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ABSTRACT
Probabilistic topic models, such as PLSA and LDA, are
gaining popularity in many fields due to their high-quality
results. Unfortunately, existing topic models suffer from
two drawbacks: (1) model complexity and (2) disjoint topic
groups. That is, when a topic model involves multiple enti-
ties (such as authors, papers, conferences, and institutions)
and they are connected through multiple relationships, the
model becomes too difficult to analyze and often leads to in-
tractable solutions. Also, different entity types are classified
into disjoint topic groups that are not directly comparable,
so it is difficult to see whether heterogeneous entities (such
as authors and conferences) are on the same topic or not
(e.g., are Rakesh Agrawal and KDD related to the same
topic?).

In this paper, we propose a novel universal topic frame-
work (UniZ) that addresses these two drawbacks using“prior
topic incorporation.” Since our framework enables represen-
tation of heterogeneous entities in a single universal topic
space, all entities can be directly compared within the same
topic space. In addition, UniZ breaks complex models into
much smaller units, learns the topic group of each entity
from the smaller units, and then propagates the learned top-
ics to others. This way, it leverages all the available signals
without introducing significant computational complexity,
enabling a richer representation of entities and highly accu-
rate results.

In a widely-used DBLP dataset prediction problem, our
approach achieves the best prediction performance over many
state-of-the-art methods. We also demonstrate practical po-
tential of our approach with search logs from a commercial
search engine.

Categories and Subject Descriptors
H.2.8 [Information Systems Applications]: Database
Applications—Data mining ; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Clus-
tering
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1. INTRODUCTION
The problem with topic modeling is that it is usually lim-

ited to a few entity types and not good at handling multiple
entity types, which is quite common in real-world applica-
tions. For example, consider a topic model for a web graph
depicted in Figure 1(b). This model tries to capture web
users (U) who issue queries (Q) that contain multiple terms
(T), visit relevant web documents (D), and click ads (A).
Also, the web users follow other web users, and the web doc-
uments have links to other web documents. Unfortunately, a
topic model of this complexity is often intractable for anal-
ysis. To address this complexity, we may simply decom-
pose the model into multiple segments where each segment
contains a subset of entity types, and analyze each segment
separately with standard topic models (such as Probabilistic
Latent Semantic Analysis (PLSA) [12] and Latent Dirichlet
Allocation (LDA) [3]). For example, in Figure 1(b), we may
apply LDA to the follow edges between the two U nodes and
obtain the topic groups of U. Similarly, we can apply LDA
to other edges (such as the click edges between U and A) to
obtain estimate of each node’s topic groups.

The problem with this approach is that the learned topics
from each segment are not directly comparable. That is, the
topic No. 1 obtained from the follow edges is totally different
from the topic No. 1 obtained from the click edges. In fact,
there is no guarantee that topic groups obtained from two
LDA applications will be comparable. In principle, when
there are N segments, there are N different topic spaces
that are completely independent of each other.

In this paper, we propose a novel universal topic frame-
work which enables representation of heterogeneous entities
in a single universal topic space. Our approach is based on
an assumption that there is a hidden interest (topic) for ev-
ery relationship (edge) between two entities. Based on this
assumption, we extend the follow-edge generative model [5]
developed for social graph mining, and apply topic modeling
to any type of edges between any type of entities.

To analyze arbitrarily complex topic models, we take an
incremental approach, where we decompose a model into
smaller segments, learn topic groups from one segment, and
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(a) DBLP graph

(b) Simple Web graph

Figure 1: Examples of complex graphs

propagate the learned topic groups to other segments. We
make it possible to incorporate and combine the topic groups
from distinct segments using an approach called “prior topic
incorporation”. More precisely, we propose two extensions
to a simple topic model, mixture model and dual-prior model,
which can effectively incorporate topics learned from the en-
tities and relationships from other segments to the current
segment. This prior topic incorporation enables the topics to
be coherent across all entities and relationships in a complex
graph. By representing all the entities in the universal topic
space, our framework provides the following benefits: (1)
direct topical similarity comparison between any heteroge-
neous entities (e.g., using simple cosine similarity), (2) richer
representations of entities by leveraging all available sig-
nals (e.g., representing a user by both users she follows and
movies she watches), and (3) prediction/recommendation
performance improvements. Although the incremental ap-
proach was initially introduced in [9], where authors first
learn topics with PLSA and propagate the learned topics
with Expectation Maximization (EM), our approach incor-
porates previously learned topics more seamlessly within the
LDA framework and produces improved performance.

