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ABSTRACT

The Web search engines maintain large-scale inverted indexes

which are queried thousands of times per second by users eage
for information. In order to cope with the vast amounts of query
loads, search engines prune their index to keep documents that ar
likely to be returned as top results, and use this pruned index to
compute the first batches of results. While this approach can im-
prove performance by reducing the size of the index, if we compute
the top results only from the pruned index we may notice a signif-
icant degradation in the result quality: if a document should be in
the top results but was not included in the pruned index, it will be
placed behind the results computed from the pruned index. Given
the fierce competition in the online search market, this phenomenon
is clearly undesirable.

In this paper, we study how we can avady degradation of
result quality due to the pruning-based performance optimization,
while still realizing most of its benefit. Our contribution is a num-
ber of modifications in the pruning techniques for creating the
pruned index and a new result computation algorithm ther-
anteesthat the top-matching pages aaéwaysplaced at the top
search results, even though we are computing the first batch from
the pruned index most of the time. We also show how to determine
the optimal size of a pruned index and we experimentally evaluate
our algorithms on a collection df30 million Web pages.

Categories and Subject Descriptors

H.3.1 Information Storage and Retrievall: Content Analysis
and Indexing; H.3.3lhformation Storage and Retrieval]: Infor-
mation Search and Retrieval

General Terms
Algorithms, Measuring, Performance, Design, Experimentation
Keywords

Inverted index, pruning, correctness guarantee, Web searchesngin

1. INTRODUCTION

The amount of information on the Web is growing at a prodigious
rate [24]. According to a recent study [13], it is estimated that the
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Web currently consists of more than 11 billion pages. Due to this

immense amount of available information, the users are becoming
ore and more dependent on the Web search engines for locating

relevant information on the Web. Typically, the Web search en-

gines, similar to other information retrieval applications, utilize a

data structure callesverted indexAn inverted indexprovides for
the efficient retrieval of the documents (or Web pages) that contain
a particular keyword.

In most cases, a query that the user issues may have thousands
or even millions of matching documents. In order to avoid over-
whelming the users with a huge amount of results, the search en-
gines present the results in batchegd @to 20 relevant documents.
The user then looks through the first batch of results and, if she
doesn't find the answer she is looking for, she may potentially re-
quest to view the next batch or decide to issue a new query.

A recent study [16] indicated that approximately 80% of the
users examine at most the firstbatches of the results. That is,
80% of the users typically view at mo30 to 60 results for every
query that they issue to a search engine. Atthe same time, given the
size of the Web, the inverted index that the search engines maintain
can grow very large. Since the users are interested in a small num-
ber of results (and thus are viewing a small portion of the index for
every query that they issue), using an index that is capable of re-
turning all the results for a query may constitute a significant waste
in terms of time, storage space and computational resources, which
is bound to get worse as the Web grows larger over time [24].

One natural solution to this problem is to create a small index on
asubsebf the documents that are likely to be returned as the top re-
sults (by using, for example, the pruning techniques in [7, 20]) and
compute the first batch of answers using the pruned index. While
this approach has been shown to give significant improvement in
performance, it also leads to noticeable degradation in the quality of
the search results, because the top answers are computed only from
the pruned index [7, 20]. That is, even if a page should be placed as
the top-matching page according to a search engine’s ranking met-
ric, the page may be placed behind the ones contained in the pruned
index if the page did not become part of the pruned index for var-
ious reasons [7, 20]. Given the fierce competition among search
engines today this degradation is clearly undesirable and needs to
be addressed if possible.

In this paper, we study how we can avady degradation of
search quality due to the above performance optimization while
still realizing most of its benefit. That is, we present a number of
simple (yet important) changes in the pruning techniques for cre-
ating the pruned index. Our main contribution is a new answer
computation algorithm thafjuaranteeshat the top-matching pages
(according to the search-engine’s ranking metricedneysplaced
at the top of search results, even though we are computing the first
batch of answers from the pruned index most of the time. These
enhanced pruning techniques and answer-computation algorithms
are explored in the context of theduster architecturecommonly
employed by today’s search engines. Finally, we study and present
how search engines can minimize the operational cost of answering
queries while providing high quality search results.
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Figure 1: (a) Search engine replicates its full indexi» to in-
crease query-answering capacity. (b) In thel** tier, small p- . ) . . .
indexesIp handle most of the queries. Wher » cannot answer Figure 2: Computing the answer under the two-tier architec-
a query, it is redirected to the 2" tier, where the full index I ture with the result cor.rectness guarantee. _

is used to compute the answer. and every copy of an index (both the fulk and p-indexI/p) can

2. CLUSTERARCHITECTURE AND COST handle up to 1000 queries/sec. Also assume that the sizg f

one fourth of/r and thus can be stored on a single machine. Fi-

SAVINGS FROM A PRUNED INDEX nally, suppose that the p-indexes can handle 80% of the user queries

