwise.

—The domain of the database, which is a categorical variable with five distinct
values (com, org, edu, gov, misc). We encoded this variable as a set of 5 binary
variables.

—The logarithm of the size of the database. For hidden-web databases that offer
only query-based access to their contents, we estimate the size of the database
using the “sample-resample” method from [Si and Callan 2003].

—The number of words in C(D), for crawlable databases, or in C'(D), for hidden-
web databases, computed over the “current” document sample.

To extract the set of evolution features, we retrieved content summaries from
each database every week over a period of 10 weeks. Then, for each database
we compared every pair of summaries that were extracted exactly k weeks apart
(i.e., on weeks t and t + k) using the precision, recall, and KL divergence metrics.
Specifically, the features that we computed were:

—The average KL divergence kq,..., k9 between summaries extracted with time
difference of 1,...,9 weeks.
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—The average weighted and unweighted precision of summaries extracted with time
difference of 1,...,9 weeks.

—The average weighted and unweighted recall of summaries extracted with time
difference of 1,...,9 weeks.

After selecting the initial set of features, we trained the Cox model using the
variables indicated above. We validated the results using leave-one-out cross val-
idation.® The results of the initial run indicated that, from the current features,
the number of words and the topic of a database are not good predictor variables.
From the evolution features, the KL features are uniformly good predictors and
are strongly and positively correlated with each other. The predictive value of pre-
cision and recall depends on the summary construction technique: precision and
recall are not good predictor variables for @BS but they are for FPS and CMPL.
This result is not surprising: FPS usually” issues the same queries each time that it
samples a particular database. If the database has not changed, then the returned
documents are the same and precision and recall are high. If the database has
changed, then the returned set of documents is different, resulting in low precision
and recall. Similarly, CMPL is sensitive to any changes in the underlying data-
base. This property does not hold for @BS: @BS issues a potentially different set
of queries each time that it samples a particular database, so the documents in a
newly extracted sample may be completely different from those in earlier samples,
even if the database has not changed. Therefore, precision and recall are not good
predictor variables under @BS.

Given these results, we decided to drop the number of words and the topic vari-
ables from the current set, keeping only the change sensitivity threshold 7, the
database size, and the domain. From the evolution set, we dropped recall and pre-
cision. Despite the fact that recall and precision are good predictor variables for
FPS and CMPL, their importance in the presence of the KL features is negligible.
From the KL features, we kept only xi: given its presence, features ko through
kg were largely redundant. Since we only needed the k1 feature, we reduced the
training time from 10 to two weeks. To examine whether any of the selected fea-
tures —other than threshold 7, which we always keep, and domain, which we treat
differently, as explained below— is redundant, we trained Cox using (a) size and ;
(b) k1 and 75 and (c¢) &1, size, and 7. We describe our findings next.

4.3.3  Training the Cox Model. After the initial feature selection, we trained
the Cox model again. The results confirmed that all the features that we had se-
lected are good predictor variables® and strongly influence the survival time of the
extracted summaries. However, the domain variable did not satisfy the proportion-
ality assumption, which is required by the Cox model (see Section 4.2): the hazard
ratio between two domains was not constant over time. Hence, we resorted to the

6Since each database generates multiple survival times, we leave out one database at a time for
the cross-validation.

"The queries for a database remain the same if the database classification does not change.

8For all models, the statistical significance is at the 0.001% level according to the Wald statis-
tic [Marques De S& 2003].
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Method Features Bs Br Br

K1, size, 7 | 0.094 6.762 -1.305

@QBS size, T 0.179 - -1.313
K1, T - 8.3 -1.308

K1, size, 7 | 0.135 | 10.143 | -1.329

FPS size, T 0.179 - -1.313
K1, T . 14.765 | -1.24
K1, size, 7 | 0.155 2.849 | -1.3712

CMPL size, T 0.178 - -1.302
K1, T - 3.198 -1.225

Table IV. The coefficients of the Cox model, when trained for various sets of features and for
different content summary construction methods.

stratified Cox model, stratifying on domain.’

The result of the training was a set of coefficients (s, 8., and 3, for features size,
K1, and 7, respectively. We show the Cox coefficients that we obtained in Table IV.
Note that the FPS and @QBS results for features size and 7 are equivalent, as
both estimate the database size using the sample-resample method [Si and Callan
2003]. In contrast, CMPL knows the actual database size. The results for FPS and
@BS are slightly different from those for CMPL in this case, but the difference is
not statistically significant. Overall, the positive values of 35 and 8, indicate that
larger databases are more likely to change than smaller ones and that databases that
changed during training are more likely to change in the future than those that did
not change. In contrast, the negative value for (3, shows that —mot surprisingly—
higher values of 7 result in longer survival times for content summaries.

Given the results of the analysis, for two databases D, and D, from the same
domain, from Equation 2 we have:

In S, (t) = exp(Bs In(|Dyl|) + Brkia + Br7a) - InSo(t)
In Sy(t) = exp(Bs In(|Do|) + Brrrs + Br7o) - InSo(t)

where Sy(t) is the baseline survival function for the respective domain. The baseline
survival function, by definition, corresponds to a “baseline” database D with size
|D| =1 (i.e., In(|D]) =0), k1 =0, and 7 = 0.

