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ABSTRACT
The Web search engines maintain large-scale inverted indexes
which are queried thousands of times per second by users eager
for information. In order to cope with the vast amounts of query
loads, search engines prune their index to keep documents that are
likely to be returned as top results, and use this pruned index to
compute the first batches of results. While this approach can im-
prove performance by reducing the size of the index, if we compute
the top results only from the pruned index we may notice a signif-
icant degradation in the result quality: if a document should be in
the top results but was not included in the pruned index, it will be
placed behind the results computed from the pruned index. Given
the fierce competition in the online search market, this phenomenon
is clearly undesirable.

In this paper, we study how we can avoidany degradation of
result quality due to the pruning-based performance optimization,
while still realizing most of its benefit. Our contribution is a num-
ber of modifications in the pruning techniques for creating the
pruned index and a new result computation algorithm thatguar-
anteesthat the top-matching pages arealwaysplaced at the top
search results, even though we are computing the first batch from
the pruned index most of the time. We also show how to determine
the optimal size of a pruned index and we experimentally evaluate
our algorithms on a collection of130 million Web pages.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval

General Terms
Algorithms, Measuring, Performance, Design, Experimentation

Keywords
Inverted index, pruning, correctness guarantee, Web search engines

1. INTRODUCTION
The amount of information on the Web is growing at a prodigious

rate [24]. According to a recent study [13], it is estimated that the
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Web currently consists of more than 11 billion pages. Due to this
immense amount of available information, the users are becoming
more and more dependent on the Web search engines for locating
relevant information on the Web. Typically, the Web search en-
gines, similar to other information retrieval applications, utilize a
data structure calledinverted index. An inverted indexprovides for
the efficient retrieval of the documents (or Web pages) that contain
a particular keyword.

In most cases, a query that the user issues may have thousands
or even millions of matching documents. In order to avoid over-
whelming the users with a huge amount of results, the search en-
gines present the results in batches of10 to 20 relevant documents.
The user then looks through the first batch of results and, if she
doesn’t find the answer she is looking for, she may potentially re-
quest to view the next batch or decide to issue a new query.

A recent study [16] indicated that approximately 80% of the
users examine at most the first3 batches of the results. That is,
80% of the users typically view at most30 to 60 results for every
query that they issue to a search engine. At the same time, given the
size of the Web, the inverted index that the search engines maintain
can grow very large. Since the users are interested in a small num-
ber of results (and thus are viewing a small portion of the index for
every query that they issue), using an index that is capable of re-
turning all the results for a query may constitute a significant waste
in terms of time, storage space and computational resources, which
is bound to get worse as the Web grows larger over time [24].

One natural solution to this problem is to create a small index on
asubsetof the documents that are likely to be returned as the top re-
sults (by using, for example, the pruning techniques in [7, 20]) and
compute the first batch of answers using the pruned index. While
this approach has been shown to give significant improvement in
performance, it also leads to noticeable degradation in the quality of
the search results, because the top answers are computed only from
the pruned index [7, 20]. That is, even if a page should be placed as
the top-matching page according to a search engine’s ranking met-
ric, the page may be placed behind the ones contained in the pruned
index if the page did not become part of the pruned index for var-
ious reasons [7, 20]. Given the fierce competition among search
engines today this degradation is clearly undesirable and needs to
be addressed if possible.

In this paper, we study how we can avoidany degradation of
search quality due to the above performance optimization while
still realizing most of its benefit. That is, we present a number of
simple (yet important) changes in the pruning techniques for cre-
ating the pruned index. Our main contribution is a new answer
computation algorithm thatguaranteesthat the top-matching pages
(according to the search-engine’s ranking metric) arealwaysplaced
at the top of search results, even though we are computing the first
batch of answers from the pruned index most of the time. These
enhanced pruning techniques and answer-computation algorithms
are explored in the context of thecluster architecturecommonly
employed by today’s search engines. Finally, we study and present
how search engines can minimize the operational cost of answering
queries while providing high quality search results.
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Figure 1: (a) Search engine replicates its full indexIF to in-
crease query-answering capacity. (b) In the1st tier, small p-
indexesIP handle most of the queries. WhenIP cannot answer
a query, it is redirected to the2nd tier, where the full index IF

is used to compute the answer.
2. CLUSTER ARCHITECTURE AND COST

SAVINGS FROM A PRUNED INDEX
Typically, a search engine downloads documents from the Web

and maintains a localinverted indexthat is used to answer queries
quickly.

Inverted indexes. Assume that we have collected a set of doc-
umentsD = {D1, . . . , DM} and that we have extracted all the
termsT = {t1, . . . , tn} from the documents. For every single
termti ∈ T we maintain a listI(ti) of document IDs that contain
ti. Every entry inI(ti) is called a posting and can be extended to
include additional information, such as how many timesti appears
in a document, the positions ofti in the document, whetherti is
bold/italic, etc. The set of all the listsI = {I(t1), . . . , I(tn)} is
our inverted index.