Typically, a search engine downloads documents from the Web by themselves and only forward the remaining 20% querids-to
and maintains a locahverted indexhat is used to answer queries  Under this setting, since all 5000/sec user queries are first directed

quickly. to a p-index, five copies ofp are needed in thé* tier. For the
Inverted indexes. Assume that we have collected a set of doc- 2" tier, since 20% (or 1000 queries/sec) are forwarded, we need
umentsD = {D:,..., Dy} and that we have extracted all the t0 maintain one copy of  to handle the load. Overall we need
terms7 = {t1,...,t,} from the documents. For every single @ total of 9 machines (five machines for the five copiesf;ohnd_
termt; € 7 we maintain a list (¢;) of document IDs that contain ~ four machines for one copy df-). Compared to Example 1, this
t;. Every entry in(t;) is called a posting and can be extended to iS more tharb0% reduction in the number of machines. o
include additional information, such as how many timeappears . .
in a document, the positions of in the document, whethe is The above example demonstrates the potential cost saving
bold/italic, etc. The set of all the lists = {I(t1),...,I(tn)} is achieved by using a p-index. However, the two-tier architecture
our inverted index. may have a significant drawback in terms of its result quality com-
L . pared to the full replication of »; given the fact that the p-index
2.1 Two-tier index architecture contains only a subset of the data of the full index, it is possible that,

Search engines are accepting an enormous number of queriedor some queries, the p-index may not contain the top-ranked docu-
every day from eager users searching for relevant information. Fo ment according to the particular ranking criteria used by the search
example, Google is estimated to answer more #Hrmillion user engine and fail to return it as the top page, leading to noticeable
queries per day. In order to cope with this huge query load, searchguality degradation in search results. Given the fierce competition

engines typically replicate their index across a large cluster of ma- in the online search market, search engine operators desperately try
chines as the following example illustrates: to avoid any reduction in search quality in order to maximize user

. . o satisfaction.
Example 1 Consider a search engine that maintains a cluster of

machines as in Figure 1(a). The size of its full inverted indgex 2.2 Correctness guarantee under two-tier ar-
is Iargz_er than what can be sto_red ina singlc_a machine, so each copy chitecture
of Ir is stored across four different machines. We also suppose How can we avoid the potential degradation of search quality

that one copy of  can handle the query load of 1000 queries/sec. . . e . X

; : g ; nder the two-tier architecture? Our basic idea is straightforward:
Assuming that the search engine gets 5000 queries/sec, it need%\/e use the top-result from the p-index only if we knovg for sure
to replicatelr five times to handle the load. Overall, the search that the result is the same as the thoesult from the full index
engine needs to maintainx 5 = 20 machines in its cluster. o m :

The algorithm in Figure 2 formalizes this idea. In the algorithm,

While fully replicating the entire indeXr multiple times is a when we compute the result frody (Step 1), we compute not
straightforward way to scale to a large number of queries, typical only the topk result.4, but also theorrectness indicator function
query loads at search engines exhibit certain localities, allowing for C defined as follows:
significant reduction in cost by replicating only a small portion of
the full index. In principle, this is typically done by pruning a full
index Ir to create a smallepruned index (or p-indexjp, which
contains a subset of the documents that are likely to be returned a
top results.

Given the p-index, search engines operate by employing a two-
tier index architecture as we show in Figure 1(b): All incoming
queries are first directed to one of the p-indexes kept irl théer.

In the cases where a p-index cannot compute the answer (e.g. wa
unable to find enough documents to return to the user) the query
is answered by redirecting it to tH#'? tier, where we maintain

a full index Ir. The following example illustrates the potential
reduction in the query-processing cost by employing this two-tier
index architecture.

Definition 1 (Correctness indicator function) Given a queryy,

the p-index/p returns the answed together with a correctness
dndicator functiorC. C is set to 1 ifA is guaranteed to bidentical

(i.e. same results in the same order) to the result computed from
the full indexIr. If itis possible thatA is different,C is setto O.g

Note that the algorithm returns the result frdm (Step 3) only
~ghen it is identical to the result fronir (conditionC = 1 in

tep 2). Otherwise, the algorithm recomputes and returns the re-
sult from the full index/r (Step 5). Therefore, the algorithm is
guaranteed to return the same result as the full replicatidi @l
the time.

Now, the real challenge is to find out (1) how we can compute
the correctness indicator functighand (2) how we should prune
Example 2 Assume the same parameter settings as in Example 1.the index to make sure that the majority of queries are handled by
That is, the search engine gets a query load of 5000 queries/sed p alone.



Question 1 How can we compute the correctness indicator func-
tionC?

A straightforward way to calculaté is to compute the tog-an-
swer both froml/» andIr and compare them. This naive solution,
however, incurs a cost even higher than the full replicatiodzof
because the answers are computeide once from/p and once
from Ir. Is there any way to compute the correctness indicator
functionC only from Ip without computing the answer froi-?