We evaluate the effectiveness of our approach with many
state-of-the-art methods using the widely-used Digital Bib-
liography & Library Project (DBLP) 1 dataset. We also
demonstrate a practical potential application of our approach
with search logs collected from a commercial search engine,
Bing 2.

2. UNIVERSAL TOPIC FRAMEWORK
We propose a novel universal topic framework called“UniZ”.

Rather than building a complex generative model for a com-
plex graph, which easily becomes intractable as the number
of entity types increases, we take a “divide and conquer”
strategy and decompose the graph into multiple segments
so that we can apply LDA to each segment. However, a
simple divide and conquer analysis generates incomparable
topic groups, where the topic No. 1 in one segment (e.g. on

1http://www.informatik.uni-trier.de/ ley/db/
2http://www.bing.com/

Figure 2: Example of edge labeling

music) is totally different from the topic No. 1 in another
segment (e.g. on politics). In this section, we propose effec-
tive methods to overcome the topic mismatch problem with
this simple divide and conquer strategy. We also discuss
some major issues in our proposed methods. Before that,
we first justify how we can apply topic models to any types
of edges (not limited to textual edges or social follow edges)
so that we can freely divide the complex graph.

2.1 Edge Generative Model
We extend the follow-edge generative model [5] to differ-

ent types of edges (including follow edges) between different
entities. The assumption behind our approach is that every
edge (relationship) is generated because of a hidden interest
between two entities regardless of their types 3. For ex-
ample, let’s say Alice is interested in K-pop (Korean pop).
She recently heard about a song Gangnam Style from her
friend and types a query gangnam style in a search engine
to get more information about the song. From a search re-
sults page, she finds out the singer is Psy and clicks Psy’s
Twitter4 page and follows him in Twitter. Now, we can
represent her actions in a single graph as in Figure 2 having
three different types of relationships (issues, visits, and fol-
lows) among four entities of three different types. The color
bars next to each entity denote an interest distribution of
that entity. In this example, she took all these actions (not
only following) because she is interested in K-pop. If we
know the color (interest or topic) distribution of each entity
5, we may probabilistically label each edge with an appropri-
ate color (in this example red, which denotes K-pop). Also,
the color distribution of each entity is determined by count-
ing the number of colored edges attached to the entity and
is updated after coloring newly attached edges. If we con-
tinue this cyclic process, we can label all the edges in a graph
with appropriate colors in a single palette (i.e., a single topic
space). In this way, heterogeneous edges and entities can be
represented in a single universal topic space.

Now, we formalize our approach using the framework of
LDA [3]. For simplicity, when there is an edge, we denote
the starting entity as a reader and the ending entity as a
writer as in the follow-edge generative model. When reader
r generates an edge to writer w, she first picks interest z
(topic) from a distribution p(z|r)(θ), and then picks a writer
from a distribution p(w|z)(φ). This process is the same with
the term selection process for a document in LDA. Thus, we

3This assumption holds only for an edge whose two con-
nected entities are relevant each other (e.g., causal relation-
ship, containing relationship, following relationship, etc). If
an edge is randomly generated or generated by a spammer
(to every other entities), this assumption does not hold.
4http://www.twitter.com/
5More precisely, its importance in an interest group as well.
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(a) Mixture model (b) Dual-prior model

Figure 3: Proposed topic models

formulate the probability of a specific reader a to follow a
specific writer b based on a certain interest z (or za,b) given
all the other conditions as follows:

p(za,b|·) = p(z|ra)p(wa,b|z), (1)

where · denotes values of all the other random variables. We
use wa,b to indicate an edge from the reader a to the writer
b. By considering Dirichlet priors α and β, constraining θ
and φ, Equation (1) can be represented as follows:

p(za,b|·) ∝
∫
p(z|θ)p(θ|α)dθ ×

∫
p(wa,b|z, φ)p(φ|β)dφ. (2)

This formula leads to a collapsed Gibbs sampling equation
[17]:

p(za,b|·) ∝
R
−(a,b)
a,za,b + αza,b

R
−(a,b)
a,∗ + α∗

×
W
−(a,b)
wa,b,za,b + βwa,b

W
−(a,b)
∗,za,b

+ β∗
, (3)

where R denotes an association count matrix between read-
ers and topics and W denotes an association count matrix
between writers and topics. The R and W has readers and
writers in its rows respectively, and topics in its columns.
Thus, Ra,za,b denotes the element of the row a and the col-
umn za,b, which is the number of associations between the
reader a and the topic za,b. The superscript −(a, b) means
that the number does not include the topic assigned to the
edge from the reader a to the writer b. We use the symbol ∗
to denote a summation over all possible subscript variables.
For example, α∗ =