2.1 Two-tier index architecture
Search engines are accepting an enormous number of queries

every day from eager users searching for relevant information. For
example, Google is estimated to answer more than250 million user
queries per day. In order to cope with this huge query load, search
engines typically replicate their index across a large cluster of ma-
chines as the following example illustrates:

Example 1 Consider a search engine that maintains a cluster of
machines as in Figure 1(a). The size of its full inverted indexIF

is larger than what can be stored in a single machine, so each copy
of IF is stored across four different machines. We also suppose
that one copy ofIF can handle the query load of 1000 queries/sec.
Assuming that the search engine gets 5000 queries/sec, it needs
to replicateIF five times to handle the load. Overall, the search
engine needs to maintain4 × 5 = 20 machines in its cluster. 2

While fully replicating the entire indexIF multiple times is a
straightforward way to scale to a large number of queries, typical
query loads at search engines exhibit certain localities, allowing for
significant reduction in cost by replicating only a small portion of
the full index. In principle, this is typically done by pruning a full
indexIF to create a smaller,pruned index (or p-index)IP , which
contains a subset of the documents that are likely to be returned as
top results.

Given the p-index, search engines operate by employing a two-
tier index architecture as we show in Figure 1(b): All incoming
queries are first directed to one of the p-indexes kept in the1st tier.
In the cases where a p-index cannot compute the answer (e.g. was
unable to find enough documents to return to the user) the query
is answered by redirecting it to the2nd tier, where we maintain
a full index IF . The following example illustrates the potential
reduction in the query-processing cost by employing this two-tier
index architecture.

Example 2 Assume the same parameter settings as in Example 1.
That is, the search engine gets a query load of 5000 queries/sec

Algorithm 2.1 Computation of answer with correctness guarantee
Input q = ({t1, . . . , tn}, [i, i + k]) where

{t1, . . . , tn}: keywords in the query
[i, i + k]: range of the answer to return

Procedure
(1) (A, C) = ComputeAnswer(q, IP )
(2) If (C = 1) Then
(3) ReturnA
(4) Else
(5) A = ComputeAnswer(q, IF )
(6) ReturnA

Figure 2: Computing the answer under the two-tier architec-
ture with the result correctness guarantee.
and every copy of an index (both the fullIF and p-indexIP ) can
handle up to 1000 queries/sec. Also assume that the size ofIP is
one fourth ofIF and thus can be stored on a single machine. Fi-
nally, suppose that the p-indexes can handle 80% of the user queries
by themselves and only forward the remaining 20% queries toIF .
Under this setting, since all 5000/sec user queries are first directed
to a p-index, five copies ofIP are needed in the1st tier. For the
2nd tier, since 20% (or 1000 queries/sec) are forwarded, we need
to maintain one copy ofIF to handle the load. Overall we need
a total of 9 machines (five machines for the five copies ofIP and
four machines for one copy ofIF ). Compared to Example 1, this
is more than50% reduction in the number of machines. 2

The above example demonstrates the potential cost saving
achieved by using a p-index. However, the two-tier architecture
may have a significant drawback in terms of its result quality com-
pared to the full replication ofIF ; given the fact that the p-index
contains only a subset of the data of the full index, it is possible that,
for some queries, the p-index may not contain the top-ranked docu-
ment according to the particular ranking criteria used by the search
engine and fail to return it as the top page, leading to noticeable
quality degradation in search results. Given the fierce competition
in the online search market, search engine operators desperately try
to avoid any reduction in search quality in order to maximize user
satisfaction.

2.2 Correctness guarantee under two-tier ar-
chitecture

How can we avoid the potential degradation of search quality
under the two-tier architecture? Our basic idea is straightforward:
We use the top-k result from the p-index only if we know for sure
that the result is the same as the top-k result from the full index.
The algorithm in Figure 2 formalizes this idea. In the algorithm,
when we compute the result fromIP (Step 1), we compute not
only the top-k resultA, but also thecorrectness indicator function
C defined as follows:

Definition 1 (Correctness indicator function) Given a queryq,
the p-indexIP returns the answerA together with a correctness
indicator functionC. C is set to 1 ifA is guaranteed to beidentical
(i.e. same results in the same order) to the result computed from
the full indexIF . If it is possible thatA is different,C is set to 0.2

Note that the algorithm returns the result fromIP (Step 3) only
when it is identical to the result fromIF (condition C = 1 in
Step 2). Otherwise, the algorithm recomputes and returns the re-
sult from the full indexIF (Step 5). Therefore, the algorithm is
guaranteed to return the same result as the full replication ofIF all
the time.

Now, the real challenge is to find out (1) how we can compute
the correctness indicator functionC and (2) how we should prune
the index to make sure that the majority of queries are handled by
IP alone.



Question 1 How can we compute the correctness indicator func-
tion C?

A straightforward way to calculateC is to compute the top-k an-
swer both fromIP andIF and compare them. This naive solution,
however, incurs a cost even higher than the full replication ofIF

because the answers are computedtwice: once fromIP and once
from IF . Is there any way to compute the correctness indicator
functionC only from IP without computing the answer fromIF ?

Question 2 How should we pruneIF to IP to realize the maximum
cost saving?

The effectiveness of Algorithm 2.1 critically depends on how
often the correctness indicator functionC is evaluated to be 1. If
C = 0 for all queries, for example, the answers to all queries will be
computed twice, once fromIP (Step 1) and once fromIF (Step 5),
so the performance will beworsethan the full replication ofIF .
What will be the optimal way to pruneIF to IP , such thatC = 1
for a large fraction of queries? In the next few sections, we try to
address these questions.

3. OPTIMAL SIZE OF THE P-INDEX
Intuitively, there exists a clear tradeoff between the size ofIP

and the fraction of queries thatIP can handle: WhenIP is large and
has more information, it will be able to handle more queries, but
the cost for maintaining and looking upIP will be higher. When
IP is small, on the other hand, the cost forIP will be smaller,
but more queries will be forwarded toIF , requiring us to maintain
more copies ofIF . Given this tradeoff, how should we determine
the optimal size ofIP in order to maximize the cost saving? To
find the answer, we start with a simple example.