Question 2 How should we prunér to Ip to realize the maximum
cost saving?

The effectiveness of Algorithm 2.1 critically depends on how
often the correctness indicator functiGnis evaluated to be 1. If
C = 0 for all queries, for example, the answers to all queries will be
computed twice, once frotfr (Step 1) and once frome (Step 5),
so the performance will bevorsethan the full replication off .
What will be the optimal way to prunér to Ip, such thatC = 1
for a large fraction of queries? In the next few sections, we try to
address these questions.

3. OPTIMAL SIZE OF THE P-INDEX

Intuitively, there exists a clear tradeoff between the sizéof
and the fraction of queries tha¢ can handle: Whei#p is large and
has more information, it will be able to handle more queries, but
the cost for maintaining and looking up will be higher. When
Ip is small, on the other hand, the cost fbs will be smaller,
but more queries will be forwarded 1g-, requiring us to maintain
more copies of . Given this tradeoff, how should we determine
the optimal size offp in order to maximize the cost saving? To
find the answer, we start with a simple example.

Example 3 Again, consider a scenario similar to Example 1,

where the query load is 5000 queries/sec, each copy of an index

can handle 1000 queries/sec, and the full index spans across 4 m
chines. But now, suppose that if we pruheby 75% to Ip1 (i.e.,

the size oflp1 is 25% of Ir), Ip1 can handlet0% of the queries
(i.e.,C = 1 for 40% of the queries). Also suppose thatjf is
pruned by50% to Ip2, Ip2 can handl&80% of the queries. Which
one of thelpy, Ip» is preferable for the **-tier index?

To find out the answer, we first compute the number of machines
needed when we ude>; for the1°* tier. At the1** tier, we need 5
copies oflp; to handle the query load of 5000 queries/sec. Since
the size off p1 is 25% of I (that requires 4 machines), one copy of
Ip, requires one machine. Therefore, the total number of machines
required for thel ** tieris5x 1 = 5 (5 copies ofl p; with 1 machine
per copy). Also, sincép; can handlel0% of the queries, the™?
tier has to handle 3000 queries/sec (60% of the 5000 queries/sec)
so we need atotal & x 4 = 12 machines for the™ tier (3 copies
of I'r with 4 machines per copy). Overall, when we use for the
1°t tier, we need5 + 12 = 17 machines to handle the load. We
can do similar analysis when we ugg; and see that a total of 14
machines are needed whép, is used. Given this result, we can

conclude that usindp- is preferable. o

The above example shows that the cost of the two-tier architec-
ture depends on two important parameters: the size of the p-index
and the fraction of the queries that can be handled byi thdier
index alone. We use to denote the size of the p-index relative to
Ir (i.e., if s = 0.2, for example, the p-index 0% of the size of
Ir). We usef (s) to denote the fraction of the queries that a p-index
of sizes can handle (i.e., if (s) = 0.3, 30% of the queries return
the valueC = 1 from Ip). In general, we can expect thats) will
increase as gets larger becaude> can handle more queries as its
size grows. In Figure 3, we show an example graplfi(@f overs.

fraction of queries guaranteed per fraction of index

Optimal size s=0.
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Figure 3: Example function showing the fraction of guaranteed
queries f(s) at a given sizes of the p-index.

is roughly proportional to the total size of the indexes necessary to
handle the query load.

Problem 1 (Optimal index size)Given a query load?) and the
function f(s), find the optimal p-index size that minimizes the

total size of the indexes necessary to handle the (@ad o

The following theorem shows how we can determine the optimal
index size.

Theorem 1 The cost for handling the query loa@ is minimal

when the size of the p-indesx,satisfies‘%iS> =1 o

Proof The proof of this and the following theorems is omitted due
to space constraints.

This theorem shows that the optimal point is when the slope of
the f(s) curve is 1. For example, in Figure 3, the optimal size
is whens = 0.16. Note that the exact shape of tlf¢s) graph
may vary depending on the query load and the pruning policy. For
example, even for the same p-inde, if the query load changes sig-
nificantly, fewer (or more) queries may be handled by the p-index,
decreasing (or increasingy)s). Similarly, if we use an effective
pruning policy, more queries will be handled by than when we

4se an ineffective pruning policy, increasiiigs). Therefore, the

function f(s) and the optimal-index size may change significantly
depending on the query load and the pruning policy. In our later ex-
periments, however, we find that even though the shape df(the
graph changes noticeably between experiments, the optimal index
size consistently lies between 10%—30% in most experiments.

4. PRUNING POLICIES

In this section, we show how we should prune the full index

to Ip, so that (1) we can compute the correctness indicator function

C from Ip itself and (2) we can handle a large fraction of queries

by Ip. In designing the pruning policies, we note the following two

localities in the users’ search behavior:

" 1. Keyword locality: Although there are many different words
in the document collection that the search engine indexes, a
few popular keywords constitute the majority of the query
loads. Thiskeyword localityimplies that the search engine
will be able to answer a significant fraction of user queries
even if it can handle only these few popular keywords.