∑
z′ αz′ and W∗,za,b =

∑
w′ Ww′,za,b

.
In a Gibbs-sampling-based inference, as the number of

iterations increases, eachR andW gets a better estimate of a
joint probability distribution of reader and topic, p(r, z), and
a joint probability distribution of writer and topic, p(w, z),
respectively. In a sizable number of iterations, R is used to
get p(z|r) after being normalized by row with a prior α, and
W is used to get p(w|z) after being normalized by column
with a prior β, as noted in Equation (3). Thus, we may say
that the matrices (R and W ) contain topics learned from
the Gibbs sampling inference process.

2.2 Incorporating Learned Topics
As explained in the previous section, the learned topics

from Gibbs-sampling-based LDA are stored in the reader-
topic association count matrix R, and the writer-topic asso-
ciation count matrix W . When we divide a complex graph
into multiple segments, we get a pair of R and W per seg-
ment. However, each pair is totally different from each other

and there is no easy way to combine these multiple pairs.
Thus, we need an “incremental” approach of learning initial
topics from one segment and incorporate these “old topics”
when we learn “new topics” for another segment. We call
this approach “prior topic incorporation” (or simply “topic
incorporation”) and propose two effective topic incorpora-
tion models: a mixture model and a dual-prior model.

2.2.1 Mixture Model
Since we want the new topics to be coherent to the old

topics, one possible way of incorporating the old topics is
to use a mixture representation of new topics and old topics.
We modify the polya-urn model [1] to pick a topic or a writer
from a linear combination of the old and new topic distri-
butions. The original polya-urn model was developed to lin-
early combine a local and a global topic distribution. Now,
the Gibbs sampling equation for this approach becomes:

p(za,b|·) ∝ (
R
−(a,b)
a,za,b

R
−(a,b)
a,∗

+ λA

Aa,za,b + αza,b

Aa,∗ + α∗
)

× (
W
−(a,b)
wa,b,za,b

W
−(a,b)
∗,za,b

+ λB

Bwa,b,za,b + βwa,b

B∗,za,b + β∗
), (4)

where A/B is the old reader/writer-topic association count
matrix (previously learned), andR/W is the new reader/writer-
topic association count matrix (to be learned), respectively.
There are two scalar weights λA and λB , which are used as
concentration parameters. If λ is high, the new topic distri-
bution becomes similar to the old one. If λ goes to zero, it
degenerates to LDA. Figure 3(a) depicts a plate notation of
this model. We call this the mixture model.

2.2.2 Dual-Prior Model
Another way of incorporating previously learned topics

is to use them as “priors”. Consider a topic count matrix
B, which is learned from relationships between papers and
terms in Figure 1(a) and has papers in its rows and topics in
its columns. If Bp1,z1 is relatively higher than other values
in the row p1 of the matrix, it suggests that paper p1 is very
likely about topic z1 (e.g., data mining). We can leverage
this learned information when we infer topics for relation-
ships between authors and papers. If author a1 wrote the
paper p1, we can infer that the author a1 is interested in
z1 (data mining). In this way, topics learned from one type
of relationships can be used as priors when we infer topics
for a different type of relationships. One benefit of LDA is
that we can seamlessly incorporate the priors in its equation.
Since α and β in Equation (3) are priors, we can extend the
equation to:

p(za,b|·) ∝
R
−(a,b)
a,za,b + λA ·Aa,za,b + αza,b

R
−(a,b)
a,∗ + λA ·Aa,∗ + α∗

×
W
−(a,b)
wa,b,za,b + λB ·Bwa,b,za,b + βwa,b

W
−(a,b)
∗,za,b

+ λB ·B∗,za,b + β∗
, (5)

where scalar weights λA and λB are tunable parameters to
normalize the magnitude of different types of relationships,
because the number of edges may be largely different among
relationships. As there are two types of priors, we call this
a dual-prior model and depict its plate notation in Figure
3(b). The dual-prior model also degenerates to LDA when
λ goes to zero.
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Note that these two models are originated from LDA but
can work (as a framework) with any topic models deliver-
ing topic association count matrices. Especially, the mixture
model can also work with topic models delivering only con-
ditional distributions (p(z|r) and p(w|z)) without joint dis-
tributions (p(r, z) and p(w, z), which can be produced from
the raw topic count matrices). For example, when there are
two types of edges EA and EB , and PLSA performs best
for EA and LDA performs best for EB , it is possible to ini-
tially learn topics from EA using PLSA and incorporate the
learned topics when we learn topics for EB using LDA 6. In
this way, different types of edges can be treated differently.

