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Abstract

An ever-increasing amount of information on the Web today is available only
through search interfaces: the users have to type in a set of keywords in a search
form in order to access the pages from certain Web sites. These pages are often
referred to as the Hidden Web or the Deep Web. Since there are no static links to
the Hidden Web pages, search engines cannot discover and index such pages and
thus do not return them in the results. However, according to recent studies, the
content provided by many Hidden Web sites is often of very high quality and can
be extremely valuable to many users.

In this paper, we study how we can build an effective Hidden Web crawler that
can autonomously discover and download pages from the Hidden Web. Since the
only “entry point” to a Hidden Web site is a query interface, the main challenge
that a Hidden Web crawler has to face is how to automatically generate meaningful
queries to issue to the site. Here, we provide a theoretical framework to investigate
the query generation problem for the Hidden Web and we propose effective poli-
cies for generating queries automatically. Our policies proceed iteratively, issuing
a different query in every iteration. We experimentally evaluate the effectiveness
of these policies on 4 real Hidden Web sites and our results are very promising.
For instance, in one experiment, one of our policies downloaded more than 90%
of a Hidden Web site (that contains 14 million documents) after issuing fewer than
100 queries.

1 Introduction

Recent studies show that a significant fraction of Web content cannot be reached by
following links [7, 12]. In particular, a large part of the Web is “hidden” behind search
forms and is reachable only when users type in a set of keywords, or queries, to the
forms. These pages are often referred to as the Hidden Web [17] or the Deep Web [7],
because search engines typically cannot index the pages and do not return them in their
results (thus, the pages are essentially “hidden” from a typical Web user).

According to many studies, the size of the Hidden Web increases rapidly as more
organizations put their valuable content online through an easy-to-use Web interface [7].
In [12], Chang et al. estimate that well over 100,000 Hidden-Web sites currently exist
on the Web. Moreover, the content provided by many Hidden-Web sites is often of very
high quality and can be extremely valuable to many users [7]. For example, PubMed



hosts many high-quality papers on medical research that were selected from careful
peer-review processes, while the site of the US Patent and Trademarks Office * makes
existing patent documents available, helping potential inventors examine “prior art.”

In this paper, we study how we can build a Hidden-Web crawler? that can automat-

ically download pages from the Hidden Web, so that search engines can index them.
Conventional crawlers rely on the hyperlinks on the Web to discover pages, so current
search engines cannot index the Hidden-Web pages (due to the lack of links). We be-
lieve that an effective Hidden-Web crawler can have a tremendous impact on how users
search information on the Web:

e Tapping into unexplored information: The Hidden-Web
crawler will allow an average Web user to easily explore the vast amount of
information that is mostly “hidden” at present. Since a majority of Web users
rely on search engines to discover pages, when pages are not indexed by search
engines, they are unlikely to be viewed by many Web users. Unless users go di-
rectly to Hidden-Web sites and issue queries there, they cannot access the pages
at the sites.

e Improving user experience: Even if a user is aware of a number of Hidden-
Web sites, the user still has to waste a significant amount of time and effort,
visiting all of the potentially relevant sites, querying each of them and exploring
the result. By making the Hidden-Web pages searchable at a central location, we
can significantly reduce the user’s wasted time and effort in searching the Hidden
Web.

e Reducing potential bias: Due to the heavy reliance of many Web users on search
engines for locating information, search engines influence how the users perceive
the Web [25]. Users do not necessarily perceive what actually exists on the Web,
but what is indexed by search engines [25]. According to a recent article [5],
several organizations have recognized the importance of bringing information of
their Hidden Web sites onto the surface, and committed considerable resources
towards this effort. Our Hidden-Web crawler attempts to automate this process
for Hidden Web sites with textual content, thus minimizing the associated costs
and effort required.

Given that the only “entry” to Hidden Web pages is through querying a search
form, there are two core challenges to implementing an effective Hidden Web crawler:
(a) The crawler has to be able to understand and model a query interface, and (b) The
crawler has to come up with meaningful queries to issue to the query interface. The
first challenge was addressed by Raghavan and Garcia-Molina in [26], where a method
for learning search interfaces was presented. Here, we present a solution to the second
challenge, i.e. how a crawler can automatically generate queries so that it can discover
and download the Hidden Web pages.

Clearly, when the search forms list all possible values for a query (e.g., through
a drop-down list), the solution is straightforward. We exhaustively issue all possible
queries, one query at a time. When the query forms have a “free text” input, however,
an infinite number of queries are possible, so we cannot exhaustively issue all possible

1US Patent Offi ce: ht t p: / / www. uspt o. gov
2Crawlers are the programs that traverse the Web automatically and download pages for search engines.
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Figure 1: A single-attribute search interface
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Figure 2: A multi-attribute search interface

queries. In this case, what queries should we pick? Can the crawler automatically come
up with meaningful queries without understanding the semantics of the search form?

In this paper, we provide a theoretical framework to investigate the Hidden-Web
crawling problem and propose effective ways of generating queries automatically. We
also evaluate our proposed solutions through experiments conducted on real Hidden-
Web sites. In summary, this paper makes the following contributions:

o We present a formal framework to study the problem of Hidden-Web crawling.
(Section 2).

e We investigate a number of crawling policies for the Hidden Web, including
the optimal policy that can potentially download the maximum number of pages
through the minimum number of interactions. Unfortunately, we show that the
optimal policy is NP-hard and cannot be implemented in practice (Section 2.2).

e We propose a new adaptive policy that approximates the optimal policy. Our
adaptive policy examines the pages returned from previous queries and adapts
its query-selection policy automatically based on them (Section 3).

e We evaluate various crawling policies through experiments on real Web sites.
Our experiments will show the relative advantages of various crawling poli-
cies and demonstrate their potential. The results from our experiments are very
promising. In one experiment, for example, our adaptive policy downloaded
more than 90% of the pages within PubMed (that contains 14 million documents)
after it issued fewer than 100 queries.

2 Framework

In this section, we present a formal framework for the study of the Hidden-Web crawl-
ing problem. In Section 2.1, we describe our assumptions on Hidden-Web sites and
explain how users interact with the sites. Based on this interaction model, we present a
high-level algorithm for a Hidden-Web crawler in Section 2.2. Finally in Section 2.3,
we formalize the Hidden-Web crawling problem.
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(a) List of matching pages for query
“liver”. (b) The first matching page for “liver”.