Example 3 Again, consider a scenario similar to Example 1,
where the query load is 5000 queries/sec, each copy of an index
can handle 1000 queries/sec, and the full index spans across 4 ma-
chines. But now, suppose that if we pruneIF by 75% to IP1 (i.e.,
the size ofIP1 is 25% of IF ), IP1 can handle40% of the queries
(i.e., C = 1 for 40% of the queries). Also suppose that ifIF is
pruned by50% to IP2, IP2 can handle80% of the queries. Which
one of theIP1, IP2 is preferable for the1st-tier index?

To find out the answer, we first compute the number of machines
needed when we useIP1 for the1st tier. At the1st tier, we need 5
copies ofIP1 to handle the query load of 5000 queries/sec. Since
the size ofIP1 is25% of IF (that requires 4 machines), one copy of
IP1 requires one machine. Therefore, the total number of machines
required for the1st tier is5×1 = 5 (5 copies ofIP1 with 1 machine
per copy). Also, sinceIP1 can handle40% of the queries, the2nd

tier has to handle 3000 queries/sec (60% of the 5000 queries/sec),
so we need a total of3×4 = 12 machines for the2nd tier (3 copies
of IF with 4 machines per copy). Overall, when we useIP1 for the
1st tier, we need5 + 12 = 17 machines to handle the load. We
can do similar analysis when we useIP2 and see that a total of 14
machines are needed whenIP2 is used. Given this result, we can
conclude that usingIP2 is preferable. 2

The above example shows that the cost of the two-tier architec-
ture depends on two important parameters: the size of the p-index
and the fraction of the queries that can be handled by the1st tier
index alone. We uses to denote the size of the p-index relative to
IF (i.e., if s = 0.2, for example, the p-index is20% of the size of
IF ). We usef(s) to denote the fraction of the queries that a p-index
of sizes can handle (i.e., iff(s) = 0.3, 30% of the queries return
the valueC = 1 from IP ). In general, we can expect thatf(s) will
increase ass gets larger becauseIP can handle more queries as its
size grows. In Figure 3, we show an example graph off(s) overs.

Given the notation, we can state the problem of p-index-size op-
timization as follows. In formulating the problem, we assume that
the number of machines required to operate a two-tier architecture
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queriesf(s) at a given sizes of the p-index.

is roughly proportional to the total size of the indexes necessary to
handle the query load.

Problem 1 (Optimal index size)Given a query loadQ and the
function f(s), find the optimal p-index sizes that minimizes the
total size of the indexes necessary to handle the loadQ. 2

The following theorem shows how we can determine the optimal
index size.

Theorem 1 The cost for handling the query loadQ is minimal
when the size of the p-index,s, satisfiesd f(s)

d s
= 1. 2

Proof The proof of this and the following theorems is omitted due
to space constraints.

This theorem shows that the optimal point is when the slope of
the f(s) curve is 1. For example, in Figure 3, the optimal size
is whens = 0.16. Note that the exact shape of thef(s) graph
may vary depending on the query load and the pruning policy. For
example, even for the same p-index, if the query load changes sig-
nificantly, fewer (or more) queries may be handled by the p-index,
decreasing (or increasing)f(s). Similarly, if we use an effective
pruning policy, more queries will be handled byIP than when we
use an ineffective pruning policy, increasingf(s). Therefore, the
functionf(s) and the optimal-index size may change significantly
depending on the query load and the pruning policy. In our later ex-
periments, however, we find that even though the shape of thef(s)
graph changes noticeably between experiments, the optimal index
size consistently lies between 10%–30% in most experiments.

4. PRUNING POLICIES
In this section, we show how we should prune the full indexIF

to IP , so that (1) we can compute the correctness indicator function
C from IP itself and (2) we can handle a large fraction of queries
by IP . In designing the pruning policies, we note the following two
localities in the users’ search behavior:

1. Keyword locality: Although there are many different words
in the document collection that the search engine indexes, a
few popular keywords constitute the majority of the query
loads. Thiskeyword localityimplies that the search engine
will be able to answer a significant fraction of user queries
even if it can handle only these few popular keywords.

2. Document locality: Even if a query has millions of match-
ing documents, users typically look at only the first few re-
sults [16]. Thus, as long as search engines can compute the
first few top-k answers correctly, users often will not notice
that the search engine actually has not computed the correct
answer for the remaining results (unless the users explicitly
request them).

Based on the above two localities, we now investigate two differ-
ent types of pruning policies: (1) akeyword pruningpolicy, which
takes advantage of the keyword locality by pruning the whole in-
verted listI(ti) for unpopular keywordsti’s and (2) adocument
pruningpolicy, which takes advantage of the document locality by
keeping only a few postings in each listI(ti), which are likely to
be included in the top-k results.



As we discussed before, we need to be able to compute the cor-
rectness indicator function from the pruned index alone in order to
provide the correctness guarantee. Since the computation of cor-
rectness indicator function may critically depend on the particular
ranking function used by a search engine, we first clarify our as-
sumptions on the ranking function.

4.1 Assumptions on ranking function
Consider a queryq = {t1, t2, . . . , tw} that contains a subset

of the index terms. The goal of the search engine is to return the
documents that are most relevant to queryq. This is done in two
steps: first we use the inverted index to find all the documents that
contain the terms in the query. Second, once we have the rele-
vant documents, we calculate the rank (or score) of each one of the
documents with respect to the query and we return to the user the
documents that rank the highest.