2.3 Symmetry and Topic Incorporation Order
For proper topic incorporation, there are two things to be

considered. We discuss them in this section.
Symmetry : different from textual corpora consisting of

asymmetric relationships from documents to terms, there
can be many types of symmetric relationships in complex
graphs. For example, query-page relationships can be con-
sidered in both directions: query-page or page-query. Thus,
we initially tried to derive Gibbs sampling equations for the
symmetric model as well for the mixture model and the dual-
prior model. However, both the Gibbs sampling equations
are equivalent as mentioned in [12]:

p(za,b|·) = p(z|ra)p(wa,b|z)
∝ p(ra)p(z|ra)p(wa,b|z) = p(z)p(ra|z)p(wa,b|z).

The difference between the asymmetric model and the sym-
metric model is in the normalization stage after estimating
the association count matrices, R and W . While the asym-
metric model gets p(z|r) and p(w|z), the symmetric model
gets p(z), p(r|z) and p(w|z), from those matrices. As we
incorporate those matrices instead of the conditional distri-
butions in the topic incorporation, we do not need to care
about symmetry for the topic incorporation.

Incorporation order : there are many possible orders in
the topic incorporation. For example, for the DBLP dataset
shown in Figure 1(a), we can consider 6 possible incorpora-
tion orders: DT→UD→V D, DT→V D→UD, UD→V D→DT ,
UD→DT→V D, V D→UD→DT , and V D→DT→UD. In
terms of a generative model, the order UD→DT→V D seems
most reasonable and is also chronologically correct. How-
ever, for a complex graph like a web graph in Figure 1(b),
it is not easy to find an appropriate chronological order be-
cause each edge can be generated without any specific or-
der. Thus, instead of the chronological rule, we came up
with two effective rules for deciding the incorporation order:
(1) denser 7 edges to sparser edges, and (2) textual edges
to non-textual edges. Since later topic inferences are largely
affected by early-set topics, it is important to select appro-
priate initial edge types to start with. The denser edges
obviously form better topics, and so do the textual edges
because they allow multiple edges between each document
and term 8. We will show experimental results on the incor-

6The later topic model should be LDA in our current models.
7We measured density by simply dividing the number of
edges by the multiplication of the number of unique readers
and that of writers.
8If multiple edges are allowed, they can be used to mea-
sure the strength of the relationship. However, the non-
textual edges sometimes do not allow multiple edges between
a reader and a writer. For example, a reader cannot follow

poration order in Section 3.1.2.

3. EXPERIMENTS AND ANALYSES
We evaluate our models with two types of datasets: a bib-

liographic dataset from DBLP and online search logs from a
commercial search engine, Bing. The DBLP dataset is used
to fairly evaluate our models with previous state-of-the-art
models and online search logs are used to demonstrate use-
fulness of our approach in a practical environment.

3.1 DBLP Experiment
In this section, we report the prediction accuracy of our

models with the DBLP dataset. Through this experiment,
we show the followings: (1) the dual-prior model performs
better than the mixture model, (2) our dual-prior model
achieves the best prediction accuracy, and (3) there are more
effective topic incorporation orders.

3.1.1 Dataset
The DBLP dataset has been widely used in evaluating

many prediction algorithms. As depicted in Figure 1(a), it
consists of four types of entities and three types of relation-
ships among them. We use the same DBLP dataset used
in [6,9]. The numbers of entities and relationships are listed
in the column DBLP of Table 1. Moreover, 4, 057 authors,
100 papers, and all 20 venues are labeled with one of four
categories: database (DB), data mining (DM), information
retrieval (IR), and artificial intelligence (AI). We evaluate
our models based on the prediction accuracy on these la-
beled entities.