Figure 3: Pages from the PubMed Web site.

2.1 Hidden-Web database model

There exists a variety of Hidden Web sources that provide information on a multitude
of topics. Depending on the type of information, we may categorize a Hidden-Web
site either as a textual database or a structured database. A textual database is a site
that mainly contains plain-text documents, such as PubMed and Lexis-Nexis (an on-
line database of legal documents [1]). Since plain-text documents do not usually have
well-defined structure, most textual databases provide a simple search interface where
users type a list of keywords in a single search box (Figure 1). In contrast, a struc-
tured database often contains multi-attribute relational data (e.g., a book on the Ama-
zon Web site may have the fields titl e="Harry Potter’, author="J.K
Rowl i ng’ and i sbn=" 0590353403’ ) and supports multi-attribute search inter-
faces (Figure 2). In this paper, we will mainly focus on textual databases that support
single-attribute keyword queries. We discuss how we can extend our ideas for the
textual databases to multi-attribute structured databases in Section 6.1.

Typically, the users need to take the following steps in order to access pages in a
Hidden-Web database:

1. Step 1. First, the user issues a query, say “liver,” through the search interface

provided by the Web site (such as the one shown in Figure 1).

2. Step 2. Shortly after the user issues the query, she is presented with a result
index page. That is, the Web site returns a list of links to potentially relevant
Web pages, as shown in Figure 3(a).

3. Step 3. From the list in the result index page, the user identifies the pages that
look “interesting” and follows the links. Clicking on a link leads the user to the
actual Web page, such as the one shown in Figure 3(b), that the user wants to
look at.

2.2 A generic Hidden Web crawling algorithm

Given that the only “entry” to the pages in a Hidden-Web site is its search from, a
Hidden-Web crawler should follow the three steps described in the previous section.
That is, the crawler has to generate a query, issue it to the Web site, download the result
index page, and follow the links to download the actual pages. In most cases, a crawler
has limited time and network resources, so the crawler repeats these steps until it uses
up its resources.



Algorithm 2.1 Crawling a Hidden Web site

Procedure
(1) while ( there are available resources ) do

/I select a term to send to the site

2 q; = SelectTerm()
// send query and acquire result index page
(3) R(q;) = QueryWebSite( g; )
[/l download the pages of interest
4) Download( R(g;) )
(5) done

Figure 4: Algorithm for crawling a Hidden Web site.

In Figure 4 we show the generic algorithm for a Hidden-Web crawler. For sim-
plicity, we assume that the Hidden-Web crawler issues single-term queries only. The
crawler first decides which query term it is going to use (Step (2)), issues the query,
and retrieves the result index page (Step (3)). Finally, based on the links found on the
result index page, it downloads the Hidden Web pages from the site (Step (4)). This
same process is repeated until all the available resources are used up (Step (1)).

Given this algorithm, we can see that the most critical decision that a crawler has
to make is what query to issue next. If the crawler can issue successful queries that
will return many matching pages, the crawler can finish its crawling early on using
minimum resources. In contrast, if the crawler issues completely irrelevant queries
that do not return any matching pages, it may waste all of its resources simply issuing
queries without ever retrieving actual pages. Therefore, how the crawler selects the
next query can greatly affect its effectiveness. In the next section, we formalize this
query selection problem.

2.3 Problem formalization

Theoretically, the problem of query selection can be formalized as follows: We assume
that the crawler downloads pages from a Web site that has a set of pages S (the rectangle
in Figure 5). We represent each Web page in S as a point (dots in Figure 5). Every
potential query ¢; that we may issue can be viewed as a subset of S, containing all the
points (pages) that are returned when we issue g; to the site. Each subset is associated
with a weight that represents the cost of issuing the query. Under this formalization,
our goal is to find which subsets (queries) cover the maximum number of points (Web
pages) with the minimum total weight (cost). This problem is equivalent to the set-
covering problem in graph theory [16].

There are two main difficulties that we need to address in this formalization. First,
in a practical situation, the crawler does not know which Web pages will be returned

3For most Web sites that assume “AND” for multi-keyword queries, single-term queries return the maxi-
mum number of results. Extending our work to multi-keyword queries is straightforward.



Figure 5: A set-formalization of the optimal query selection problem.

by which queries, so the subsets of .S are not known in advance. Without knowing
these subsets the crawler cannot decide which queries to pick to maximize the cover-
age. Second, the set-covering problem is known to be NP-Hard [16], so an efficient
algorithm to solve this problem optimally in polynomial time has yet to be found.

In this paper, we will present an approximation algorithm that can find a near-
optimal solution at a reasonable computational cost. Our algorithm leverages the ob-
servation that although we do not know which pages will be returned by each query
q; that we issue, we can predict how many pages will be returned. Based on this in-
formation our query selection algorithm can then select the “best” queries that cover
the content of the Web site. We present our prediction method and our query selection
algorithm in Section 3.

2.3.1 Performance Metric

Before we present our ideas for the query selection problem, we briefly discuss some
of our notation and the cost/performance metrics.

Given a query g¢;, we use P(g;) to denote the fraction of pages that we will get back
if we issue query ¢; to the site. For example, if a Web site has 10,000 pages in total,
and if 3,000 pages are returned for the query ¢; = “medicine”, then P(g;) = 0.3. We
use P(q1 A g2) to represent the fraction of pages that are returned from both ¢; and ¢
(i.e., the intersection of P(q1) and P(q2)). Similarly, we use P(q1 V ¢2) to represent
the fraction of pages that are returned from either ¢; or ¢- (i.€., the union of P(q;) and
P(g2)).

We also use Cost(g;) to represent the cost of issuing the query ¢;. Depending on
the scenario, the cost can be measured either in time, network bandwidth, the number
of interactions with the site, or it can be a function of all of these. As we will see later,
our proposed algorithms are independent of the exact cost function.