Most of the major search engines today return documents con-
tainingall query terms (i.e. they use AND-semantics). In order to
make our discussions more concise, we will also assume the popu-
lar AND-semantics while answering a query. It is straightforward
to extend our results to OR-semantics as well. The exact ranking
function that search engines employ is a closely guarded secret.
What is known, however, is that the factors in determining the doc-
ument ranking can be roughly categorized into two classes:

Query-dependent relevance.This particular factor of relevance
captures how relevant the query is to every document. At a high
level, given a documentD, for every termti a search engine assigns
a term relevance scoretr(D, ti) to D. Given thetr(D, ti) scores
for everyti, then thequery-dependent relevanceof D to the query,
noted astr(D, q), can be computed by combining the individual
term relevance values. One popular way for calculating the query–
dependent relevance is to represent both the documentD and the
queryq using the TF.IDF vector space model [29] and employ a
cosine distancemetric.

Since the exact form oftr(D, ti) andtr(D, q) differs depend-
ing on the search engine, we will not restrict to any particular form;
instead, in order to make our work applicable in the general case,
we will make the generic assumption that the query-dependent rel-
evance iscomputed as a functionof the individual term relevance
values in the query:

tr(D, q) = ftr(tr(D, t1), . . . , tr(D, tw)) (1)

Query-independent document quality.This is a factor that mea-
sures the overall “quality” of a documentD independentof the par-
ticular query issued by the user. Popular techniques that compute
the general quality of a page include PageRank [26], HITS [17] and
the likelihood that the page is a “spam” page [25, 15]. Here, we
will use pr(D) to denote this query-independent part of the final
ranking function for documentD.

The final ranking scorer(D, q) of a document will depend on
both the query-dependent and query-independent parts of the rank-
ing function. The exact combination of these parts may be done in
a variety of ways. In general, we can assume that the final rank-
ing score of a document is afunctionof its query-dependent and
query-independent relevance scores. More formally:

r(D, q) = fr(tr(D, q), pr(D)) (2)

For example, fr(tr(D, q), pr(D)) may take the form
fr(tr(D, q), pr(D)) = α · tr(D, q) + (1 − α) · pr(D),
thus giving weightα to the query-dependent part and the weight
1 − α to the query-independent part.

In Equations 1 and 2 the exact form offr andftr can vary de-
pending on the search engine. Therefore, to make our discussion
applicable independent of the particular ranking function used by
search engines, in this paper, we will make only the generic as-
sumption that the ranking functionr(D, q) is monotonic on its pa-
rameterstr(D, t1), . . . , tr(D, tw) andpr(D).

t1 → D1 D2 D3 D4 D5 D6
t2 → D1 D2 D3
t3 → D3 D5 D7 D8
t4 → D4 D10
t5 → D6 D8 D9

Figure 4: Keyword and document pruning.

Algorithm 4.1 Computation ofC for keyword pruning
Procedure
(1) C = 1
(2) Foreachti ∈ q
(3) If (I(ti) /∈ IP ) ThenC = 0
(4) ReturnC

Figure 5: Result guarantee in keyword pruning.
Definition 2 A function f(α, β, . . . , ω) is monotonic if∀α1 ≥
α2, ∀β1 ≥ β2, . . . ∀ω1 ≥ ω2 it holds that:f(α1, β1, . . . , ω1) ≥
f(α2, β2, . . . , ω2).

Roughly, the monotonicity of the ranking function implies that,
between two documentsD1 and D2, if D1 has higher query-
dependent relevance thanD2 and also a higher query-independent
score thanD2, thenD1 should be ranked higher thanD2, which
we believe is a reasonable assumption in most practical settings.

4.2 Keyword pruning
Given our assumptions on the ranking function, we now investi-

gate the “keyword pruning” policy, which prunes the inverted index
IF “horizontally” by removing the wholeI(ti)’s corresponding to
the least frequent terms. In Figure 4 we show a graphical represen-
tation of keyword pruning, where we remove the inverted lists for
t3 andt5, assuming that they do not appear often in the query load.

Note that after keyword pruning, if all keywords{t1, . . . , tn} in
the queryq appear inIP , the p-index has the same information as
IF as long asq is concerned. In other words, if all keywords inq
appear inIP , the answer computed fromIP is guaranteed to be the
same as the answer computed fromIF . Figure 5 formalizes this
observation and computes the correctness indicator functionC for
a keyword-pruned indexIP . It is straightforward to prove that the
answer fromIP is identical to that fromIF if C = 1 in the above
algorithm.

We now consider the issue of optimizing theIP such that it can
handle the largest fraction of queries. This problem can be formally
stated as follows:
Problem 2 (Optimal keyword pruning) Given the query loadQ
and a goal index sizes · |IF | for the pruned index, select the in-
verted listsIP = {I(t1), . . . , I(th)} such that|IP | ≤ s · |IF | and
the fraction of queries thatIP can answer (expressed byf(s)) is
maximized. 2

Unfortunately, the optimal solution to the above problem is in-
tractable as we can show by reducing from knapsack (we omit the
complete proof).
Theorem 2 The problem of calculating the optimal keyword prun-
ing is NP-hard. 2

Given the intractability of the optimal solution, we need to resort
to an approximate solution. A common approach for similar knap-
sack problems is to adopt a greedy policy by keeping the items
with the maximum benefit per unit cost[9]. In our context, the
potential benefit of an inverted listI(ti) is the number of queries
that can be answered byIP when I(ti) is included inIP . We
approximate this number by the fraction of queries in the query
loadQ that include the termti and represent it asP (ti). For ex-
ample, if 100 out of 1000 queries contain the termcomputer,



Algorithm 4.2 Greedy keyword pruningHS

Procedure
(1) ∀ti, calculateHS(ti) =

P (ti)
|I(ti)|

.