Under the Cox model, the returned baseline survival functions are defined only
by a set of values Sy(1),...,So(n), which correspond to the probability of survival
of the baseline database for the weeks 1,...,n. In our experiments, we had five
baseline survival functions, one for each domain (i.e., com, edu, org, gov, misc).
To fit the baseline survival functions, we assumed!® that they follow the Weibull
distribution (see Section 4.1), which has the general form S(t) = e~ *". We ap-
plied curve fitting using a least-squares method, namely the Levenberg-Marquardt
method [Moré 1977], to estimate the parameters of the Weibull distribution for
each domain. For all estimates, the statistical significance was at the 0.001% level.
Table V summarizes the results.

9This meant that we had to compute a separate baseline hazard function for each domain.
10Typically, the first choice for modeling survival times is the exponential distribution. If the
survival times do not follow the exponential distribution, then the Weibull distribution, itself a
generalization of the exponential distribution, is the next natural choice.
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An interesting conclusion is that the survival functions do not follow the ex-
ponential distribution (y = 1). Previous studies [Cho and Garcia-Molina 2003]
indicated that individual web documents have lifetimes that follow the exponential
distribution. Our results, though, indicate that content summaries, with aggregate
statistics about sets of documents, change more slowly. Another interesting result
is that the Mgy, values are significantly lower for FPS than for @BS and CMPL.
This result is due to the significantly higher weight assigned to the k, feature when
FPS is used. As discussed above, FPS retrieves the same documents each time it
samples a database, as long as the database does not change. Hence, any changes
in the retrieved documents are a strong signal that the database has changed, while
this is not the case for @BS. Furthermore, a change of a single document in the FPS
sample typically signals that many other documents in the database have changed
as well. This is in contrast to CMPL, in which a change in a single document does
not imply other changes in the database. For this reason, x; has a higher weight
for FPS, resulting in baseline functions with significantly lower \g,,, values than
their @BS and CMPL counterparts.

4.3.4  Modeling Conclusions. We have presented a statistical analysis of the sur-
vival times of database content summaries. We used Cox regression analysis to
examine the effect of different variables in the survival time of database content
summaries and showed that the survival times of content summaries follow the
Weibull distribution, in most cases with v < 1 (i.e., summaries tend to remain un-
changed for longer time periods as their age increases). We summarize our results
in the following definition:

Definition 4.2. The function S;(t) that gives the survival function for a database
Di is:
S;i(t) = exp (—A;it7¥™),  with (3a)

)\i = )\dom (‘Dl B . exp (ﬁ,{/ﬁ)u) - exp (ﬂ'rTz)) (3b)

where |D;| is the size of the database; k1, is the KL divergence of the content
summaries obtained for D; during the training period; 7; is the value of the change
sensitivity threshold for D; (Definition 4.1); G5, Bx, and 3, are the Cox coefficients
from Table IV; and Agom and vgom are the domain-specific constants from Table V.

Definition 4.2 provides a concrete change model for a database D that is specific
to the database characteristics and to the change sensitivity, as controlled by the
threshold 7. An interesting result is that summaries of large databases change more
often than those of small databases, as indicated by the positive value of (5, which
corresponds to the database size. Figure 4 shows the shape of S(t) for different
domains, for a hypothetical database D with |D| = 1000, x; = 0.1 (computed
using @BS), and for 7 = 0.5. This figure shows that content summaries tend to
vary substantially across domains (e.g., compare the “misc” curve against the “gov”
curve).

4.4 Deriving an Update Policy

So far, we have described how to compute the survival function S(t) for a text
database. Now, we describe how we can exploit S(t) to schedule database content
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Method Features Domain Adom Ydom
com 0.0180 0.901

edu 0.0205 0.585

K1, size, T gov 0.0393 0.780

misc 0.0236 1.050

org 0.0274 0.724

com 0.0211 0.844

edu 0.0392 0.578

@BS size, T gov 0.0193 0.701
misc 0.0163 1.072

org 0.0239 0.723

com 0.0320 0.886

edu 0.0774 0.576

K1, T gov 0.0245 0.795

misc 0.0500 1.014

org 0.0542 0.715

com 2.65 x10~% | 0.787
edu 3.40 x10~% | 0.670
K1, size, T gov 1.85 x10~* 0.710
misc 1.90 x10~% | 1.020
org 3.74 x10~=%* | 0.764

com 0.0211 0.844

edu 0.0392 0.578

FPS size, T gov 0.0193 0.701
misc 0.0163 1.072

org 0.0239 0.723

com 7.59 x10~° | 0.743
edu 1.20 x10~% | 0.641
K1, T gov 5.92 x10~% | 0.722
misc 6.69 x1075 | 0.920
org 7.46 x107% | 0.728

com 0.0315 0.800

edu 0.0267 0.784

K1, size, T gov 0.0181 0.767
misc 0.00589 1.41

org 0.02587 0.811

com 0.0241 0.753

edu 0.0364 0.683

CMPL size, T gov 0.0209 0.685
misc 0.0227 1.020

org 0.0260 0.773

com 0.1058 0.7093

edu 0.1044 0.7371

K1, T gov 0.0729 0.7478
misc 0.0294 1.24

org 0.0942 0.7685

Table V. The parameters for the baseline survival functions for the five domains. The baseline
survival functions describe the survival time of a database D in each domain with size |D| = 1
(In(|D|) = 0), with average distance between the summaries k1 = 0, and for change sensitivity
threshold 7 = 0.

ACM Transactions on Database Systems, Vol. 32, No. 3, September 2007.



Modeling and Managing Changes in Text Databases : 19
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Fig. 4. The survival function S(¢) for different domains (|D| = 1000, 7 = 0.5, k1 = 0.1, @BS
summaries).

summary updates and contact each database only when necessary.