In the most common case, the query cost consists of a number of factors, includ-
ing the cost for submitting the query to the site, retrieving the result index page (Fig-
ure 3(a)) and downloading the actual pages (Figure 3(b)). We assume that submitting
a query incurs a fixed cost of ¢,. The cost for downloading the result index page is
proportional to the number of matching documents to the query, while the cost ¢, for
downloading a matching document is also fixed. Then the overall cost of query g; is



Cost(q;) = ¢q + ¢ P(q:) + caP(q;). (1)

In certain cases, some of the documents from ¢; may have already been downloaded
from previous queries. In this case, the crawler may skip downloading these documents
and the cost of ¢; can be

COSt(qi) = Cq + CT»P(Qi) + CdPnew(Qi)' (2)

Here, we use P,..,(g;) to represent the fraction of the new documents from ¢, that have
not been retrieved from previous queries. Later in Section 3.1 we will study how we
can estimate P(q;) and P, (g;) to estimate the cost of g;.

Since our algorithms are independent of the exact cost function, we will assume a
generic cost function Cost(g;) in this paper. When we need a concrete cost function,
however, we will use Equation 2.

Given the notation, we can formalize the goal of a Hidden-Web crawler as follows:

Problem 1 Find the set of queries ¢1, . . ., ¢, that maximizes
P(qi V- V)

under the constraint

> " Cost(g;) < t.
1=1

Here, ¢ is the maximum download resource that the crawler has.

3 Keyword Selection

How should a crawler select the queries to issue? Given that the goal is to download
the maximum number of unique documents from a textual database, we may consider
one of the following options:
e Random: We select random keywords from, say, an English dictionary and issue
them to the database. The hope is that a random query will return a reasonable
number of matching documents.

e Generic-frequency: We analyze a generic document corpus collected elsewhere
(say, from the Web) and obtain the generic frequency distribution of each key-
word. Based on this generic distribution, we start with the most frequent key-
word, issue it to the Hidden-Web database and retrieve the result. We then con-
tinue to the second-most frequent keyword and repeat this process until we ex-
haust all download resources. The hope is that the frequent keywords in a generic
corpus will also be frequent in the Hidden-Web database, returning many match-
ing documents.

e Adaptive: We analyze the documents returned from the previous queries issued
to the Hidden-Web database and estimate which keyword is most likely to return
the most documents. Based on this analysis, we issue the most “promising”
query, and repeat the process.



Among these three general policies, we may consider the random policy as the
base comparison point since it is expected to perform the worst. Between the generic-
frequency and the adaptive policies, both policies may show similar performance if the
crawled database has a generic document collection without a specialized topic. The
adaptive policy, however, may perform significantly better than the generic-frequency
policy if the database has a very specialized collection that is different from the generic
corpus. We will experimentally compare these three policies in Section 4.

While the first two policies (random and generic-frequency policies) are easy to
implement, we need to understand how we can analyze the downloaded pages to iden-
tify the most “promising” query in order to implement the adaptive policy. We address
this issue in the rest of this section.

3.1 Estimating the number of matching pages

In order to identify the most promising query, we need to estimate how many new doc-
uments we will download if we issue the query ¢; as the next query. That is, assuming
that we have issued queries ¢1, ..., g;—1 We need to estimate P(¢1 V ---V ¢;—1 V ¢;),
for every potential next query ¢; and compare this value. In estimating this number, we
note that we can rewrite P(q; V ---V gi—1 V ¢;) as:

P((q1V---Vagi-1)Va)

=Pl V---Vag-1)+Plg)—P(qa1V--Vag-1)Nag)

=Pl V- Vag-1)+Pla)
—Pl@V---Va1)P@laV---Va) ®3)

In the above formula, note that we can precisely measure P(q; V -+ V ¢;—1) and
P(q; | 1V ---V q;—1) by analyzing previously-downloaded pages: We know P(q; V
-+-Vg;—1), the union of all pages downloaded from ¢1, . .., ¢;—1, Since we have already
issued ¢y, . . ., ¢;—1 and downloaded the matching pages*. We can also measure P(q; |
q1V -+ V gi—1), the probability that ¢; appears in the pages from ¢1,...,¢;—1, by
counting how many times ¢; appears in the pages from ¢y, ...,q;—1. Therefore, we
only need to estimate P(g;) to evaluate P(¢q; V ---V ¢;). We may consider a number
of different ways to estimate P(g; ), including the following:

1. Independence estimator: We assume that the appearance of the term ¢; is inde-
pendent of the terms ¢1,...,q;—1. Thatis, we assume that P(g;) = P(qi|¢1 V
eV gic).

2. Zipf estimator: In [19], Ipeirotis et al. proposed a method to estimate how many
times a particular term occurs in the entire corpus based on a subset of documents
from the corpus. Their method exploits the fact that the frequency of terms inside
text collections follows a power law distribution [27, 23]. That is, if we rank all
terms based on their occurrence frequency (with the most frequent term having a
rank of 1, second most frequent a rank of 2 etc.), then the frequency f of a term
inside the text collection is given by:

f=alr+8)77 (4)
4For exact estimation, we need to know the total number of pages in the site. However, in order to
compare only relative values among queries, thisinformation is not actually needed.




where r is the rank of the term and «, 3, and ~y are constants that depend on the
text collection.

We illustrate how we can use the above equation to estimate the P(q;) values
through the following example:

Example 1 Assume that we have already issued queries ¢, =disk, go=java, gs=computer
to a text database. The database contains 100,000 documents in total, and for

each query q1, g2, and g3, the database returned 2, 000, 1, 100, and 6, 000 pages,

respectively. In the second column of Figure 6(a) we store P(q;) for every query

g;- For example, P(computer) = 55555 = 0.06. Let us assume that the sets
of documents retrieved after issuing ¢1, g2, and g3 do not significantly overlap,
and a total of 8, 000 unique documents were downloaded from all three queries.
From the above, we compute P(computer|q V g2 V q3) = 238% = 0.75, etc. In
the third column of Figure 6(a) we store P(q;|q1 Vg2V gs) for every query submit-
ted, as well as the document frequency of all terms ¢;, that appear in the set of re-
trieved documents, namely P(tx|q1V q2 V g3). For example, term data appears in

3,200 documents out of 8,000 retrieved documents, so P(data|qiVgaVgs) = 0.4.