. Document locality: Even if a query has millions of match-
ing documents, users typically look at only the first few re-
sults [16]. Thus, as long as search engines can compute the
first few top+ answers correctly, users often will not notice
that the search engine actually has not computed the correct
answer for the remaining results (unless the users explicitly
request them).

Based on the above two localities, we now investigate two differ-
ent types of pruning policies: (1)keyword pruningolicy, which
takes advantage of the keyword locality by pruning the whole in-
verted list/(¢;) for unpopular keywords;’s and (2) adocument

Given the notation, we can state the problem of p-index-size op- pruningpolicy, which takes advantage of the document locality by
timization as follows. In formulating the problem, we assume that keeping only a few postings in each lift;), which are likely to
the number of machines required to operate a two-tier architecturebe included in the top:results.



As we discussed before, we need to be able to compute the cor-
rectness indicator function from the pruned index alone in order to
provide the correctness guarantee. Since the computation of cor-
rectness indicator function may critically depend on the particular
ranking function used by a search engine, we first clarify our as-
sumptions on the ranking function.

4.1 Assumptions on ranking function

Consider a queryy = {t1,t2,...,tw} that contains a subset
of the index terms. The goal of the search engine is to return the
documents that are most relevant to queryThis is done in two
steps: first we use the inverted index to find all the documents that
contain the terms in the query. Second, once we have the rele-
vant documents, we calculate the rank (or score) of each one of the
documents with respect to the query and we return to the user the
documents that rank the highest.

Most of the major search engines today return documents con-
tainingall query terms (i.e. they use AND-semantics). In order to

make our discussions more concise, we will also assume the popu-

lar AND-semantics while answering a query. It is straightforward
to extend our results to OR-semantics as well. The exact ranking
function that search engines employ is a closely guarded secret.
What is known, however, is that the factors in determining the doc-
ument ranking can be roughly categorized into two classes:

Query-dependent relevance.This particular factor of relevance
captures how relevant the query is to every document. At a high
level, given a documeri®, for every termt; a search engine assigns
aterm relevance scorer(D, t;) to D. Given thetr(D, t;) scores
for everyt;, then thequery-dependent relevanoé D to the query,
noted asir(D, q), can be computed by combining the individual
term relevance values. One popular way for calculating the query—
dependent relevance is to represent both the documeartd the
query g using the TF.IDF vector space model [29] and employ a
cosine distancenetric.

Since the exact form ofr(D, ¢;) andt¢r(D, q) differs depend-
ing on the search engine, we will not restrict to any particular form;
instead, in order to make our work applicable in the general case,
we will make the generic assumption that the query-dependent rel-
evance icomputed as a functioof the individual term relevance
values in the query:

tr(D,q) = fir(tr(D,t1),...,tr(D,tw)) Q)

Query-independent document quality. This is a factor that mea-
sures the overall “quality” of a documeitindependenof the par-
ticular query issued by the user. Popular techniques that compute
the general quality of a page include PageRank [26], HITS [17] and
the likelihood that the page is a “spam” page [25, 15]. Here, we
will use pr(D) to denote this query-independent part of the final
ranking function for documenb.

The final ranking score (D, q) of a document will depend on
both the query-dependent and query-independent parts of the rank
ing function. The exact combination of these parts may be done in
a variety of ways. In general, we can assume that the final rank-
ing score of a document isfanctionof its query-dependent and
guery-independent relevance scores. More formally:

T(D7q) :fr(t’f’(D,q)7pT(D)) (2)
For example, f.(tr(D,q),pr(D)) may take the form
fT(tr(D7Q)7pT(D)) a - tr(D7Q) + (1 - OZ) : pT(D)i
thus giving weighto to the query-dependent part and the weight
1 — « to the query-independent part.
In Equations 1 and 2 the exact form ff and f:, can vary de-

t1 — D1
to — D1
tg = D3
te — Dy

Figure 4: Keyword and document pruning.

Algorithm 4.1

Procedure

@1 c=1

(2) Foreacht; € ¢

3) If (I(t;) ¢ Ip) ThenC =0
(4) ReturnC

Computation ofC for keyword pruning

Figure 5: Result guarantee in keyword pruning.

Definition 2 A function f(«, 3, ...,w) is monotonic ifVa;
a9, Vﬂ1 > ﬂg, .o Ywr > wo it holds that:f(al, ﬁl, e ,(.U1)
flaz, B2, ..., wa).

Roughly, the monotonicity of the ranking function implies that,
between two document®, and D,, if D, has higher query-
dependent relevance th@h and also a higher query-independent
score thanD-, then D, should be ranked higher than., which

2
>

we believe is a reasonable assumption in most practical settings.