(2) Include the inverted lists with the highest
HS(ti) values such that|IP | ≤ s · |IF |.

Figure 6: Approximation algorithm for the optimal keyword
pruning.

Algorithm 4.3 Global document pruningV SG

Procedure
(1) Sort all documentsDi based onpr(Di)
(2) Find the threshold valueτp, such that

onlys fraction of the documents havepr(Di) > τp

(4) KeepDi in the inverted lists ifpr(Di) > τp

Figure 7: Global document pruning based onpr.
thenP (computer) = 0.1. The cost of includingI(ti) in the p-
index is its size|I(ti)|. Thus, in our greedy approach in Figure 6,
we includeI(ti)’s in the decreasing order ofP (ti)/|I(ti)| as long
as |IP | ≤ s · |IF |. Later in our experiment section, we evaluate
what fraction of queries can be handled byIP when we employ
this greedy keyword-pruning policy.

4.3 Document pruning
At a high level,document pruningtries to take advantage of the

observation that most users are mainly interested in viewing the
top few answers to a query. Given this, it is unnecessary to keep
all postings in an inverted listI(ti), because users will not look at
most of the documents in the list anyway. We depict the conceptual
diagram of the document pruning policy in Figure 4. In the figure,
we “vertically prune” postings corresponding toD4, D5 andD6 of
t1 andD8 of t3, assuming that these documents are unlikely to be
part of top-k answers to user queries. Again, our goal is to develop
a pruning policy such that (1) we can compute the correctness in-
dicator functionC from IP alone and (2) we can handle the largest
fraction of queries withIP . In the next few sections, we discuss a
few alternative approaches for document pruning.
4.3.1 Global PR-based pruning

We first investigate the pruning policy that is commonly used by
existing search engines. The basic idea for this pruning policy is
that the query-independent quality scorepr(D) is a very important
factor in computing the final ranking of the document (e.g. PageR-
ank is known to be one of the most important factors determining
the overall ranking in the search results), so we build the p-index
by keeping only those documents whosepr values are high (i.e.,
pr(D) > τp for a threshold valueτp). The hope is that most of
the top-ranked results are likely to have highpr(D) values, so the
answer computed from this p-index is likely to be similar to the an-
swer computed from the full index. Figure 7 describes this pruning
policy more formally, where we sort all documentsDi’s by their
respectivepr(Di) values and keep aDi in the p-index when its

Algorithm 4.4 Local document pruningV SL

N: maximum size of a single posting list
Procedure
(1) ForeachI(ti) ∈ IF

(2) SortDi’s in I(ti) based onpr(Di)
(3) If |I(ti)| ≤ N Then keep allDi’s
(4) Else keep the top-N Di’s with the highestpr(Di)

Figure 8: Local document pruning based onpr.

Algorithm 4.5 Extended keyword-specific document pruning
Procedure
(1) For eachI(ti)
(2) KeepD ∈ I(ti) if pr(D) > τpi or tr(D, ti) > τti

Figure 9: Extended keyword-specific document pruning based
on pr and tr.
pr(Di) value is higher than theglobal thresholdvalueτp. We refer
to this pruning policy asglobal PR-based pruning (GPR).

Variations of this pruning policy are possible. For example, we
may adjust the threshold valueτp locally for each inverted list
I(ti), so that we maintainat least a certain number of postings
for each inverted listI(ti). This policy is shown in Figure 8. We
refer to this pruning policy aslocal PR-based pruning (LPR). Un-
fortunately, the biggest shortcoming of this policy is that we can
prove that we cannot compute the correctness functionC from IP

alone whenIP is constructed this way.
Theorem 3 No PR-based document pruning can provide the result
guarantee. 2

Proof Assume we createIP based on the GPR policy (general-
izing the proof to LPR is straightforward) and that every docu-
ment D with pr(D) > τp is included inIP . Assume that the
kth entry in the top-k results, has a ranking score ofr(Dk, q) =
fr(tr(Dk, q), pr(Dk)). Now consider another documentDj that
was pruned fromIP becausepr(Dj) < τp. Even so, it is still
possible that the document’str(Dj , q) value is very high such that
r(Dj , q) = fr(tr(Dj , q), pr(Dj)) > r(Dk, q). �

Therefore, under a PR-based pruning policy, the quality of the an-
swer computed fromIP can be significantly worse than that from
IF and it is not possible to detect this degradation without comput-
ing the answer fromIF . In the next section, we propose simple yet
essential changes to this pruning policy that allows us to compute
the correctness functionC from IP alone.

4.3.2 Extended keyword-specific pruning
The main problem of global PR-based document pruning poli-

cies is that we do not know the term-relevance scoretr(D, ti) of
the pruned documents, so a document not inIP may have a higher
ranking score than the ones returned fromIP because of their high
tr scores.