However, we do not know exactly how many times the term data appears in the
entire database, so the value of P(data) is unknown. We use question marks to
denote unknown values, and our goal is to estimate these values.

For estimation, we first rank each term ¢, based on its P(tx|q1 V ¢2 V ¢3) value.
The rank of each term is shown in the fourth column of Figure 6(a). For example,
the term computer appears most frequently within the downloaded pages, so its
rank is 1.

Now, given Equation 4, we know that the rank R(t;) and the frequency P(¢;) of
a term roughly satisfies the following equation:

P(ty) = a[R(ty) + 0] 7. (5)

Then, using the known P(t;) values from previous queries, we can compute
parameters «, 3, and «y. That is, given the P(computer), P(disk), and P(java)
values and their ranks, we can find the best-fitting curve for Equation 4(b). The
following values for the parameters yield the best-fitting curve: « = 0.08, 8 =
0.25, v = 1.15. In Figure 6(b), we show the fitted curve together with the rank
of each term.

Once we have obtained these constants, we can estimate all unknown P(ty)
values. For example, since R(data) is 2, we can estimate that
P(data) = a[R(data) + B]77
=0.08(2 + 0.25)" 1% = 0.031.

After we estimate P(q;) and P(q;|¢q1 V - - -V ¢;—1) values, we can calculate P(q; V
---Vg;). In Section 3.3, we explain how we can efficiently compute P(g¢;|q1V---Vgi—1)
by maintaining a succinct summary table. In the next section, we first examine how we
can use this value to decide which query we should issue next to the Hidden Web site.



q1 = disk, q> = java, g3 = computer

Term ¢, P(tk) P(tk|q1 Vqa2 V CIS) R(tk)

computer | 0.06 0.75 1
data ? 0.4 2
disk 0.02 0.25 3

memory ? 0.2 4
java 0.011 0.13 5

(a) Probabilities of terms after queries gy, ¢2, ¢s.

Fractii)n of Documents

’ Known P(q) from queries issued

J P(a,lq,V..Vq,_) (always known)

f,
1 Unknown P(q)

f=o(r+B)”

>
computer data disk memory java ... Rank of Terms

(b) Zipf curve of example data.
Figure 6: Fitting a Zipf Distribution in order to estimate P(q;).

3.2 Query selection algorithm

The goal of the Hidden-Web crawler is to download the maximum number of unique
documents from a database using its limited download resources. Given this goal,
the Hidden-Web crawler has to take two factors into account. 1) the number of new
documents that can be obtained from the query ¢; and 2) the cost of issuing the query
gi. For example, if two queries, ¢; and g;, incur the same cost, but g; returns more
new pages than ¢;, ¢; is more desirable than ¢;. Similarly, if ¢; and ¢; return the same
number of new documents, but g; incurs less cost then g;, g; is more desirable. Based
on this observation, the Hidden-Web crawler may use the following efficiency metric



Algorithm 3.1 Greedy SelectTerm()
Parameters:

T The list of potential query keywords
Procedure

[2] Foreacht; inT do

[3] Estimate Efficiency(t;,) = FC”;Z“;((E:))

[4] done

[5] return ¢; with maximum Efficiency(¢y)

Figure 7: Algorithm for selecting the next query term.
to quantify the desirability of the query ¢;:

. . Pnew (Qz)
Efficiency(q;) = Cost(q:)
Here, P, (g;) represents the amount of new documents returned for ¢; (the pages that
have not been returned for previous queries). Cost(g; ) represents the cost of issuing the
query g;.

Intuitively, the efficiency of ¢; measures how many new documents are retrieved
per unit cost, and can be used as an indicator of how well our resources are spent when
issuing ¢;. Thus, the Hidden Web crawler can estimate the efficiency of every candidate
¢:, and select the one with the highest value. By using its resources more efficiently,
the crawler may eventually download the maximum number of unique documents. In
Figure 7, we show the query selection function that uses the concept of efficiency. In
principle, this algorithm takes a greedy approach and tries to maximize the “potential
gain” in every step.

We can estimate the efficiency of every query using the estimation method de-
scribed in Section 3.1. That is, the size of the new documents from the query g;,
Pnew (Qz)a is

Pnew(qi)
=P@V---VgaVa)—Pl@aV---Vg-1)
=P(gi)) —P(¢1 V-V aqi—1)P(glar V- Vgi_1)

from Equation 3, where P(g;) can be estimated using one of the methods described in
section 3. We can also estimate Cost(g;) similarly. For example, if Cost(g;) is

Cost(qi) = cq+ crP(qi) + caPrew(q:)
(Equation 2), we can estimate Cost(g;) by estimating P(g;) and Pew(¢;)-

3.3 Efficient calculation of query statistics

In estimating the efficiency of queries, we found that we need to measure P(g;|q1 V
.-V ¢;_1) for every potential query ¢;. This calculation can be very time-consuming if



| Termt, | N(te) | | Termt, | N(t) |

model 10 model 12
computer 38 computer 20
digital 50 disk 18
Total pages: 50 New pages: 20

(a) After ¢1,...,q9;—1 (b) New from ¢; = computer

o7

| Termt, | N(te) |
model 10+12 =22
computer | 38+20 =58
disk 0+18 =18
digital 50+0 =50
Total pages: 50 + 20 = 70
(C) After q1,---,4;

Figure 8: Updating the query statistics table.

we repeat it from scratch for every query g; in every iteration of our algorithm. In this
section, we explain how we can compute P(g;|q1V- - -Vg;—1) efficiently by maintaining
a small table that we call a query statistics table.

The main idea for the query statistics table is that P(g;|q1 V -+ V ¢;—1) can be
measured by counting how many times the keyword ¢; appears within the documents
downloaded from ¢1,...,q;—1. We record these counts in a table, as shown in Fig-
ure 8(a). The left column of the table contains all potential query terms and the right
column contains the number of previously-downloaded documents containing the re-
spective term. For example, the table in Figure 8(a) shows that we have downloaded
50 documents so far, and the term model appears in 10 of these documents. Given this
number, we can compute that P(model|gy V -+ V gi—1) = 10 = 0.2.

We note that the query statistics table needs to be updated whenever we issue a new
query ¢; and download more documents. This update can be done efficiently as we
illustrate in the following example.