4.2 Keyword pruning

Given our assumptions on the ranking function, we now investi-
gate the “keyword pruning” policy, which prunes the inverted index
I “horizontally” by removing the whold(¢;)’s corresponding to
the least frequent terms. In Figure 4 we show a graphical represen-
tation of keyword pruning, where we remove the inverted lists for
ts andts, assuming that they do not appear often in the query load.

Note that after keyword pruning, if all keywords, ..., ¢, } in
the queryq appear inlp, the p-index has the same information as
Ir as long ag; is concerned. In other words, if all keywordsgn
appear in/ p, the answer computed froip is guaranteed to be the
same as the answer computed frém Figure 5 formalizes this
observation and computes the correctness indicator fun€tion
a keyword-pruned indeXp. It is straightforward to prove that the
answer from/p is identical to that fron7x if C = 1 in the above
algorithm.

We now consider the issue of optimizing the such that it can
handle the largest fraction of queries. This problem can be formally
stated as follows:

Problem 2 (Optimal keyword pruning) Given the query load)
and a goal index size - |Ir| for the pruned index, select the in-
verted lists/p = {I(t1),...,I(tn)} suchthaiip| < s-|Ir|and
the fraction of queries thalp can answer (expressed Bys)) is
maximized. o

Unfortunately, the optimal solution to the above problem is in-
tractable as we can show by reducing from knapsack (we omit the
complete proof).
Theorem 2 The problem of calculating the optimal keyword prun-
ing is NP-hard. o
Given the intractability of the optimal solution, we need to resort
to an approximate solution. A common approach for similar knap-
sack problems is to adopt a greedy policy by keeping the items
with the maximum benefit per unit cof]. In our context, the

pending on the search engine. Therefore, to make our discussionpotential benefit of an inverted ligt(¢;) is the number of queries

applicable independent of the particular ranking function used by
search engines, in this paper, we will make only the generic as-
sumption that the ranking functiar{D, ¢) is monotonic on its pa-
rametersr(D,t1),...,tr(D,ty,) andpr(D).

that can be answered by when I(¢;) is included inIp. We
approximate this number by the fraction of queries in the query
load @ that include the termi; and represent it aB(t;). For ex-
ample, if 100 out of 1000 queries contain the teconput er,



Algorithm 4.2
Procedure
(1) Vt;, calculateHS(t;) =

@)

Greedy keyword pruning? S

P(t;)

[T(ts)]"

Include the inverted lists with the highest
HS(¢;) values such thatip| < s - |Ip|.

Figure 6: Approximation algorithm for the optimal keyword
pruning.

Algorithm 4.3

Procedure
(1) Sortall document®; based orpr(D;)
(2) Find the threshold value,, such that
only s fraction of the documents haye(D;) > 7,
(4) KeepD; in the inverted lists ipr(D;) > 7p

Global document pruningV’ S¢

Figure 7: Global document pruning based ornpr.

then P(computej = 0.1. The cost of including/ (¢;) in the p-
index is its sizgI(¢;)|. Thus, in our greedy approach in Figure 6,
we include!(¢;)’s in the decreasing order &t (¢;)/|1(t;)| as long
as|Ip| < s-|Ir|. Later in our experiment section, we evaluate
what fraction of queries can be handled by when we employ
this greedy keyword-pruning policy.

4.3 Document pruning
At a high level,document pruningries to take advantage of the

observation that most users are mainly interested in viewing the 7(Dj, q) = f-(tr(Dj, q),pr(D;)) > r(Dk, q).

Algorithm 4.5
Procedure
(1) Foreachi(t;)

2 KeepD € I(t;) if pr(D) > mp; Ortr(D,t;) > 744

Extended keyword-specific document pruning

Figure 9: Extended keyword-specific document pruning based
onpr and tr.

pr(D;) value is higher than thglobal thresholdvaluer,. We refer
to this pruning policy aglobal PR-based pruning (GPR)

Variations of this pruning policy are possible. For example, we
may adjust the threshold valug locally for each inverted list
I(t;), so that we maintaimt least a certain number of postings
for each inverted list (¢;). This policy is shown in Figure 8. We
refer to this pruning policy abcal PR-based pruning (LPRWUN-
fortunately, the biggest shortcoming of this policy is that we can
prove that we cannot compute the correctness functifnom Ip
alone wher/p is constructed this way.