Here, we propose a new pruning policy, calledextended
keyword-specific document pruning (EKS), which avoids this prob-
lem by pruning not just based on the query-independentpr(D)
score but also based on the term-relevancetr(D, ti) score. That
is, for every inverted listI(ti), we pick two threshold values,τpi

for pr andτti for tr, such that if a documentD ∈ I(ti) satisfies
pr(D) > τpi or tr(D, ti) > τti, we include it inI(ti) of IP .
Otherwise, we prune it fromIP . Figure 9 formally describes this
algorithm. The threshold values,τpi andτti, may be selected in
a number of different ways. For example, ifpr andtr have equal
weight in the final ranking and if we want to keep at mostN post-
ings in each inverted listI(ti), we may want to set the two thresh-
old values equal toτi (τpi = τti = τi) and adjustτi such thatN
postings remain inI(ti).

This new pruning policy, when combined with a monotonic scor-
ing function, enables us to compute the correctness indicator func-
tion C from the pruned index. We use the following example to
explain how we may computeC.

Example 4 Consider the queryq = {t1, t2} and a monotonic
ranking function,f(pr(D), tr(D, t1), tr(D, t2)). There are three
possible scenarios on how a documentD appears in the pruned
indexIP .

1. D appears in bothI(t1) and I(t2) of IP : Since complete
information ofD appears inIP , we can compute the exact



Algorithm 4.6 Computing Answer fromIP

Input Queryq = {t1, . . . , tw}
OutputA: top-k result,C: correctness indicator function
Procedure
(1) For eachDi ∈ I(t1) ∪ · · · ∪ I(tw)
(2) For eachtm ∈ q
(3) If Di ∈ I(tm)
(4) tr∗(Di, tm) = tr(Di, tm)
(5) Else
(6) tr∗(Di, tm) = τtm

(7) f(Di) = f(pr(Di), tr
∗(Di, t1), . . . , tr∗(Di, tn))

(8) A = top-k Di’s with highestf(Di) values

(9) C =



1 if all Di ∈ A appear in allI(ti), ti ∈ q
0 otherwise

Figure 10: Ranking based on thresholdstrτ (ti) and prτ (ti).

score ofD based onpr(D), tr(D, t1) andtr(D, t2) values
in IP : f(pr(D), tr(D, t1), tr(D, t2)).

2. D appears only inI(t1) but not in I(t2): SinceD does
not appear inI(t2), we do not knowtr(D, t2), so we can-
not compute its exact ranking score. However, from our
pruning criteria, we know thattr(D, t2) cannot be larger
than the threshold valueτt2. Therefore, from the mono-
tonicity of f (Definition 2), we know that the ranking score
of D, f(pr(D), tr(D, t1), tr(D, t2)), cannot be larger than
f(pr(D), tr(D, t1), τt2).

3. D does not appear in any list: SinceD does not appear
at all in IP , we do not know any of thepr(D), tr(D, t1),
tr(D, t2) values. However, from our pruning criteria, we
know thatpr(D) ≤ τp1 and≤ τp2 and thattr(D, t1) ≤ τt1

andtr(D, t2) ≤ τt2. Therefore, from the monotonicity off ,
we know that the ranking score ofD, cannot be larger than
f(min(τp1, τp2), τt1, τt2). 2

The above example shows that when a document does not appear
in one of the inverted listsI(ti) with ti ∈ q, we cannot compute
its exact ranking score, but we can still compute itsupper bound
score by using the threshold valueτti for the missing values. This
suggests the algorithm in Figure 10 that computes the top-k result
A from IP together with the correctness indicator functionC. In
the algorithm, the correctness indicator functionC is set to one only
if all documents in the top-k resultA appear in all inverted lists
I(ti) with ti ∈ q, so we know their exact score. In this case,
because these documents have scores higher than the upper bound
scores of any other documents, we know that no other documents
can appear in the top-k. The following theorem formally proves the
correctness of the algorithm. In [11] Fagin et al., provides a similar
proof in the context of multimedia middleware.
Theorem 4 Given an inverted indexIP pruned by the algorithm
in Figure 9, a queryq = {t1, . . . , tw} and a monotonic ranking
function, the top-k result fromIP computed by Algorithm 4.6 is the
same as the top-k result fromIF if C = 1. 2

Proof Let us assumeDk is thekth ranked document computed
from IP according to Algorithm 4.6. For every documentDi ∈
IF that is not in the top-k result fromIP , there are two possible
scenarios:

First, Di is not in the final answer because it was pruned from
all inverted listsI(tj), 1 ≤ j ≤ w, in IP . In this case, we know
that pr(Di) ≤ min1≤j≤wτpj < pr(Dk) and thattr(Di, tj) ≤
τtj < tr(Dk, tj), 1 ≤ j ≤ w. From the monotonicity assumption,
it follows that the ranking score ofDI is r(Di) < r(Dk). That is,
Di’s score can never be larger than that ofDk.

Second,Di is not in the answer becauseDi is pruned from some
inverted lists, say,I(t1), . . . , I(tm), in IP . Let us assumēr(Di) =
f(pr(Di),τt1,. . . ,τtm,tr(Di, tm+1),. . . ,tr(Di, tw)). Then, from
tr(Di, tj) ≤ τtj(1 ≤ j ≤ m) and the monotonicity assumption,
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Figure 11: Fraction of guaranteed queriesf(s) answered in a
keyword-pruned p-index of sizes.
we know thatr(Di) ≤ r̄(Di). Also, Algorithm 4.6 setsC =
1 only when the top-k documents have scores larger thanr̄(Di).
Therefore,r(Di) cannot be larger thanr(Dk). �

5. EXPERIMENTAL EVALUATION
In order to perform realistic tests for our pruning policies, we

implemented a search engine prototype. For the experiments in this
paper, our search engine indexed about130 million pages, crawled
from the Web during March of 2004. The crawl started from the
Open Directory’s [10] homepage and proceeded in a breadth-first
manner. Overall, the total uncompressed size of our crawled Web
pages is approximately 1.9 TB, yielding a full inverted indexIF of
approximately 1.2 TB.