3.1.2 Accuracy Analysis
To fairly evaluate our models, we follow the same ap-

proach in [6,9]. We compare the prediction accuracy of our
models to the following state-of-the-art methods:

• Nonnegative Matrix Factorization (NMF) [13]

• Probabilistic Latent Semantic Analysis (PLSA) [12]

• Laplacian Probabilistic Latent Semantic Indexing (Lap-
PLSI) [4]

• Latent Dirichlet Allocation (LDA) [3]

• Author-Topic Model (ATM) [18]

• Ranking-based Clustering (NetClus) [19]

• Topic Model with Biased Propagation (TMBP) [9]

• Focused Topic Model (FTM) [20]

• Contextual Focused Topic Model (cFTM) [6]

Among these various methods, we briefly explain top-3
performers in Table 2 (excluding ours) in terms of overall
accuracy: ATM, TMBP, and cFTM. ATM adds additional
author entities into LDA. When there are multiple authors
for a paper, it attempts to find out who is the most prob-
able author for each term in the paper. Thus, it has an
effect of selecting each term from a more proper topic distri-
bution because each author has her own topic distribution.
The cFTM extends FTM, which is developed to deal with
sparse (focused) set of topics, and incorporates additional
contextual information (authors and venues) when select-
ing topics. While it automatically finds a proper number
of topics due to its non-parametric nature, it involves many

the same writer more than once in a social graph.
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parameters and requires a quite complicated inference pro-
cess. Different from these two models focusing on enriching
θ (topic distribution given other contexts), TMBP takes a
different approach of topic propagation. After learning topics
for papers from the relationships between papers and terms
using PLSA, it propagates the learned topics to authors and
venues using an Expectation Maximization (EM) algorithm.
Compared to ATM and cFTM, our approach is simpler and
more flexible. Also, while these models only enrich θ and
are limited to a document-centered graph (e.g., DBLP), our
approach can be applied to any type of graph because it can
enrich φ as well as θ. Perhaps TMBP is closest to our ap-
proach in the sense that the new topics are inferred with the
help of previously learned topics. However, our approach is
based on LDA, which solves PLSA’s overfitting problem, and
more seamlessly incorporate the previously learned topics in
the LDA’s inference process compared to TMBP, which has
two separate processes of PLSA-based topic inference and
EM-based topic propagation.

We observe that our dual-prior model (UniZ-dual) outper-
forms all other state-of-the-art methods in terms of overall
average AC and NMI. Only cFTM clearly outperforms it
in author prediction task. However, our models required
only 100 iterations, which is orders of magnitude smaller
than that of cFTM (6, 000)9. Also, our models are more
general and can be applied to any complex graphs. Our
dual-prior model is especially good at predicting venue in-
formation. Table 3 shows example venue clusters in the four
categories. For our experiments, we set α = β = 1. We first
learned topics from DT (edges from D to T ) using LDA
and incorporated the learned topics to infer topics for V D
with λ = 0.1 (0.1 × BDT ). Then, we used a linear combi-
nation of two topics, 0.1 × BDT + 100 × BV D, as a prior
to infer topics for UD. Note that we used λ to account for
magnitude of different types of edges in the graph topology
10. As explained in Section 2.3, a topic incorporation order
of denser edges to sparser edges and textual-edges to non-
textual-edges produced a much better result than a chrono-
logical order. The incorporation order of DT→V D→UD
produced the best prediction accuracy (reported in Table
3), and the incorporation order of V D→DT→UD also pro-
duced a similar prediction accuracy 11 12. It is because later
inferences are largely affected by early-set topics. Also, the
dual-prior model almost always outperformed the mixture
model in our experiments. It is probably because the for-
mer utilizes joint distributions containing more information,
while the latter only utilizes conditional distributions as ex-
plained in Section 2.2.

As evaluation metrics, we use both prediction accuracy
(AC) and normalized mutual information (NMI) [6, 9, 21].

9One iteration of our models is also much cheaper.
10For λ, we tried 0.01, 0.1, 1, 10, and 100 and selected the
one producing the best results.

11We measured density by dividing the number of edges
by the matrix size. For example, in the DBLP dataset,
density(DT ) = 0.008 = 2712928/(28569 ∗ 11771),
density(V D) = 0.05, and density(UD) = 0.000091.
Though DT has lower density than V D, it produced similar
or better results because DT is a textual dataset and allows
multiple edges for each document and term.

12The overall accuracy achieved by a chronological order
(UD→DT→V D) was 72.16.