A metasearcher may provide access to hundreds or thousands of databases and
operate under limited network and computational resources. To optimize the overall
quality of the content summaries, the metasearcher has to carefully decide when to
update each of the summaries, so that they are acceptably up to date during query
processing.

To model the constraint on the workload that a metasearcher might handle, we
define F' as the average number of content summary updates that the metasearcher
can perform in a week. Then, under a Naive strategy that allocates updates to
databases uniformly, T = % represents the average number of weeks between two
updates of a database, where n is the total number of databases. For example,
T = 2 weeks means that the metasearcher can update the content summary of each
database every two weeks, on average.

As we have seen in Section 4.3, the rate of change of the database contents may
vary drastically from database to database, so the Naive strategy above is bound to
allocate updates to databases suboptimally. Thus, the goal of our update schedul-
ing is to determine the update frequency f; for each database D; individually, in
such a way that the function ) ., S;(t) is maximized, while at the same time not
exceeding the number of updates allowed. In this case, we maximize the average
probability that the content summaries are up to date. One complication is that
the survival function S;(¢) changes its value over time, so different update schedul-
ing policies may be considered “optimal” depending on when S;(¢) is measured.
To address this issue, we assume that the metasearcher wants to maximize the
time-averaged value of the survival function, given as:

t n
S = lim > Si(t)dt.
i=1

t—oo t 0

This formulation of the scheduling problem is similar to that in [Cho et al. 2000]
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D; i T =40 T =10
tomshardware.com | 0.088 | 46 weeks 5 weeks
usps.com 0.023 | 34 weeks | 12 weeks

Table VI. Optimal content-summary update frequencies for two databases.

for the problem of keeping the index of a search engine up to date. In short, we
formulate our goal as the following optimization problem.

PROBLEM 4.3. Find the optimal update frequency f; for each database D;, i =
1,...,n, such that the time-averaged survival function S is mazimized under the
constraint Y ., fi = where T is the average number of weeks between two

updates of a database.

n
T

Given the analytical forms of the S;(¢) functions in the previous sections, we can
solve this optimization problem using the Lagrange-multiplier method (as shown,
for example, in [Cho et al. 2000; Olston and Widom 2002]). From this analysis, we
conclude that the optimal update frequencies f;’s are the solutions to the following
equations:

1 1 1 N 1 A .
: [F()F(,Y)]exp< 7_)u for1<i<n (4
Y i Vi vi fi" i i

where \; is the rate of change of database D;, v; = Yaom of D;, I'(z) and T'(z,y)
are the complete and the incomplete gamma functions,'' respectively, and u is
the Lagrange multiplier decided from the constraint Y . | f; = 7. Note that the
optimal frequencies f; cannot be expressed in simple analytical form, so they need
to be computed numerically by solving Equation 4.

Cho et al. [2000] investigated a special case of this optimization problem when
vi = 1 (i.e., when the rate of change is constant over time) and observed the

following:

(1) When J; is small relative to the resource constraint F' (i.e., when the database
changes infrequently compared to our update resource constraint), the optimal
revisit frequency f; becomes larger as \; grows larger.

(2) When J; is large relative to the resource constraint F', the optimal revisit
frequency f; becomes smaller as \; grows larger.

In our solution to the above generalized optimization problem, we also observed
similar trends even when 7; # 1 (i.e., when the rate of change varies over time). As
an example, in Table VI we show the optimal update frequencies for the content
summaries of two databases, tomshardware.com and usps.com. We can see that,
when T is small and we can update summaries often (i.e., for 7' = 10, meaning that
we update the summaries every 10 weeks on average), we update tomshardware.
com more often than usps.com, since J; is larger for tomshardware.com. However,
when T is large and we can only rarely update summaries (i.e., for T = 40, meaning
that we update the summaries every 40 weeks on average), the optimal update

1By definition, I'(z) = [;° t* ! exp(—t)dt and I'(z,y) = f;o t*= 1 exp(—t)dt.
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frequencies are reversed. The scheduling algorithm decides that tomshardware.com
changes “too frequently” and is not beneficial to allocate more resources to try
to keep it up to date. Therefore, the algorithm decides to update the content
summary from tomshardware.com less frequently, and instead focus on databases
like usps.com that can be kept up to date. This trend holds across domains and
across values of ;.

5. EXPERIMENTAL SETUP

We now describe the techniques that we compare for our experimental evaluation of
Section 6. In Section 5.1 we describe the variations of our survival analysis approach
that we used. Next, in Section 5.2, we describe a machine learning technique for
predicting when content summaries should be updated. Finally, in Section 5.3 we
describe a state-of-the-art method for scheduling when to recrawl (and update a web
search engine index of) crawlable web sites; this method was originally presented
by Cho and Ntoulas [2002] and we evaluate it as an alternative scheduling approach
for updating content summaries of crawlable databases.!?

5.1 Survival Analysis Techniques for Updating Content Summaries

In Section 4.3, we showed how to compute the form and parameters of the survival
function S;(t), which measures the probability that the summary of a database D;
is up to date t weeks after it was computed. Based on Cox’s model, we derived a
variety of models that compute S;(t) based on three different sets of features (see
Tables IV and V). Now, we use these models to devise three update policies, using
the approach from Section 4.4 and the following feature sets:

—kK1, size, and 7: We use all the available features.

—size and 7: We do not use the history of the database, i.e., we ignore the evolution
feature k1, and we use only the database size and the change sensitivity threshold
T.

—+1 and 7: We use only the history of the database and the change sensitivity
threshold 7. 'We consider this policy to examine whether we can work with
databases without estimating their size.?

We also consider the Naive policy, discussed above, where we uniformly update all
summaries every T weeks.