For the experiments reported in this section we used a real set
of queries issued to Looksmart [22] on a daily basis during April
of 2003. After keeping only the queries containing keywords that
were present in our inverted index, we were left with a set of about
462 million queries. Within our query set, the average number of
terms per query is2 and 98% of the queries contain at most5 terms.

Some experiments require us to use a particular ranking func-
tion. For these, we use the ranking function similar to the one used
in [20]. More precisely, our ranking functionr(D, q) is

r(D, q) = prnorm(D) + trnorm(D, q) (3)

whereprnorm(D) is the normalized PageRank ofD computed
from the downloaded pages andtrnorm(D, q) is the normalized
TF.IDF cosine distance ofD to q. This function is clearly simpler
than the real functions employed by commercial search engines,
but we believe for our evaluation this simple function is adequate,
because we are not studying the effectiveness of a ranking function,
but the effectiveness of pruning policies.

5.1 Keyword pruning
In our first experiment we study the performance of the keyword

pruning, described in Section 4.2. More specifically, we apply
the algorithmHS of Figure 6 to our full indexIF and create a
keyword-prunedp-indexIP of sizes. For the construction of our
keyword-pruned p-index we used the query frequencies observed
during the first 10 days of our data set. Then, using the remaining
20-day query load, we measuredf(s), the fraction of queries han-
dled byIP . According to the algorithm of Figure 5, a query can be
handled byIP (i.e.,C = 1) if IP includes the inverted lists forall
of the query’s keywords.

We have repeated the experiment for varying values ofs, pick-
ing the keywords greedily as discussed in Section 4.2.The result is
shown in Figure 11. The horizontal axis denotes the sizes of the
p-index as a fraction of the size ofIF . The vertical axis shows the
fractionf(s) of the queries that the p-index of sizes can answer.
The results of Figure 11, are very encouraging: we can answer a
significant fraction of the queries with a small fraction of the orig-
inal index. For example, approximately 73% of the queries can be
answered using 30% of the original index. Also, we find that when
we use the keyword pruning policy only, the optimal index size is
s = 0.17.
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document-pruned p-index of sizes.
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Figure 13: Fraction of queries answered in a document-pruned
p-index of sizes.
5.2 Document pruning

We continue our experimental evaluation by studying the perfor-
mance of the various document pruning policies described in Sec-
tion 4.3. For the experiments on document pruning reported here
we worked with a 5.5% sample of the whole query set. The reason
behind this is merely practical: since we have much less machines
compared to a commercial search engine it would take us about a
year of computation to process all462 million queries.

For our first experiment, we generate adocument-prunedp-index
of sizes by using the Extended Keyword-Specific pruning (EKS)
in Section 4. Within the p-index we measure the fraction of queries
that can be guaranteed (according to Theorem 4) to be correct. We
have performed the experiment for varying index sizess and the
result is shown in Figure 12. Based on this figure, we can see that
our document pruning algorithm performs well across the scale of
index sizess: for all index sizes larger than40%, we can guarantee
the correct answer for about 70% of the queries. This implies that
our EKS algorithm can successfully identify the necessary post-
ings for calculating the top-20 results for 70% of the queries by
using at least 40% of the full index size. From the figure, we can
see that the optimal index sizes = 0.20 when we use EKS as our
pruning policy.

We can compare the two pruning schemes, namely the keyword
pruning andEKS, by contrasting Figures 11 and 12. Our obser-
vation is that, if we would have to pick one of the two pruning
policies, then the two policies seem to be more or less equivalent
for the p-index sizess ≤ 20%. For the p-index sizess > 20%,
keyword pruning does a much better job as it provides a higher
number of guarantees at any given index size. Later in Section 5.3,
we discuss the combination of the two policies.

In our next experiment, we are interested in comparingEKS
with the PR-based pruning policies described in Section 4.3. To
this end, apart fromEKS, we also generateddocument-prunedp-
indexes for theGlobal pr-based pruning (GPR)and theLocal pr-
based pruning (LPR)policies. For each of the polices we created
document-pruned p-indexes of varying sizess. SinceGPR and
LPR cannot provide a correctness guarantee, we will compare the
fraction of queries from each policy that areidentical(i.e. the same
results in the same order) to the top-k results calculated from the
full index. Here, we will report our results fork = 20; the results
are similar for other values ofk. The results are shown in Figure 13.
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Fraction of queries guaranteed for top-20 per fraction of index, using keyword and document
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Figure 15: Combining keyword and document pruning.
The horizontal axis shows the sizes of the p-index; the vertical
axis shows the fractionf(s) of the queries whose top-20 results are
identical to the top-20 results of the full index, for a given sizes.

By observing Figure 13, we can see thatGPR performs the
worst of the three policies. On the other handEKS, picks up early,
by answering a great fraction of queries (about62%) correctly with
only 10% of the index size. The fraction of queries thatLPR can
answer remains below that ofEKS until abouts = 37%. For any
index size larger than37%, LPR performs the best.