Example 2 After examining the query statistics table of Figure 8(a), we have decided
to use the term ““‘computer” as our next query ¢;. From the new query ¢; = “computer,”
we downloaded 20 more new pages. Out of these, 12 contain the keyword ““model”” and
18 the keyword ““disk.” The table in Figure 8(b) shows the frequency of each term in
the newly-downloaded pages.

We can update the old table (Figure 8(a)) to include this new information by simply
adding corresponding entries in Figures 8(a) and (b). The result is shown on Fig-
ure 8(c). For example, keyword “model” exists in 10 4 12 = 22 pages within the pages
retrieved from ¢, . . ., ¢;. According to this new table, P(model|q1 V - - V g;) is now
22 —(.3.

70



Figure 9: A Web site that does not return all the results.

3.4 Crawling sites that limit the number of results

In certain cases, when a query matches a large number of pages, the Hidden Web site
returns only a portion of those pages. For example, the Open Directory Project [2]
allows the users to see only up to 10, 000 results after they issue a query. Obviously,
this kind of limitation has an immediate effect on our Hidden Web crawler. First, since
we can only retrieve up to a specific number of pages per query, our crawler will need
to issue more queries (and potentially will use up more resources) in order to download
all the pages. Second, the query selection method that we presented in Section 3.2
assumes that for every potential query ¢;, we can find P(¢;|q1 V - -+ V ¢;—1). Thatis,
for every query ¢; we can find the fraction of documents in the whole text database that
contains ¢; with at least one of ¢4, . . ., ;1. However, if the text database returned only
a portion of the results for any of the ¢1, .. ., g;—1 then the value P(g;|¢g1 V-V ¢;—1)
is not accurate and may affect our decision for the next query ¢;, and potentially the
performance of our crawler. Since we cannot retrieve more results per query than
the maximum number the Web site allows, our crawler has no other choice besides
submitting more queries. However, there is a way to estimate the correct value for
P(gilqr V -+ V g;—1) in the case where the Web site returns only a portion of the
results.

Again, assume that the Hidden Web site we are currently crawling is represented
as the rectangle on Figure 9 and its pages as points in the figure. Assume that we
have already issued queries ¢, . .., g;—1 Which returned a number of results less than
the maximum number that the site allows, and therefore we have downloaded all the
pages for these queries (big circle in Figure 9). That is, at this point, our estimation for
P(gilq1 V- -V q;—1) is accurate. Now assume that we submit query ¢; to the Web site,
but due to a limitation in the number of results that we get back, we retrieve the set ¢,
(small circle in Figure 9) instead of the set ¢; (dashed circle in Figure 9). Now we need
to update our query statistics table so that it has accurate information for the next step.
That is, although we got the set ¢ back, for every potential query ¢; 1 we need to find
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In the previous equation, we can find P(q; V- -+ V ¢;) by estimating P(¢;) with the
method shown in Section 3. Additionally, we can calculate P(q;+1 A (g1 V-V gi—1))
and P(g;+1 Aqi A(q1V---Vqi—1)) by directly examining the documents that we have
downloaded from queries ¢1,...,q;—1. The term P(g;+1 A g;) however is unknown
and we need to estimate it. Assuming that ¢, is a random sample of ¢;, then:

P(qiy1 N qi) _ P(q;) )
P(giv1 Nq;)  Plq))
From Equation 7 we can calculate P(¢;11 A ¢;) and after we replace this value to
Equation 6 we can find P(g;+1lq1 V- -+ V ¢;).

4 Experimental Evaluation

In this section we experimentally evaluate the performance of the various algorithms
for Hidden Web crawling presented in this paper. Our goal is to validate our theoretical
analysis through real-world experiments, by crawling popular Hidden Web sites of
textual databases. Since the number of documents that are discovered and downloaded
from a textual database depends on the selection of the words that will be issued as
queries to the search interface of each site, we compare the various selection policies
that were described in section 3, namely the random, generic-frequency, and adaptive
algorithms.

The adaptive algorithm learns new keywords and terms from the documents that
it downloads, and its selection process is driven by a cost model as described in Sec-
tion 3.2. To keep our experiment and its analysis simple at this point, we will assume
that the cost for every query is constant. That is, our goal is to maximize the number of
downloaded pages by issuing the least number of queries. Later, in Section 4.4 we will
present a comparison of our policies based on a more elaborate cost model. In addition,
we use the independence estimator (Section 3.1) to estimate P(g;) from downloaded
pages. Although the independence estimator is a simple estimator, our experiments
will show that it can work very well in practice.®

For the generic-frequency policy, we compute the frequency distribution of words
that appear in a 5.5-million-Web-page corpus downloaded from 154 Web sites of vari-
ous topics [24]. Keywords are selected based on their decreasing frequency with which

5Due to lack of space we could not present results for the Zipf estimator here. We defer the reporting of
results based on the Zipf estimation to an extended version of this paper.



they appear in this document set, with the most frequent one being selected first, fol-
lowed by the second-most frequent keyword, etc.®

Regarding the random policy, we use the same set of words collected from the Web
corpus, but in this case, instead of selecting keywords based on their relative frequency,
we choose them randomly (uniform distribution). In order to further investigate how
the quality of the potential query-term list affects the random-based algorithm, we con-
struct two sets: one with the 16, 000 most frequent words of the term collection used in
the generic-frequency policy (hereafter, the random policy with the set of 16,000 words
will be referred to as random-16K), and another set with the 1 million most frequent
words of the same collection as above (hereafter, referred to as random-1M). The for-
mer set has frequent words that appear in a large number of documents (at least 10, 000
in our collection), and therefore can be considered of “high-quality” terms. The latter
set though contains a much larger collection of words, among which some might be
bogus, and meaningless.

The experiments were conducted by employing each one of the aforementioned
algorithms (adaptive, generic-frequency, random-16K, and random-1M) to crawl and
download contents from three Hidden Web sites: The PubMed Medical Library,” Ama-
zon® and the Open Directory Project[2].According to the information on
PubMed’s Web site, its collection contains approximately 14 million abstracts of biomed-
ical articles. We consider these abstracts as the “documents” in the site, and in each
iteration of the adaptive policy, we use these abstracts as input to the algorithm. Thus
our goal is to “discover” as many unique abstracts as possible by repeatedly query-
ing the Web query interface provided by PubMed. The Hidden Web crawling on the
PubMed Web site can be considered as topic-specific, due to the fact that all abstracts
within PubMed are related to the fields of medicine and biology.