Table 1: Statistics of the datasets
Meaning DBLP B-Log1 B-Log2 C-Log

|V | Venues 20 - - -
|U | Users(Authors) 28,702 100,000 10,000 -
|D| Docs(Papers,Pages) 28,569 257,920 27,980 27,980
|T | Terms(Words) 11,771 117,116 24,124 24,124
|Q| Queries - 281,332 30,242 30,242
|DT | DT edges 2,712,928 - - -
|V D| VD edges 28,569 - - -
|UD| UD edges 74,632 441,138 42,583 -
|UQ| UQ edges - 483,839 46,498 -
|QT | QT edges - 1,362,278 130,841 24,816,679
|QD| QD edges - - - 16,058,804

Table 2: Prediction accuracy on the DBLP dataset.
Except ours, all other results are from [6,9].

Entity Paper Author Venue Average

Metric (%) AC NMI AC NMI AC NMI AC NMI
NMF 44.55 22.92 - - - - 44.55 22.92
PLSA 59.45 32.75 65.0 37.97 80.0 74.74 68.15 48.49

LapPLSI 61.35 33.93 - - - - 60.70 33.37
LDA 47.00 20.48 - - - - 47.00 20.48
ATM 77.00 52.21 74.13 40.67 - - 75.57 46.44

NetClus 65.00 40.96 70.82 47.43 79.75 76.69 71.86 55.03
TMBP-RW 73.10 53.13 82.59 67.76 81.75 77.53 79.15 66.14

TMBP-Regu 79.15 59.16 89.81 74.25 82.75 76.56 83.90 69.99
FTM 69.37 43.51 - - - - 69.37 43.51
cFTM 82.73 62.91 92.51 76.20 82.97 76.05 85.73 71.72

UniZ-mix 79.20 53.54 79.40 49.05 90.00 86.18 82.87 62.93
UniZ-dual 82.75 59.71 89.00 68.09 97.25 95.57 89.67 74.46

The AC is calculated with the following equation:

AC =

∑N
i=1 δ(l

′
i,map(li))

N
, (6)

where li is labeled category, l′i is predicted category, and N
is the total number of labels. The δ(x, y) function produces
1 if x = y, and 0 otherwise. We need the map(x) function
because the predicted category number is usually different
from the label category number. The NMI is defined as
MI(C,C′)/MI(C,C), where C is labeled cluster and C′ is
predicted cluster. Mutual Information (MI) is calculated as:

MI(C,C′) =
∑

ci∈C,c′j∈C
′

p(ci, c
′
j) log2

p(ci, c
′
j)

p(ci)p(c′j)
, (7)

where p(ci) and p(c′j) are the probabilities of a randomly
selected document’s belonging to the cluster ci and c′j re-
spectively, and p(ci, c

′
j) denotes the joint probability that a

document belongs to both the clusters. We report both av-
erage AC and NMI values from 20 runs in Table 2. Each
average value is calculated by equally dividing each sum.
We first ran LDA to learn seed topics and incorporated the
seed topics when we learn topics for other edges.

3.2 Online Search Experiments
In this section, we report the performance gains of our ap-

proach in practical applications using real search logs from
Bing. We evaluate our approach in two personalized recom-
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Table 3: Venue clusters
DB DM IR AI

VLDB KDD SIGIR IJCAI
ICDE PAKDD WWW AAAI

SIGMOD ICDM CIKM ICML
PODS PKDD ECIR CVPR
EDBT SDM AAAI ECML

(a) B-Log (user
behavior log)

(b) C-Log (click
log)

Figure 4: Structures of two types of search logs

mendation tasks: (1) query recommendation, and (2) page
recommendation. We also conduct topic granularity analy-
sis. Finally, we attempt to propagate topics across two very
disparate datasets.

3.2.1 Datasets
We use two types of search logs for our experiments. The

first search log depicted in Figure 4(a) is a per-user search
and browsing log (we call this B-Log from now on), which
contains users, their search queries, and pages visited. Terms
are simply individual words in a query. We collected this log
for 100, 000 users (B-Log1). When we collected this log, we
first sampled users and included all the queries issued by
the users, and all the pages visited by them. We also col-
lected another user behavior log with 10, 000 users (B-Log2)
for another experiment which will be described shortly. The
statistics of these logs are listed in Table 1. The density of
each log is very low.