5.2 Machine Learning for Predicting Content Summary Changes

So far, we described a regression-based approach for scheduling updates for content
summaries. The Cox proportional hazards regression returns (probabilistic) esti-

12 As we discuss in Section 7, a number of update scheduling policies have been developed specif-
ically for search engines, such as [Pandey and Olston 2005] and [Wolf et al. 2002]. While these
policies show further improvement compared to [Cho and Ntoulas 2002], they exploit specific
properties of the ranking functions used by the search engines. As a result, these optimizations
are not directly applicable for our content summary update problem.

I3 The size estimation method that we use [Si and Callan 2003] relies on the database returning
the number of matches for each query. This method becomes problematic for databases that do
not report such numbers with the query results.
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Fig. 5. Example training vectors, used to train a classifier that detects whether a database content
summary needs to be updated.

mates for the lifetime of each content summary, and then we exploit this information
to schedule updates according to the available resources.

An alternative approach for updating content summaries is to treat scheduling as
a binary classification problem. Specifically, we define a function U(D;, t1,ts) for a
database D; so that U (D, t1,t2) = 1 if the content summary of D; extracted at time
t1 should be updated at time ¢, according to Definition 4.1, and U(D;,t1,t2) =0
otherwise. Following Section 4, we want the prediction to rely on current database
features and perhaps also on a few evolution features of the database. Similarly to
our survival analysis approach, we use leave-one-out cross-validation to train and
test a “black-box” classifier that predicts the update status for a given unlabeled
vector x: the training data for a database D, consists of the vectors for all the other
databases except for D;. The classifier that we learn predicts whether we need to
update the content summary of D;.

5.2.1 Creating the Training Set. Given a database D; and a change sensitivity
threshold 7, we train a classifier for U as follows. For the duration of our study,
spanning 50 weeks,'* we consider each week pair (p,q) with p < ¢ and define
U(D;,p,q) =1 if the KL-divergence between Cy(D;) and Cp(D;) is larger than 7,
where Cy(D;) is the content summary of D, at time ¢. The training set features
are the current and evolution features that we defined in Section 4.3.2. Figure 5
shows a few example training vectors for database D;. In this figure, the first
vector corresponds to weeks 1 and 2. For change sensitivity threshold 7 = 0.5,
C(D;) at week 2 is not substantially different from C(D;) as computed in week
1, hence U(D;,1,2) = 0 for this week pair. The features associated with this
database indicate that D; is a .com database, that D; contains 219,695 documents
(i.e., In(]D;|) = 12.3), and so on. Similarly, the third vector corresponds to weeks
1 and 4. For change sensitivity threshold 7 = 0.5, C'(D;) at week 4 is substantially
different from C(D;) as computed in week 1, hence U(D;, 1,4) = 1 for this week
pair.

In our study, we had 152 databases, studied over a period of 50 weeks, with
10 possible values of the change sensitivity threshold 7. This resulted in a data
set with 1,862,000 vectors. These vectors represent points in an m-dimensional

14We use two weeks’ worth of our 52-week data to compute the k1 values.

ACM Transactions on Database Systems, Vol. 32, No. 3, September 2007.



Modeling and Managing Changes in Text Databases : 23

space, where m is the number of current and evolution features. A binary classifier
decides whether a vector, represented using m features (see above), belongs to the
class U = 1 or not. A binary linear classifier makes this decision by calculating,
during the training phase, m weights w1, ..., w,, and a threshold b determining a
hyperplane such that every point ¢ = (¢1,...,t,,) in the hyperplane satisfies the
equation:

i=1

This hyperplane divides the m-dimensional space into two regions: the region with
the vectors that belong to the class in question, and the region with all other vectors.

5.2.2  Selecting Classifiers. Binary linear classifiers work best when the manifold
that optimally separates [Duda et al. 2000] the two classes is a hyperplane. The
results from Section 4.3 indicate that, in our case, the boundaries between the two
classes cannot be described by a linear equation in the original m-dimensional space.
Instead, the function that optimally separates the two classes involves products of
the available features, and uses the logarithm of the content summary age, In(age),
as a feature. (See Appendix A for details.)

Based on this result, we initially added the In(age) value as a separate feature
and used SVMs with polynomial kernels to solve this classification problem. (SVMs
with polynomial kernels implicitly expand the feature space to include extra fea-
tures that correspond to the products of the “basic” features.) Unfortunately,
polynomial SVMs cannot fully explore the expanded feature space. For example,
all the terms that correspond to the products of the “basic” features are given
equal weight [Hastie et al. 2001, page 384], a clearly undesirable property for our
problem. (See Appendix A for details.) Therefore, we decided to experiment with
SVMs with linear kernels. Since we used a linear classifier to discover a non-linear
separating manifold, we had to expand our training set manually to include the
needed quadratic features, which could be easily extracted from the existing train-
ing data. Specifically, instead of the vector x = (x1, ..., Z;), we used the enhanced
vector X' = (X1, ., Ty, T3,y T2, T1T2, -+ Tip—1Tsn). The SVM classifier
took more than a week to train, showing that classifiers with superlinear complex-
ity are not suitable for data sets of this size. (The running time remained high
even after training on a small random sample of the training set.) Furthermore,
even after this long training time, the resulting classifier was a trivial classifier that
always predicted U = 1 or U = 0, depending on the class distribution in the data
set. Even after long efforts to use smaller data sets for training, the behavior of
SVMs remained unsatisfactory and the training time remained prohibitively high.
Based on these results, we abandoned the idea of using SVMs.