Theorem 3 No PR-based document pruning can provide the result
guarantee. o

Proof Assume we creatép based on the GPR policy (general-
izing the proof to LPR is straightforward) and that every docu-
ment D with pr(D) > 7, is included inIp. Assume that the
k" entry in the topk results, has a ranking score ofDy, q) =
fr(tr(Dk,q), pr(Dx)). Now consider another documehY; that
was pruned from/p becausepr(D;) < 7,. Even so, it is still
possible that the documents(D;, ¢) value is very high such that
]

top few answers to a query. Given this, it is unnecessary to keep Therefore, under a PR-based pruning policy, the quality of the an-

all postings in an inverted list(¢; ), because users will not look at

swer computed fromdp can be significantly worse than that from

most of the documents in the list anyway. We depict the conceptual 7, and it is not possible to detect this degradation without comput-

diagram of the document pruning policy in Figure 4. In the figure,
we “vertically prune” postings correspondingft,, Ds and D¢ of

t1 and Dg of t3, assuming that these documents are unlikely to be
part of topkx answers to user queries. Again, our goal is to develop

a pruning policy such that (1) we can compute the correctness in-

dicator functionC from I» alone and (2) we can handle the largest
fraction of queries with p. In the next few sections, we discuss a
few alternative approaches for document pruning.

4.3.1 Global PR-based pruning

We first investigate the pruning policy that is commonly used by
existing search engines. The basic idea for this pruning policy is
that the query-independent quality scpr€ D) is a very important
factor in computing the final ranking of the document (e.g. PageR-
ank is known to be one of the most important factors determining
the overall ranking in the search results), so we build the p-index
by keeping only those documents whgsevalues are high (i.e.,
pr(D) > 7, for a threshold value,). The hope is that most of
the top-ranked results are likely to have hijgh( D) values, so the
answer computed from this p-index is likely to be similar to the an-
swer computed from the full index. Figure 7 describes this pruning
policy more formally, where we sort all documerdis’s by their
respectivepr(D;) values and keep B); in the p-index when its

Algorithm 4.4 Local document pruningV’ Sy,
N: maximum size of a single posting list
Procedure
(1) ForeachI(t;) € Ip

) SortD;’sin I(t;) based ompr(D;)
3) If |I(¢;)] < N Then keep alD;'s
4) Else keep the top¥ D;’s with the highespr(D;)

Figure 8: Local document pruning based onpr.

ing the answer fronir. In the next section, we propose simple yet
essential changes to this pruning policy that allows us to compute
the correctness functianfrom I alone.

4.3.2 Extended keyword-specific pruning

The main problem of global PR-based document pruning poli-
cies is that we do not know the term-relevance s¢ofé®, ¢;) of
the pruned documents, so a document ndtHinmay have a higher
ranking score than the ones returned frbmbecause of their high
tr scores.

Here, we propose a new pruning policy, calledtended
keyword-specific document pruning (EK&hich avoids this prob-
lem by pruning not just based on the query-indepengeD)
score but also based on the term-relevand®, ¢;) score. That
is, for every inverted list (¢;), we pick two threshold valuesy,;
for pr andr; for ¢r, such that if a documen® € I(¢;) satisfies
pr(D) > 7p; or tr(D,t;) > 7, We include it inI(¢;) of Ip.
Otherwise, we prune it fronip. Figure 9 formally describes this
algorithm. The threshold values,; andr;, may be selected in
a number of different ways. For examplepif andtr have equal
weight in the final ranking and if we want to keep at mdspost-
ings in each inverted lisk(¢;), we may want to set the two thresh-
old values equal te; (rp,; = 7 = 7) and adjustr; such thatVv
postings remain id (¢;).

This new pruning policy, when combined with a monotonic scor-
ing function, enables us to compute the correctness indicator func-
tion C from the pruned index. We use the following example to
explain how we may computé

Example 4 Consider the queryy = {t1,t2} and a monotonic
ranking function,f (pr(D), tr(D,t1),tr(D, t2)). There are three
possible scenarios on how a documéhtappears in the pruned
indexIp.
1. D appears in both/ (¢1) and I(¢2) of Ip: Since complete
information of D appears inp, we can compute the exact



(2)

Algorithm 4.6
Input Queryq = {t1, ..
Output A: top-k result,C: correctness indicator function
Procedure
(1) PForeachD; € I(t1)U - UI(tw)

For eacht,, € q

Computing Answer from/ p

'7tw}

Fraction of queries guaranteed per fraction of index

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

3) If Dy € I(tm)

(4) tT*(Di,tm,) = tT’(Di,tm,)

(5) Else

(6) tT*(Di,tm) = Ttm

(@) f(D;) = f(pr(D;),tr*(Ds, t1), ..., tr*(D;,tn))

(8) A =top- D;'s with highestf(D;) values
© C= 1 ifall D; € Aappearinalll(¢;),t; € q
~ 1 0 otherwise

Figure 10: Ranking based on thresholdsr- (¢;) and pr. (¢;).

score ofD based orpr(D), tr(D, t1) andtr(D, t2) values
inIp: f(p’l“(D), tr(D, t1),tr(D, tz)).