Another type of a search log is an aggregated query-page
click log (we call this C-Log from now on) depicted in Figure
4(b). While B-Log is a collection of queries and pages for
individual users, C-Log consists of triplets of (query, page,
click count), where the click count is the number of clicks
between the query and the page across all users (not limited
to the users sampled in B-Log). Thus, C-Log has very dif-
ferent statistical characteristics compared to B-Log. Since
C-Log is believed to be a very strong signal and is used in
various fields of online search (e.g., query intent mining), we
attempt to incorporate topics learned from C-Log to B-Log2
in Section 3.2.4. The statistics of C-Log are also listed in
Table 1.

3.2.2 Performance Analysis
Since we do not have any judged labels for the search logs,

we use the widely-used perplexity metric [3,11,22] to measure
prediction performance of our models. It is defined as:

perplexity(Etest) = exp
−

∑
e∈Etest log p(e)

|Etest| , (8)

where Etest denotes all the edges in a test dataset and p(e)
denotes an edge prediction probability (i.e., p(q|u) for the
query recommendation task and p(d|u) for the page rec-

(a) UQ←UD (b) UD←UQ←QT

Figure 5: Examples of topic incorporation orders

ommendation task). The perplexity quantifies the predic-
tion power of a trained model by measuring how well the
model handles unobserved test data. Since the exponent
part of Equation (8) is a minus of the average log prediction
probability over all the test edges, a lower perplexity means
stronger prediction power of the model. We calculated the
perplexity for a separate 10% randomly held-out dataset af-
ter training a model on the remaining 90% dataset.

Based on this perplexity metric, we evaluate our proposed
models (the mixture model and the dual-prior model) on the
two recommendation tasks: (1) query recommendation for a
user using UQ (user-query edges), and (2) page recommen-
dation for a user using UD (user-page edges). If the perplex-
ity of a model is lower, it means that the model is better at
recommending queries or pages to a user (predicting more
probable queries or pages). We use LDA as a baseline for
both these tasks 13. We tried two topic incorporation orders
for each task (four in total). Figure 5 illustrates two exam-
ple incorporation orders. In Figure 5(a), topics learned from
UD are incorporated when learning topics for UQ for the
query recommendation task. We use the notation UQ←UD
to denote this incorporation order (Note that we use the re-
verse arrow (←) to put a recommendation task (UQ in this
case) on the left). The bar under U indicates that the top-
ics are incorporated onto users. Similarly, UD←UQ←QT in
Figure 5(b) denotes a topic incorporation from QT to UQ
to UD for the page recommendation task. When there is
no ambiguity, we also use a simpler notation without the
underbar and the arrow. With the simple notation, the for-
mer becomes UQ-UD and the latter becomes UD-UQ-QT .
For our experiments, we set the parameters as |Z| = 100,
α = 0.01, β = 0.1. We also set λA = λB = 1 because
the number of edges is not different by orders of magnitude
each other. The number of iterations is 100. We averaged
perplexity values from five runs with different random seeds.

We report perplexity values of LDA and our two models
in Figure 6. We tested two topic incorporation orders for
each model: (1) UQ-UD and UQ-QT for the query recom-
mendation task, and (2) UD-UQ and UD-UQ-QT for the
page recommendation task. For example, the UQ-UD(mix)
in the x-axis denotes the topic incorporation of UQ←UD
in the mixture model. The bars show perplexity values and
the minus numbers show perplexity drop rates compared to
LDA. The left most bar shows LDA which does not ben-
efit from the topic incorporation. Our models seem to be
very effective in lowering perplexity because they leverage
all the available signals. We also observe that the dual-prior

13Although we acquired the source code of TMBP, we could
not fine-tune it to produce good results on our machine. The
cFTM is too expensive and cannot handle the topology of
our search logs.
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(a) Query recommendation

(b) Page recommendation

Figure 6: Performance Analysis

Figure 7: Topic Granularity Analysis

model always performs better than mixture model as in Sec-
tion 3.1.2. Especially, UQ-QT and UD-UQ-QT achieved
the best results (−24.4% and −20.9%) for each task.

3.2.3 Topic Granularity Analysis
We perform an analysis on the number of topics. The

number of topics is related to how granular the learned top-
ics are. If the topic granularity is high, it means we can get
finer clusters and achieve more accurate targeting. Thus,
more granular topics are usually preferred. In our exper-
iments, the perplexity of LDA, which provides seed topics
in our framework, did not show a noticeable decrease (i.e.,
performance improvement) when the number of topics tends
toward 100. Rather, it showed an increase (i.e., performance
degradation) when the number of topics increases from 100
to 150.