The next step was to use a Naive Bayes classifier [Duda et al. 2000], an extremely
efficient classifier with time complexity linear in the size of the training set (i.e., a
single scan over the training data suffices for training the classifier). Since Naive
Bayes is a linear classifier, we again expanded our training set manually to include
the needed quadratic features, which could be easily extracted from the existing
training data. As we mentioned above, we use leave-one-out cross-validation to
determine the update schedule for our content summaries.
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One important shortcoming of the classification-based approach for scheduling
updates is its inability to adapt to different levels of update resources. The only
way that we can increase or decrease the required resources is to modify the change
sensitivity threshold 7. This is in contrast with the survival analysis approach,
which can adapt to the available resources even without modifying the change
sensitivity threshold for the underlying databases.

5.3 Sampling-based Method for Updating Content Summaries

Cho and Ntoulas [2002] presented an approach for defining a recrawl schedule for
web sites, with the goal of keeping a web search engine index up to date, subject
to available “update resources.” Their approach randomly samples a few pages
from every web site to estimate the fraction of changed pages in each site since the
last crawl. Based on these estimates, a greedy recrawl schedule is established, as
follows. First, the site with the largest number of changed pages is crawled, followed
by the second-most-changed site, and so on, until all available update resources are
exhausted. We will refer to this update policy as Sampling.

The Sampling policy has been shown to work well to maintain a centralized index
of the web. Unfortunately, this policy can only be applied to crawlable databases,
because it assumes that we can retrieve the same set of documents repeatedly
during sampling, which cannot be guaranteed for non-crawlable databases. In the
following section, we will then use Sampling only for the complete content summary
experiments, where we assume that the databases are crawlable (see Section 2).
Throughout the experiments, and based on the analysis of [Cho and Ntoulas 2002],
we use samples consisting of 20 documents.

6. EXPERIMENTAL RESULTS

We now report the results of the experimental comparison between the variations
of our survival analysis approach against the alternative techniques. Section 6.1
describes the quality of the content summaries, while Section 6.2 focuses on the
accuracy of the update schedules generated by the different techniques.

6.1 Quality of Content Summaries

We examine each update policy by measuring the average (weighted and unweighted)
precision and recall, as well as the average KL divergence of the generated approz-
imate summaries. For the survival analysis approaches and for the Sampling tech-
nique, we consider different values of T', where T is the average number of weeks
between updates. The Bayes technique, as mentioned in Section 5.2, does not
have a mechanism for adapting to different resource availability scenarios and the
only way to increase or decrease its resource needs is to vary the change sensitivity
threshold 7.

6.1.1 Recall. Our recall measurements indicate that the survival analysis ap-
proaches perform better than the alternatives. Figure 6 shows the average weighted
and unweighted recall of the complete content summaries obtained under the schedul-
ing policies that we consider. Specifically, our survival analysis techniques are al-
ways significantly better than the Naive policy, and outperform the Sampling policy
for T' < 30. For large values of T', we observe that Sampling performs roughly as
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Fig. 6. The weighted and unweighted recall of “old” complete content summaries with respect to
the “current” ones, as a function of the time T between updates and averaged over each database
D in the data set, for different scheduling policies (7 = 0.5).
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Fig. 7. The weighted and unweighted recall of “old” @BS content summaries with respect to the
“current” ones, as a function of the time T between updates and averaged over each database D
in the data set, for different scheduling policies (7 = 0.5).

well as our survival analysis policies. The high performance of Sampling for large
T values is mainly due to the fact that a small number of databases are responsi-
ble for the majority of the overall changes. By design, Sampling dedicates all of
its resources to the small set of databases that have changed most, so it is able
to capture the majority of the changes coming from few databases even when T is
large. Unfortunately, as T' gets smaller, Sampling fails to allocate the additional re-
sources efficiently to the remaining databases; even if two databases have similarly
changed, Sampling still dedicates all remaining resources only to one of them first.
Due to this inefficiency, Sampling does not show much performance improvement
as T gets smaller, until it can update all databases frequently. The Bayes approach
results in a policy that, on average, updates databases every 7 weeks (i.e., T = 7).
The results for Bayes are consistently worse than those for the survival analysis
alternatives at this level of resource constraints: the average weighted recall under
Bayes is 0.902+0.025 and the average unweighted recall under Bayes is 0.83+0.03.
The Bayes approach only outperforms Sampling, which does not perform well for
low values of T', as discussed above.

Figure 7 shows the average weighted and unweighted recall of the approximate
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to the “current” ones, as a function of the time T" between updates and averaged over each database
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Fig. 9. The weighted and unweighted precision of “old” @QBS content summaries with respect to
the “current” ones, as a function of the time T between updates and averaged over each database
D in the data set, for different scheduling policies (7 = 0.5).

QBS summaries!® for the survival analysis policies, Naive, and Bayes. (As discussed
above, we do not include results for Sampling, since Sampling requires the ability
to retrieve the same set of documents at each sampling instance, which cannot
be guaranteed for non-crawlable databases.) The results indicate that, by using
any of our survival analysis policies, we can keep the recall metrics almost stable,
independently of the resource constraints. We also observe that the alternative
approaches, namely Naive and Bayes, perform consistently worse than our survival
analysis techniques.