2. D appears only inl(¢1) but not inI(t2): Since D does
not appear inl(¢2), we do not knowtr (D, t2), SO we can-
not compute its exact ranking score. However, from our
pruning criteria, we know thatr(D, t2) cannot be larger
than the threshold value,,. Therefore, from the mono-
tonicity of f (Definition 2), we know that the ranking score
of D, f(pr(D),tr(D,t1),tr(D,t2)), cannot be larger than
f(p?"(D), t'I"(D, t1)7 Tt?)'

3. D does not appear in any listSince D does not appear
at all in Ip, we do not know any of ther (D), tr(D,t1),
tr(D,t2) values. However, from our pruning criteria, we
know thatpr(D) < 7,1 and< 72 and thatr(D,t1) < 741
andt¢r (D, t2) < 7+2. Therefore, from the monotonicity ¢f,
we know that the ranking score @i, cannot be larger than
Fmin(mp1, 7p2), Te1, Te2)- o

queries guarahteed
0.

01 02 03 04 05 6 07 08 09 1
Fraction of index — s

Figure 11: Fraction of guaranteed queries(s) answered in a
keyword-pruned p-index of sizes.

we know thatr(D;) < 7(D;). Also, Algorithm 4.6 set€ =
1 only when the topk documents have scores larger thdib; ).
Thereforey(D;) cannot be larger thar( Dy,). =

5. EXPERIMENTAL EVALUATION

In order to perform realistic tests for our pruning policies, we
implemented a search engine prototype. For the experiments in this
paper, our search engine indexed abid million pages, crawled
from the Web during March of 2004. The crawl started from the
Open Directory’s [10] homepage and proceeded in a breadth-first
manner. Overall, the total uncompressed size of our crawled Web
pages is approximately 1.9 TB, yielding a full inverted indexof
approximately 1.2 TB.

For the experiments reported in this section we used a real set
of queries issued to Looksmart [22] on a daily basis during April
of 2003. After keeping only the queries containing keywords that
were present in our inverted index, we were left with a set of about
462 million queries. Within our query set, the average number of
terms per query i and 98% of the queries contain at mdsérms.

Some experiments require us to use a particular ranking func-
tion. For these, we use the ranking function similar to the one used
in [20]. More precisely, our ranking functior( D, q) is

The above example shows that when a document does not appear

in one of the inverted list$(¢;) with ¢; € ¢, we cannot compute
its exact ranking score, but we can still computeuipper bound
score by using the threshold valag for the missing values. This
suggests the algorithm in Figure 10 that computes thestogsult

A from Ip together with the correctness indicator functi®nin
the algorithm, the correctness indicator functibis set to one only

if all documents in the tog- result.4 appear in all inverted lists
I(t;) with ¢; € ¢, so we know their exact score. In this case,

because these documents have scores higher than the upper boun

(D, q) = praorm (D) + trnorm(D, q) 3)

where priorm (D) is the normalized PageRank @ computed
from the downloaded pages and, (D, q) is the normalized
TF.IDF cosine distance db to ¢. This function is clearly simpler
than the real functions employed by commercial search engines,
but we believe for our evaluation this simple function is adequate,
because we are not studying the effectiveness of a ranking function,
t%]ut the effectiveness of pruning policies.

scores of any other documents, we know that no other documents5 1 Keyword pruning

can appear in the top- The following theorem formally proves the
correctness of the algorithm. In [11] Fagin et al., provides a similar
proof in the context of multimedia middleware.

Theorem 4 Given an inverted indeXp pruned by the algorithm
in Figure 9, a queryg = {t1,...,tw} and a monotonic ranking
function, the topk result from/» computed by Algorithm 4.6 is the
same as the top-result fromIr if C = 1. o
Proof Let us assumé);, is the k** ranked document computed
from Ip according to Algorithm 4.6. For every documet €
Ir that is not in the topk result fromIp, there are two possible
scenarios:

First, D; is not in the final answer because it was pruned from
all inverted listsI(¢;),1 < j < w, in Ip. In this case, we know
thatpr(D;) < mini<j<wp; < pr(Dy) and thatir(D;,t;) <
715 < tr(Dg,t;),1 < 7 < w. From the monotonicity assumption,
it follows that the ranking score d; isr(D;) < r(Dy). That is,
D;’s score can never be larger than thatf.

SecondD; is not in the answer becausg is pruned from some
inverted lists, sayl (¢1),...,I(tm),inIp. Letus assume(D;) =
flpor(D;) 1, .. Temitr(Di, tms1),. . . tr(Ds, tw)). Then, from
tr(D;,t;) < 1;(1 < 7 < m) and the monotonicity assumption,

In our first experiment we study the performance of the keyword
pruning, described in Section 4.2. More specifically, we apply
the algorithmH S of Figure 6 to our full index/r and create a
keyword-prunedg-indexp of sizes. For the construction of our
keyword-pruned p-index we used the query frequencies observed
during the first 10 days of our data set. Then, using the remaining
20-day query load, we measurgé(s), the fraction of queries han-
dled byIp. According to the algorithm of Figure 5, a query can be
handled byl » (i.e.,C = 1) if Ip includes the inverted lists fall
of the query’s keywords.