However, when we incorporated topics from other types
of edges, we could observe the perplexity drops even when
the number of topics increases beyond 150. Figure 7 gen-
erated from B-Log1 shows changes in perplexity drop rates
(compared to LDA’s perplexity) when the number of top-
ics increases from 10 to 200. We observe that UQ-QT and
UD-UQ-QT have consistently lower perplexity values as the
number of topics increases. Note that our framework is

(a) Query recommendation

(b) Page recommendation

Figure 8: Incorporation of C-Log (the last bars show
results using C-Log)

about the topic incorporation (not LDA) and can work with
more granular topic models than LDA.

3.2.4 Incorporating a Query-Page Click Log
In this section, we investigate the effect of topic incorpo-

ration from C-Log to B-Log. Because C-Log is query-page
click counts across all users, it is considered a very strong sig-
nal between queries and pages, and has been widely used in
modeling query intent in online search. However, the char-
acteristics of C-Log are very different from that of B-Log
(aggregated, denser, and extremely power-law). We incor-
porate topics learned from C-log to B-Log to improve per-
formance in our proposed recommendation tasks. Because
the number of edges in C-Log for 100, 000 users was too
large to handle in one machine, we reduced the number of
users to 10, 000 and prepared B-Log2. The C-Log dataset
is collected so that all the queries and pages in B-Log2 are
included.

In Figure 8, the leftmost bar is the result from LDA and
the next two are from only B-Log2 and the last one is from
the combination of C-Log and B-Log2. We set λ = 0.01
when we incorporate C-Log to B-Log2 due to huge differ-
ence in the numbers of edges. We observe that adding C-
Log signal produces second best result (−16.5%) in query
recommendation task, and the best result (−19.3%) in page
recommendation task. It shows that our framework is effec-
tive even between very disparate datasets.

4. RELATED WORK
In Section 3.1.2, we introduced some state-of-the-art topic

models. We briefly review more topic models in three cate-
gories: topic models for authorship, connectivity, and graph.

One of the most popular forms of HINs is documents (con-
sisting of terms) and their authors. To deal with these types
of HINs, researchers incorporated authors and their relation-
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ships in topic models. These topic models attempt to group
documents and authors by assuming that a document is cre-
ated by authors sharing common topics. The concept of au-
thors (users) was initially introduced by Steyvers et al. [18]
in the Author-Topic model (ATM). McCallum et al. [14] also
extended ATM and proposed the Author-Recipient-Topic
model (ARTM) and the Role-Author-Recipient-Topic model
(RARTM) to analyze e-mail networks.

Another popular form of HINs is documents (consisting
of terms) and their connectivity information, which is fre-
quently observed in academic bibliography networks and the
Web. Topic models for this type of HINs analyze two types
of entities (documents and terms) and two types of relation-
ships (contains and links to). Cohn et al. [8] initially intro-
duced a topic model combining PLSA [12] and PHITS [7].
Later, PLSA in this model was replaced with LDA [3] by
Erosheva et al. [10]. Nallapati et al. [15] extended Erosheva’s
model and proposed Link-PLSA-LDA model which applies
PLSA and LDA to cited and citing documents, respectively.

Topic models in the previous categories are rooted in the
relationships between documents and terms. They enrich
topic modeling by adding additional information such as au-
thorship and connectivity. However, there are topic models
which do not rely on any textual information and purely de-
pend on structural information (linkage) in a graph. Since
they only focus on the graph structure, they can be easily
applied to a variety of datasets but there has been relatively
less research in this category. Airoldi et al. [2] proposed
the Mixed Membership Stochastic Block (MBB) model to
analyze pairwise measurements such as social networks and
protein interaction networks. Zhang et al. [22] and Hender-
son et al. [11] dealt with the issues in applying LDA to aca-
demic social networks. High popularity issue was addressed
by Steck [16]. Our work is in this category and attempts to
analyze any complex graph by decomposing it into smaller
components.

5. CONCLUSION
In this paper, we introduced a universal topic framework

called “UniZ”, which represents various types of entities and
their edges in a single topic space. By incorporating previ-
ously learned topics, UniZ improves prediction and recom-
mendation performance. We also proposed two novel and
effective topic models in this framework: the mixture model
and the dual-prior model. In a DBLP prediction task, one
of our models performed better than all other state-of-the-
art methods. They also achieved significant improvements
in query and page recommendation tasks performed with
real search logs. We also demonstrated great potential of
our approach in dealing with granular topics and disparate
datasets.
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