In the case of the Amazon Web site, we are interested in downloading all the hid-
den pages that contain information on books. The querying to Amazon is performed
through the Software Developer’s Kit that Amazon provides for interfacing to its Web
site, and which returns results in XML form. The generic “keyword” field is used for
searching, and as input to the adaptive policy we extract the product description and
the text of customer reviews when present in the XML reply. Since Amazon does not
provide any information on how many books it has in its catalogue, we use random
sampling on the 10-digit ISBN number of the books to estimate the size of the collec-
tion. Out of the 10,000 random ISBN numbers queried, 46 are found in the Amazon
catalogue, therefore the size of its book collection is estimated to be % -1019 = 4.6
million books. It’s also worth noting here that Amazon poses an upper limit on the
number of results (books in our case) returned by each query, which is set to 32, 000.

As for the third Hidden Web site, the Open Directory Project (hereafter also re-
ferred to as dmoz), the site maintains the links to 3.8 million sites together with a brief
summary of each listed site. The links are searchable through a keyword-search inter-
face. We consider each indexed link together with its brief summary as the document
of the dmoz site, and we provide the short summaries to the adaptive algorithm to drive

6We did not manually exclude stop words (e.g., the, is, of, etc.) from the keyword list. Asit turns out, all
Web sites except PubMed return matching documents for the stop words, such as “the.”

"PubMed Medical Library: htt p: / / www. pubmed. or g

8Amazon Inc.: ht t p: / / www. amazon. com
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Figure 10: Coverage of policies for Pubmed

the selection of new keywords for querying. On the dmoz Web site, we perform two
Hidden Web crawls: the first is on its generic collection of 3.8-million indexed sites,
regardless of the category that they fall into. The other crawl is performed specifi-
cally on the Arts section of dmoz (ht t p: / / dnoz. or g/ Art s), which comprises of
approximately 429, 000 indexed sites that are relevant to Arts, making this crawl topic-
specific, as in PubMed. Like Amazon, dmoz also enforces an upper limit on the number
of returned results, which is 10, 000 links with their summaries.

4.1 Comparison of policies

The first question that we seek to answer is the evolution of the coverage metric as we
submit queries to the sites. That is, what fraction of the collection of documents stored
in the Hidden Web site can we download as we continuously query for new words
selected using the policies described above? More formally, we are interested in the
value of P(q; V -+ -V ¢;—1 V ¢;), after we submit ¢, . . ., ¢; queries, and as ¢ increases.

In Figures 10, 11, 12, and 13 we present the coverage metric for each policy, as a
function of the query number, for the Web sites of PubMed, Amazon, general dmoz and
the art-specific dmoz, respectively. On the y-axis the fraction of the total documents
downloaded from the website is plotted, while the x-axis represents the query number.
A first observation from these graphs is that in general, the generic-frequency and the
adaptive policies perform much better than the random-based algorithms. In all of the
figures, the graphs for the random-1M and the random-16K are significantly below
those of other policies.

Between the generic-frequency and the adaptive policies, we can see that the latter
outperforms the former when the site is topic specific. For example, for the PubMed
site (Figure 10), the adaptive algorithm issues only 83 queries to download almost 80%
of the documents stored in PubMed, but the generic-frequency algorithm requires 106
queries for the same coverage,. For the dmoz/Arts crawl (Figure 13), the difference is
even more substantial: the adaptive policy is able to download 99.98% of the total sites
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indexed in the Directory by issuing 471 queries, while the frequency-based algorithm
is much less effective using the same number of queries, and discovers only 72% of
the total number of indexed sites. The adaptive algorithm, by examining the contents
of the pages that it downloads at each iteration, is able to identify the topic of the site
as expressed by the words that appear most frequently in the result-set. Consequently,
it is able to select words for subsequent queries that are more relevant to the site, than
those preferred by the generic-frequency policy, which are drawn from a large, generic
collection. Table 1 shows a sample of 10 keywords out of 211 chosen and submitted
to the PubMed Web site by the adaptive algorithm, but not by the other policies. For
each keyword, we present the number of the iteration, along with the number of results
that it returned. As one can see from the table, these keywords are highly relevant to
the topics of medicine and biology of the Public Medical Library, and match against
numerous articles stored in its Web site.

In both cases examined in Figures 10, and 13, the random-based policies perform
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Iteration | Keyword | Number of Results

23 department 2,719,031
34 patients 1,934,428
53 clinical 1,198,322
67 treatment 4,034, 565
69 medical 1,368, 200
70 hospital 503, 307

146 disease 1,520,908
172 protein 2,620,938

Table 1: Sample of keywords queried to PubMed exclusively by the adaptive policy

much worse than the adaptive algorithm, and the generic-frequency. It is worthy not-
ing however, that the random-based policy with the small, carefully selected set of
16, 000 “quality” words manages to download a considerable fraction of 42.5% from
the PubMed Web site after 200 queries, while the coverage for the Arts section of dmoz
reaches 22.7%, after 471 queried keywords. On the other hand, the random-based ap-
proach that makes use of the vast collection of 1 million words, among which a large
number is bogus keywords, fails to download even a mere 1% of the total collection,
after submitting the same number of query words.

For the generic collections of Amazon and the dmoz sites, shown in Figures 11
and 12 respectively, we get mixed results: The generic-frequency policy shows slightly
better performance than the adaptive policy for the Amazon site (Figure 11), and the
adaptive method clearly outperforms the generic-frequency for the general dmoz site
(Figure 12). A closer look at the log files of the two Hidden Web crawlers reveals
the main reason: Amazon was functioning in a very flaky way when the adaptive
crawler visited it, resulting in a large number of lost results. Thus, we suspect that
the slightly poor performance of the adaptive policy is due to this experimental vari-
ance. We are currently running another experiment to verify whether this is indeed the
case. Aside from this experimental variance, the Amazon result indicates that if the
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Figure 14: Convergence of the adaptive algorithm using different initial queries for
crawling the PubMed Web site

collection and the words that a Hidden Web site contains are generic enough, then the
generic-frequency approach may be a good candidate algorithm for effective crawling.