6.1.2  Precision. Our precision measurements for complete content summaries
(Figure 8) indicate that our survival analysis approach works significantly better
than the Bayes alternative. Our survival analysis techniques are also significantly
better than Naive for all values of T' > 15. Sampling has lower precision than the
survival analysis approach for small values of T', while the Sampling precision is
higher when T" > 30. In all cases, though, the differences between Sampling and
our survival analysis techniques are not statistically significant, showing that the

15Figure 15 in Appendix B contains the respective results for FPS content summaries.
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techniques are equivalent in terms of precision. However, as shown above, Sampling
performs worse than survival analysis under the recall and KL metrics.

Figure 9 shows the average weighted and unweighted precision of the @BS sum-
maries.'® Again, our three survival analysis scheduling policies demonstrate simi-
lar'” performance, and they are all significantly better than Naive and Bayes. The
difference between the survival analysis policies and Naive is statistically signif-
icant, even when the summaries are updated relatively frequently (i.e., even for
small values of T').

6.1.3 KL-Divergence. The measurements of KL-divergence for different schedul-
ing policies reveal, again, that our survival analysis techniques can keep the average
KL divergence of the approximate summaries almost constant even for a large num-
ber of weeks T' between updates. Figure 10(a) shows that, for small values of T,
Sampling is worse than our survival analysis techniques and is almost statistically
equivalent to Naive. For larger values of T, the performance of Sampling im-
proves; for T' > 35, Sampling behaves similarly to the survival analysis techniques.
However, our analysis shows that Sampling never outperforms our survival anal-
ysis techniques, which can also handle non-crawlable databases and work better
for small values of T' as well. The Bayes approach performs well for this metric,
achieving performance similar to our policies. Nevertheless, Bayes lacks the abil-
ity to adjust automatically to environments with constraint resources. The only
way to change the performance requirements of Bayes is to change the value of
the change sensitivity threshold 7 (for details, see below). Finally, Figure 10(b)
shows the results for QBS content summaries.!® The results are consistent with
the behavior that we observed for complete content summaries. The only difference
is the increased variance for the Bayes method, which indicates that our survival
analysis policies are preferable, since they offer the same average performance but
with a higher level of consistency across databases.

6.2 Precision of Update Operations

A scheduled update for a content summary might be unnecessary if the underlying
database has not changed “sufficiently” since the time the summary was derived.
Unnecessary content summary updates are of course undesirable, since they need-
lessly overload the databases. We now discuss how to characterize our update
schedules in terms of whether their updates are necessary or not.

Consider a database D whose content summary was computed ¢ weeks into the
past. An update to this content summary is precise if the survival time of D is
smaller than ¢, using Definition 4.1. In other words, we say that an update for D
is precise if database D (and, correspondingly, its complete content summary; see
Definition 4.1) has changed sufficiently in the ¢ weeks since its content summary

16Figure 16 in Appendix B contains the respective results for FPS content summaries.

17 The performance is statistically equivalent for the schedules based on “size and 7” and “k1 and
7”7 even at the individual database level, according to the Wilcoxon signed rank test [Marques
De S4 2003] (p < 0.0001). The performance of these two scheduling policies is not statistically
equivalent with “k1, size, and 7”7 scheduling at the individual database level, but it is when we
look at the average performance.

18Figure 17 in Appendix B contains the respective results for FPS content summaries.
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Fig. 10. The KL divergence of “old” complete and @QBS content summaries with respect to the
“current” ones, as a function of the time 7" between updates and averaged over each database D
in the data set, for different scheduling policies (7 = 0.5).

was last computed.

We measured the precision of the update operations as the ratio of the precise
updates over the total number of updates performed. Figures 11, 12, and 13 show
the precision results as a function of T' and for 7 = 0.5, where the k1 feature is
computed using CMPL, BS, and FPS summaries, respectively. For this value of 7
and for the databases in our data set, low values of T (i.e., T' < 10) are unnecessary,
since then the databases are contacted too often and before they have changed
sufficiently. A decrease in the value of 7 causes the curves to “move” towards the
left: the summaries change more frequently and then the updates become more
precise. For example, for 7 = 0.25 and T = 10, precision is approximately 40%,
while for T' = 25, it is approximately 80%.

Interestingly, the update precision can be predicted analytically, using the target
function S described in Section 4.4. The average probability of survival (our target
function) corresponds in principle to the percentage of non-precise updates. This
result is intuitive, since our target function essentially encodes the probability that
the summary of a database has changed. Therefore, during scheduling, it is possible
to select a value of T that achieves (approximately) the desired update precision.

The results in Figures 11, 12, and 13 indicate that the Naive policy —as expected—
has worse update precision than the other policies. Also, Figure 13 shows that the
policy that uses FPS to compute k1 and does not use the size feature has signifi-
cantly higher precision than the other techniques: the k; feature computed using
FPS is then a better predictor than the other variables, verifying the results of Cox
regression, which returned a high weight for 3, for the given policy (see Table IV).

As we mentioned in Section 5.2, the Bayes policy cannot adapt to the level of
available resources. The classifier predictions depend only on the age of the sum-
maries and hence the used resources vary from week to week. Figure 14 shows the
number of updates performed by the Bayes policy when the k1 feature is computed
using CMPL summaries, for different values of the change sensitivity threshold 7.
(Figures 18 and 19, in Appendix B, show the respective results when the x, feature
is computed using @BS and FPS summaries, respectively.) The results show that
the number of updates can vary greatly from week to week. Hence, to accommo-
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Fig. 14. The number of updates performed by the Bayes policy in different weeks, for different
values of the change sensitivity threshold 7 and for complete content summaries.

date the resource requirements of Bayes, we either need to allocate the maximum
required resources or we should adopt a queuing policy, to delay updates for weeks
in which the resource requirements are reduced. If we adopt a queuing policy, the
summaries will be updated slightly later than expected. This will result in a slight
deterioration of the content summary quality, which is already significantly lower
than the quality of the summaries under the policies that use our survival analysis
modeling.