In the experiment of Figure 13, we applied the strict definition
that the results of the p-index have to be in the same order as the
ones of the full index. However, in a practical scenario, it may
be acceptable to have some of the results out of order. Therefore,
in our next experiment we will measure the fraction of the results
coming from an p-index that are contained within the results of the
full index. The result of the experiment is shown on Figure 14. The
horizontal axis is, again, the sizes of the p-index; the vertical axis
shows the average fraction of the top-20 results common with the
top-20 results from the full index. Overall, Figure 14 depicts that
EKS andLPR identify the same high (≈ 96%) fraction of results
on average for any sizes ≥ 30%, with GPR not too far behind.

5.3 Combining keyword and document prun-
ing

In Sections 5.1 and 5.2 we studied the individual performance
of our keyword and document pruning schemes. One interesting
question however is how do these policies perform in combina-
tion? What fraction of queries can we guarantee if we apply both
keyword and document pruning in our full indexIF ?

To answer this question, we performed the following experiment.
We started with the full indexIF and we applied keyword pruning
to create an indexIh

P of size sh · 100% of IF . After that, we
further applied document pruning toIh

P , and created our final p-
indexIP of sizesv ·100% of Ih

P . We then calculated the fraction of
guaranteed queries inIP . We repeated the experiment for different
values ofsh andsv. The result is shown on Figure 15. The x-axis
shows the index sizesh after applying keyword pruning; the y-axis
shows the index sizesv after applying document pruning; the z-axis



shows the fraction of guaranteed queries after the two prunings. For
example the point (0.2, 0.3, 0.4) means that if we apply keyword
pruning and keep20% of IF , and subsequently on the resulting
index we apply document pruning keeping30% (thus creating a p-
index of size20% ·30% = 6% of IF ) we can guarantee40% of the
queries. By observing Figure 15, we can see that for p-index sizes
smaller than50%, our combined pruning does relatively well. For
example, by performing40% keyword and40% document pruning
(which translates to a pruned index withs = 0.16) we can provide
a guarantee for about60% of the queries. In Figure 15, we also
observe a “plateau” forsh > 0.5 andsv > 0.5. For this combined
pruning policy, the optimal index size is ats = 0.13, with sh =
0.46 andsv = 0.29.

6. RELATED WORK
[3, 30] provide a good overview ofinverted indexingin Web

search engines and IR systems. Experimental studies and analyses
of variouspartitioning schemesfor an inverted index are presented
in [6, 23, 33]. The pruning algorithms that we have presented in
this paper are independent of the partitioning scheme used.

The works in [1, 5, 7, 20, 27] are the most related to ours, as they
describe pruning techniques based on the idea of keeping the post-
ings that contribute the most in the final ranking. However, [1, 5, 7,
27] do not consider any query-independent quality (such as PageR-
ank) in the ranking function. [32] presents a generic framework
for computing approximate top-k answers with some probabilistic
bounds on the quality of results. Our work essentially extends [1,
2, 4, 7, 20, 27, 31] by proposing mechanisms for providing the
correctness guarantee to the computed top-k results.

Search engines use various methods ofcachingas a means of re-
ducing the cost associated with queries [18, 19, 21, 31]. This thread
of work is also orthogonal to ours because a caching scheme may
operate on top of our p-index in order to minimize the answer com-
putation cost. The exactranking functionsemployed by current
search engines are closely guarded secrets. In general, however,
the rankings are based on query-dependent relevance and query-
independent document “quality.” Query-dependent relevance can
be calculated in a variety of ways (see [3, 30]). Similarly, there are a
number of works that measure the “quality” of the documents, typ-
ically as captured through link-based analysis [17, 28, 26]. Since
our work does not assume a particular form of ranking function, it
is complementary to this body of work.

There has been a great body of work ontop-k result calculation.
The main idea is to either stop the traversal of the inverted lists
early, or to shrink the lists by pruning postings from the lists [14,
4, 11, 8]. Our proof for the correctness indicator function was pri-
marily inspired by [12].

7. CONCLUDING REMARKS
Web search engines typically prune their large-scale inverted in-

dexes in order to scale to enormous query loads. While this ap-
proach may improve performance, by computing the top results
from a pruned index we may notice a significant degradation in
the result quality. In this paper, we provided a framework for
new pruning techniques and answer computation algorithms that
guaranteethat the top matching pages arealwaysplaced at the
top of search results in the correct order. We studied two pruning
techniques, namely keyword-based and document-based pruning as
well as their combination. Our experimental results demonstrated
that our algorithms can effectively be used to prune an inverted
index without degradation in the quality of results. In particular, a
keyword-pruned index can guarantee 73% of the queries with a size
of 30% of the full index, while a document-pruned index can guar-
antee 68% of the queries with the same size. When we combine the
two pruning algorithms we can guarantee 60% of the queries with
an index size of 16%. It is our hope that our work will help search
engines develop better, faster and more efficient indexes and thus
provide for a better user search experience on the Web.

8. REFERENCES
[1] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with

effective early termination. InSIGIR, 2001.
[2] V. N. Anh and A. Moffat. Pruning strategies for mixed-mode

querying. InCIKM, 2006.
[3] R. A. Baeza-Yates and B. A. Ribeiro-Neto.Modern Information

Retrieval. ACM Press / Addison-Wesley, 1999.
[4] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over

web-accessible databases. InICDE, 2002.
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