As in the case of topic-specific Hidden Web sites, the random-based policies also
exhibit poor performance compared to the other two algorithms when crawling generic
sites: for the Amazon Web site, random-16K succeeds in downloading almost 36.7%
after issuing 775 queries, alas for the generic collection of dmoz, the fraction of the
collection of links downloaded is 13.5% after the 770th query. Finally, as expected,
random-1M is even worse than random-16K, downloading only 14.5% of Amazon and
0.3% of the generic dmoz.

In summary, the adaptive algorithm performs remarkably well in all cases: it is
able to discover and download most of the documents stored in Hidden Web sites by
issuing the least number of queries. When the collection refers to a specific topic, it
is able to identify the keywords most relevant to the topic of the site and consequently
ask for terms that is most likely that will return a large number of results . On the other
hand, the generic-frequency policy proves to be quite effective too, though less than the
adaptive: it is able to retrieve relatively fast a large portion of the collection, and when
the site is not topic-specific, its effectiveness can reach that of adaptive (e.g. Amazon).
Finally, the random policy performs poorly in general, and should not be preferred.

4.2 Impact of the initial query

An interesting issue that deserves further examination is whether the initial choice of
the keyword used as the first query issued by the adaptive algorithm affects its effective-
ness in subsequent iterations. The choice of this keyword is not done by the selection
of the adaptive algorithm itself and has to be manually set, since its query statistics
tables have not been populated yet. Thus, the selection is generally arbitrary, so for
purposes of fully automating the whole process, some additional investigation seems
necessary.



Cumulative fraction of unique pages downloaded per query - Dmoz Web site (cap limit 1000)

1

0.9

adaptive
generic-frequency

+
x

0.8 e

0.7 s

0.6 e s¢

0.5 o

0.4

Fraction of Unique Pages
+

0.3 o

0.2

0.1 A

ok 1
(o} 500

1 1 1 1
1500 2000 2500 3000

Query Number

1
1000 3500

Figure 15: Coverage of general dmoz after limiting the number of results to 1,000

For this reason, we initiated three adaptive Hidden Web crawlers targeting the
PubMed Web site with different seed-words: the word “data”, which returns 1,344,999
results, the word “information” that reports 308, 474 documents, and the word “return”
that retrieves 29, 707 pages, out of 14 million. These keywords represent varying de-
grees of term popularity in PubMed, with the first one being of high popularity, the sec-
ond of medium, and the third of low. We also show results for the keyword “pubmed”,
used in the experiments for coverage of Section 4.1, and which returns 695 articles. As
we can see from Figure 14, after a small number of queries, all four crawlers roughly
download the same fraction of the collection, regardless of their starting point: Their
coverages are roughly equivalent from the 25th query. Eventually, all four crawlers use
the same set of terms for their queries, regardless of the initial query. In the specific
experiment, from the 36th query onward, all four crawlers use the same terms for their
queries in each iteration, or the same terms are used off by one or two query numbers.
Our result confirms the observation of [11] that the choice of the initial query has min-
imal effect on the final performance. We can explain this intuitively as follows: Our
algorithm approximates the optimal set of queries to use for a particular Web site. Once
the algorithm has issued a significant number of queries, it has an accurate estimation
of the content of the Web site, regardless of the initial query. Since this estimation is
similar for all runs of the algorithm, the crawlers will use roughly the same queries.

4.3

While the Amazon and dmoz sites have the respective limit of 32,000 and 10,000 in
their result sizes, these limits may be larger than those imposed by other Hidden Web
sites. In order to investigate how a “tighter” limit in the result size affects the perfor-
mance of our algorithms, we performed two additional crawls to the generic-dmoz site:
we ran the generic-frequency and adaptive policies but we retrieved only up to the top
1,000 results for every query. In Figure 15 we plot the coverage for the two policies as
a function of the number of queries. As one might expect, by comparing the new result

Impact of the limit in the number of results



in Figure 15 to that of Figure 12 where the result limit was 10,000, we conclude that
the tighter limit requires a higher number of queries to achieve the same coverage. For
example, when the result limit was 10,000, the adaptive policy could download 70% of
the site after issuing 630 queries, while it had to issue 2,600 queries to download 70%
of the site when the limit was 1,000. On the other hand, our new result shows that even
with a tight result limit, it is still possible to download most of a Hidden Web site af-
ter issuing a reasonable number of queries. The adaptive policy could download more
than 85% of the site after issuing 3,500 queries when the limit was 1,000. Finally, our
result shows that our adaptive policy consistently outperforms the generic-frequency
policy regardless of the result limit. In both Figure 15 and Figure 12, our adaptive pol-
icy shows significantly larger coverage than the generic-frequency policy for the same
number of queries.

4.4 Incorporating the document download cost

For brevity of presentation, the performance evaluation results provided so far assumed
a simplified cost-model where every query involved a constant cost. In this section
we present results regarding the performance of the adaptive and generic-frequency
algorithms using Equation 2 to drive our query selection process. As we discussed
in Section 2.3.1, this query cost model includes the cost for submitting the query to
the site, retrieving the result index page, and also downloading the actual pages. For
these costs, we examined the size of every result in the index page and the sizes of the
documents, and we chose ¢, = 100, ¢, = 100, and ¢4 = 10000, as values for the
parameters of Equation 2, and for the particular experiment that we ran on the PubMed
website. The values that we selected imply that the cost for issuing one query and
retrieving one result from the result index page are roughly the same, while the cost
for downloading an actual page is 100 times larger. We believe that these values are
reasonable for the PubMed Web site.