6.3 Conclusion

As a general conclusion, we have observed that the three scheduling policies that are
based on survival analysis allow for good quality of the extracted content summaries,
even under strict constraints on the allowable update frequency. Our techniques
work for both hidden-web and crawlable databases. For crawlable databases, our
techniques outperform Sampling, an existing state-of-the-art update technique for
a different task. Additionally, all techniques for both hidden-web and crawlable
databases are significantly better than the other two alternatives that we studied,
namely Bayes and Naive.

An interesting observation is that our three survival analysis policies demonstrate
minimal differences in performance, and these differences are not statistically sig-
nificant. This indicates that it is possible to work with a smaller set of features,
without decreasing performance. For example, we may ignore the evolution feature
k1 and avoid computing the history of a database, which involves frequent sam-
pling of the database for a (small) period of time. We should also note that our
survival analysis approach helps predict the precision of the update operations, in
turn allowing the metasearcher to tune the update frequency to efficiently keep the
content summaries up to date.

7. RELATED WORK

This article expands our earlier paper [Ipeirotis et al. 2005] on modeling content
summary changes. In [Ipeirotis et al. 2005], we focused only on hidden-web data-
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bases. In this article, we significantly expand the scope of our study to include the
important family of crawlable web sites as well. Our Cox-regression approach for
crawlable web sites significantly outperforms an existing state-of-the-art technique
for scheduling updates of web search engine indexes [Cho and Ntoulas 2002]. Fur-
thermore, in our previous study [Ipeirotis et al. 2005], we considered only the evo-
lution of summaries extracted through a randomized query-based sampling (QBS)
algorithm [Callan and Connell 2001]. One key characteristic of the QBS algorithm
derives from its randomized nature: each execution of @BS results in a different
summary, even if the underlying database is static. In this article, we now also
study the evolution of summaries extracted through a state-of-the-art determinis-
tic sampling algorithm, namely the focused probing algorithm from [Ipeirotis and
Gravano 2002], FPS. The FPS algorithm repeatedly derives the same summary of
a database if the database remains unchanged. Although we observe that the FPS
samples are more stable than their @BS counterparts, we show that the quality of
the FPS summaries still deteriorates over time and that our scheduling approach
can improve the quality of FPS summaries as well. Finally, in this article we de-
velop and evaluate a machine learning approach for updating content summaries.
Since Cox-regression exploits only a specific kind of training, an open research ques-
tion stemming from our previous work was whether alternative machine learning
approaches could better exploit the available training data and outperform our
survival analysis approach. In a thorough experimental comparison in Section 6,
we showed that classification-based approaches for scheduling updates do not work
well and we provided substantial evidence for the shortcomings of such approaches
in terms of both efficiency and effectiveness.

Beyond [Ipeirotis et al. 2005], we are not aware of other prior work that studied
the evolution of text database content summaries over time or how to schedule
updates to the content summaries to maintain their freshness. However, several
previous efforts have focused on various aspects of the evolution of the web and of
the related problem of web crawling. Ntoulas et al. [2004] studied the changes of
individual web pages, using the same data set as we did in this paper. Ntoulas et
al. concluded that 5% of new content (measured in “shingles”) is introduced in an
average week in all pages as a whole. Additionally, Ntoulas et al. observed a strong
correlation between the past and future rates of change of a web page and showed
that this correlation might be used to predict future changes of a page. In this
article, we investigated this high-level idea formally through survival analysis and
modeled the change behavior of web databases using the Cox proportional hazard
model. We then used this model for designing the optimal scheduling algorithm
for summary updates. Lim et al. [2001] and Fetterly et al. [2003] presented pioneer
measurements of the degree of change of web pages over time, where change was
measured using the edit distance [Lim et al. 2001] or the number of changed “shin-
gles” [Fetterly et al. 2003] over successive versions of the web pages. Other studies
of web evolution include [Brewington and Cybenko 2000a; Cho and Garcia-Molina
2000; Wills and Mikhailov 1999; Douglis et al. 1997; Brewington and Cybenko
2000b], and focus on issues that are largely orthogonal to our work, such as page
modification rates and times, estimation of the change frequencies for the web pages,
and so on.
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Web crawling has attracted a substantial amount of work over the last few years.
In particular, references [Cho et al. 2000; Coffman, Jr. et al. 1998; Edwards et al.
2001; Cho and Ntoulas 2002] study how a crawler should download pages to main-
tain its local copy of the web up to date. Assuming that the crawler knows the
exact change frequency of the pages, Cho et al. [2000] and Coffman, Jr. et al. [1998]
present optimal page downloading algorithms, while Edwards et al. [2001] propose
an algorithm based on linear programming. Cho and Ntoulas [2002] propose the
Sampling technique (see Section 5.3) for scheduling updates of web search engine
indexes. Improved update policies for search engines include [Pandey and Olston
2005] and [Wolf et al. 2002]. The improvement that these policies exhibit over [Cho
and Ntoulas 2002] is mainly due to optimizations that exploit particular properties
of search-engine ranking functions. Since these optimizations are not directly ap-
plicable for content-summary updates, we compare our survival analysis techniques
against [Cho and Ntoulas 2002], which assumes a more generic change metric. Our
results in Section 6 show that our survival analysis policies outperform the Sampling
approach for scheduling content summary updates for crawlable web sites.