We have repeated the experiment for varying values, ick-
ing the keywords greedily as discussed in Section 4.2.The result is
shown in Figure 11. The horizontal axis denotes the sinéthe
p-index as a fraction of the size &f. The vertical axis shows the
fraction f(s) of the queries that the p-index of sizecan answer.
The results of Figure 11, are very encouraging: we can answer a
significant fraction of the queries with a small fraction of the orig-
inal index. For example, approximately 73% of the queries can be
answered using 30% of the original index. Also, we find that when
we use the keyword pruning policy only, the optimal index size is
s =0.17.
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5.2 Document pruning

We continue our experimental evaluation by studying the perfor- ) L .
mance of the various document pruning policies described in Sec- ~ Figure 15: Combining keyword and document pruning.
tion 4.3. For the experiments on document pruning reported here The horizontal axis shows the sizeof the p-index; the vertical
we worked with a 5.5% sample of the whole query set. The reason axis shows the fractioffi(s) of the queries whose top-20 results are
behind this is merely practical: since we have much less machinesidentical to the top-20 results of the full index, for a given size
compared to a commercial search engine it would take us about a By observing Figure 13, we can see tl@P R performs the
year of computation to process 482 million queries. worst of the three policies. On the other hai&’ S, picks up early,
For our first experiment, we generatd@ument-pruneg-index by answering a great fraction of queries (ab@Rfto) correctly with
of size s by using the Extended Keyword-Specific pruning (EKS) only 10% of the index size. The fraction of queries thdt R can
in Section 4. Within the p-index we measure the fraction of queries answer remains below that &fK S until abouts = 37%. For any
that can be guaranteed (according to Theorem 4) to be correct. Weindex size larger tha87%, L PR performs the best.
have performed the experiment for varying index sizemd the In the experiment of Figure 13, we applied the strict definition
result is shown in Figure 12. Based on this figure, we can see thatthat the results of the p-index have to be in the same order as the
our document pruning algorithm performs well across the scale of ones of the full index. However, in a practical scenario, it may
index sizes: for all index sizes larger that0%, we can guarantee  be acceptable to have some of the results out of order. Therefore,
the correct answer for about 70% of the queries. This implies that in our next experiment we will measure the fraction of the results
our EK S algorithm can successfully identify the necessary post- coming from an p-index that are contained within the results of the
ings for calculating the top-20 results for 70% of the queries by full index. The result of the experiment is shown on Figure 14. The
using at least 40% of the full index size. From the figure, we can horizontal axis is, again, the sizeof the p-index; the vertical axis
see that the optimal index size= 0.20 when we use EKS as our  shows the average fraction of the top-20 results common with the
pruning policy. top-20 results from the full index. Overall, Figure 14 depicts that
We can compare the two pruning schemes, namely the keyword FE K S andL P R identify the same highs¢ 96%) fraction of results
pruning andE K S, by contrasting Figures 11 and 12. Our obser- on average for any size> 30%, with G PR not too far behind.
vation is that, if we would have to pick one of the two pruning A _
policies, then the two policies seem to be more or less equivalent5'3 Combmmg keyWOI’d and document prun
for the p-index sizes < 20%. For the p-index sizes > 20%, ing
keyword pruning does a much better job as it provides a higher In Sections 5.1 and 5.2 we studied the individual performance
number of guarantees at any given index size. Later in Section 5.3,0f our keyword and document pruning schemes. One interesting

we discuss the combination of the two policies. question however is how do these policies perform in combina-
In our next experiment, we are interested in compatih S tion? What fraction of queries can we guarantee if we apply both

with the PR-based pruning policies described in Section 4.3. To keyword and document pruning in our full indéx?

this end, apart fronf’ .S, we also generatedbcument-pruneg- To answer this question, we performed the following experiment.

indexes for theGlobal pr-based pruning (GPRand thel.ocal pr- We started with the full indexr and we applied keyword pruning

based pruning (LPRpolicies. For each of the polices we created to create an index? of sizes;, - 100% of Ir. After that, we

document-pruned p-indexes of varying sizesSinceGPR and further applied document pruning &, and created our final p-

LPR cannot provide a correctness guarantee, we will compare theindexIp of sizes,, - 100% of I%. We then calculated the fraction of
fraction of queries from each policy that adentical(i.e. the same guaranteed queries ifp. We repeated the experiment for different
results in the same order) to the tbépesults calculated from the  values ofs;, ands,. The result is shown on Figure 15. The x-axis
full index. Here, we will report our results fdr = 20; the results shows the index size, after applying keyword pruning; the y-axis
are similar for other values &f The results are shownin Figure 13.  shows the index size, after applying document pruning; the z-axis
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