Figure 16 shows the coverage of the adaptive and generic-frequency algorithms
as a function of the resource units used during the download process. The horizontal
axis is the amount of resources used, and the vertical axis is the coverage. As it is
evident from the graph, the adaptive policy makes more efficient use of the available
resources, as it is able to download more articles than the generic-frequency, using the
same amount of resource units. However, the difference in coverage is less dramatic
in this case, compared to the graph of Figure 10. The smaller difference is due to the
fact that under the current cost metric, the download cost of documents constitutes a
significant portion of the cost. Therefore, when both policies downloaded the same
number of documents, the saving of the adaptive policy is not as dramatic as before.
That is, the savings in the query cost and the result index download cost is only a
relatively small portion of the overall cost. Still, we observe noticeable savings from
the adaptive policy. At the total cost of 8000, for example, the coverage of the adaptive
policy is roughly 0.5 while the coverage of the frequency policy is only 0.3.
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4.5 Other observations

Another interesting side-effect of the adaptive algorithm is the support for multilingual
Hidden Web sites, without any additional modification. In our attempt to explain the
significantly better performance of the adaptive algorithm for the generic dmoz Web
site (which is not topic-specific), we noticed that the adaptive algorithm issues non-
English queries to the site. This is because the adaptive algorithm learns its vocabulary
from the pages it downloads, therefore is able to discover frequent words that do not
necessarily belong to the English dictionary. On the contrary, the generic-frequency
algorithm is restricted by the language of the corpus that was analyzed before the crawl.
In our case, the generic-frequency algorithm used a 5.5-million English word corpus,
S0 as a result, it was limited to querying documents that could match only English
words.

5 Related Work

In a recent study, Raghavan and Garcia-Molina [26] present an architectural model for
a Hidden Web crawler. The main focus of this work is to learn Hidden-Web query
interfaces, not to generate queries automatically. The potential queries are either pro-
vided manually by users or collected from the query interfaces. In contrast, our main
focus is to generate queries automatically without any human intervention.

The idea of automatically issuing queries to a database and examining the results
has been previously used in different contexts. For example, in [10, 11], Callan and
Connel try to acquire an accurate language model by collecting a uniform random
sample from the database. In [21] Lawrence and Giles issue random queries to a num-
ber of Web Search Engines in order to estimate the fraction of the Web that has been
indexed by each of them. In a similar fashion, Bharat and Broder [8] issue random
queries to a set of Search Engines in order to estimate the relative size and overlap of
their indexes. In [6], Barbosa and Freire experimentally evaluate methods for build-
ing multi-keyword queries that can return a large fraction of a document collection.



Our work differs from the previous studies in two ways. First, it provides a theoretical
framework for analyzing the process of generating queries for a database and examin-
ing the results, which can help us better understand the effectiveness of the methods
presented in the previous work. Second, we apply our framework to the problem of
Hidden Web crawling and demonstrate the efficiency of our algorithms.

Cope et al. [15] propose a method to automatically detect whether a particular Web
page contains a search form. This work is complementary to ours; once we detect
search interfaces on the Web using the method in [15], we may use our proposed algo-
rithms to download pages automatically from those Web sites.

Reference [4] reports methods to estimate what fraction of a text database can be
eventually acquired by issuing queries to the database. In [3] the authors study query-
based techniques that can extract relational data from large text databases. Again,
these works study orthogonal issues and are complementary to our work.

There exists a large body of work studying how to identify the most relevant database
given a user query [20, 19, 14, 22, 18]. This body of work is often referred to as meta-
searching or database selection problem over the Hidden Web. For example, [19]
suggests the use of focused probing to classify databases into a topical category, so
that given a query, a relevant database can be selected based on its topical category.
Our vision is different from this body of work in that we intend to download and in-
dex the Hidden pages at a central location in advance, so that users can access all the
information at their convenience from one single location.

6 Conclusion and Future Work

Traditional crawlers normally follow links on the Web to discover and download pages.
Therefore they cannot get to the Hidden Web pages which are only accessible through
query interfaces. In this paper, we studied how we can build a Hidden Web crawler
that can automatically query a Hidden Web site and download pages from it. We pro-
posed three different query generation policies for the Hidden Web: a policy that picks
queries at random from a list of keywords, a policy that picks queries based on their
frequency in a generic text collection, and a policy which adaptively picks a good query
based on the content of the pages downloaded from the Hidden Web site. Experimental
evaluation on 4 real Hidden Web sites shows that our policies have a great potential. In
particular, in certain cases the adaptive policy can download more than 90% of a Hid-
den Web site after issuing approximately 100 queries. Given these results, we believe
that our work provides a potential mechanism to improve the search-engine coverage
of the Web and the user experience of Web search.

6.1 Future Work

We briefly discuss some future-research avenues.

Multi-attribute Database We are currently investigating how to extend our ideas
to structured multi-attribute databases. While generating queries for multi-attribute
databases is clearly a more difficult problem, we may exploit the following observation



to address this problem: When a site supports multi-attribute queries, the site often re-
turns pages that contain values for each of the query attributes. For example, when an
online bookstore supports queriesonti tl e, aut hor andi sbn, the pages returned
from a query typically contain the title, author and ISBN of corresponding books.
Thus, if we can analyze the returned pages and extract the values for each field (e.g,
title = “Harry Potter’,author = *J. K. Rowing’, etc), we can ap-
ply the same idea that we used for the textual database: estimate the frequency of each
attribute value and pick the most promising one. The main challenge is to automati-
cally segment the returned pages so that we can identify the sections of the pages that
present the values corresponding to each attribute. Since many Web sites follow lim-
ited formatting styles in presenting multiple attributes — for example, most book titles
are preceded by the label “Title:” — we believe we may learn page-segmentation rules
automatically from a small set of training examples.

Other Practical Issues In addition to the automatic query generation problem, there
are many practical issues to be addressed to build a fully automatic Hidden-Web crawler.
For example, in this paper we assumed that the crawler already knows all query inter-
faces for Hidden-Web sites. But how can the crawler discover the query interfaces?
The method proposed in [15] may be a good starting point.

In addition, some Hidden-Web sites return their results in batches of, say, 20 pages,
so the user has to click on a “next” button in order to see more results. In this case,
a fully automatic Hidden-Web crawler should know that the first result index page
contains only a partial result and “press” the next button automatically.

Finally, some Hidden Web sites may contain an infinite number of Hidden Web
pages which do not contribute much significant content (e.g. a calendar with links for
every day). In this case the Hidden-Web crawler should be able to detect that the site
does not have much more new content and stop downloading pages from the site. Page
similarity detection algorithms may be useful for this purpose [9, 13].
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