Olston and Widom [2002] proposed a new algorithm for cache synchronization
in which data sources notify caches of important changes. The definition of “di-
vergence” or “change” in [Olston and Widom 2002] is quite general and can be
applied to our context. However, the proposed push model is not applicable when
data sources are “uncooperative” and do not inform others of their changes, as is
often the case on the web.

8. CONCLUSIONS

In this article, we presented a study —over 152 real web databases— of the effect
of time on the database content summaries on which metasearchers rely to select
appropriate databases where to evaluate keyword queries. We examined the evo-
lution of both complete and approximate content summaries. We showed that the
quality of the content summaries deteriorates over time as the underlying data-
bases change, which highlights the importance of update strategies for refreshing
the content summaries. We described how to use survival analysis techniques, in
particular how to exploit the Cox proportional hazards regression model, for this
update problem. We showed that a short change history of a database can be
used to predict the rate of change of its content summary in the future, and that
summaries of larger databases tend to change faster than summaries of smaller
databases. Based on the results of our analysis, we suggested update strategies
that work well in a resource-constrained environment. Our techniques adapt to
the change sensitivity desired for each database, and contact databases selectively
—as needed— to keep the summaries up to date while not exceeding the resource
constraints. Finally, our comparative evaluation shows that our survival analysis
techniques significantly outperform an optimized machine learning approach and
the current state-of-the-art technique for scheduling updates of web search engine
indexes.
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A. APPENDIX: DERIVING FEATURES FOR CLASSIFICATION-BASED UPDATE
SCHEDULING

The survival function S;(t) is the probability that the content summary of database
D; has not changed at time ¢. As we discussed in Section 4.3, S;(t) is computed as:

Si(t) = exp (=N\;it7¥™),  with (6a)

i = Adom (|Di|? - exp (Bukii) - exp (B-7:)) (6b)

We saw in Section 5 how to cast the core of our content summary update problem
as a binary classification task. In this formulation, our goal is to predict when
U(D;,t1,t2) = 1 for a database D;, meaning that at time to the content summary
of database D; extracted at time t; should be updated.

When the cost of false positives (wrongly predicting U = 1 when in reality U = 0)
is equal to the cost of false negatives (wrongly predicting U = 0 when in reality
U = 1), then an optimal classifier predicts U = 1 when 5;(t) < 0.5 and U = 0 when
Si(t) > 0.5. Therefore, the optimal manifold for separating the two classes is given
by the equation:

Si(t) = 0.5 =
exp (—Ajt7dem) = 0.5 =
AitTdemn = In2 =
In(Ai) + Ydom In(t) = In(In2)
From Equation 3b, X\; = Agom (| D;

Bs . exp (Brkis) - exp (ﬂ.,-’i'i)) and:

In(Agom (|DZ s . exp (Bik1i) - €xp (ﬁTTZD) + Ydom In(t) = In(In2) =
1n()\dom,) + /85 1n(|DzD + ﬂnﬁli + ﬂTTi + Ydom ln(t) = ln(ln 2)
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Since the values of Agom and vgom depend on the value of the domain feature, which
we express as a set of dummy binary variables for training the classifier, we set:

Adom = LcomAcom + LeduMredu + LgovAgov + LorgAorg + ImscAmse
Yaom = LcomVeom + LeduYedu + LgovYgov + LorgYorg + ImscVmse

Since only one of the binary variables can be equal to 1 for a database, we have:
I (Adom) = Leom I(Acom ) +edu In(Acau) +Lgov I(Agov) +Lorg I(Aorg) +Imse In(Amse)

Now we have:

Leom In(Acom) + Leau In(Aedu) + Lgov In(Agov) + Lorg I(Aorg) + Lmsc In(Amse)
+LeomYeomIn(t) + LeduVeduln(t) + LgovVgouIn(t) + LorgYorgIn(t) + Iimsc¥mseln(t)
+08sIn(|Ds]) + Bukri + Br7i + In(1/In 2)

=0

(7)
The underlined terms are (functions of) features in the training vectors. A ma-
chine learning algorithm that computes the separating manifold should estimate
the values of all the non-underlined terms, which correspond to the weights that a
machine learning algorithm assigns to these features.

From Equation 7, we can see that a linear classifier does not suffice for separating
the two classes optimally. First of all, features In(|D;|) and In(¢) do not appear
among the original features. We could attempt to bypass this problem by adding
these values as additional features in the training set. However, the terms I.7.In(t)
involve a product of features, making the manifold a non-linear surface, which is
impossible to estimate with a linear classifier. Alternatively, we could add these
features manually in the training set and create an augmented feature space. In
this augmented feature space, the separating manifold is a hyperplane and a linear
classifier can separate the two classes.

B. APPENDIX: ADDITIONAL EXPERIMENTAL RESULTS

In this section, we examine the effect of the different update policies on the quality of
the approximate FPS content summaries. We measure the average (weighted and
unweighted) recall (Figure 15), the average (weighted and unweighted) precision
(Figure 16), as well as the average KL divergence (Figure 17) of the generated
summaries. Furthermore, we present the number of updates performed by the Bayes
policy when the k1 feature is computed using QBS and FPS summaries (Figures 18
and 19, respectively) for different values of the change sensitivity threshold .
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“current” ones, as a function of the time T' between updates and averaged over each database D
in the data set, for different scheduling policies (7 = 0.5).
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Fig. 18. The number of updates performed by the Bayes policy in different weeks, for different
values of the change sensitivity threshold 7 and for QBS summaries.
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Fig. 19. The number of updates performed by the Bayes policy in different weeks, for different
values of the change sensitivity threshold 7 and for FPS summaries.
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