

Ontology-based proximity search

Tuan M.V. Le
HCMC University of Tech.
and John von Neumann

Institute - VNUHCM
tuanminhlv@yahoo.com

Tru H. Cao
HCMC University of Tech.
and John von Neumann

Institute - VNUHCM
tru@cse.hcmut.edu.vn

Son M. Hoang
Ho Chi Minh City University

of Technology
VNUHCM

minhson@cse.hcmut.edu.vn

Junghoo Cho
Department of

Computer Science
UCLA

cho@cs.ucla.edu

ABSTRACT
This paper presents our developed general open source for
ontology-based information retrieval to answer queries that
involve named entities with their ontological features, namely,
aliases, classes, and identifiers. We propose a novel approach for
semantic search engines that exploit the ontology features of
named entities in proximity search and develop an algorithm for
computing dynamic distances between named entities and
keywords in queries and documents. In particular, it deals with
phrase and proximity queries for which the token-based lengths
and positions of the queried named entities in a document may
vary. The result provides a platform and library for implementing
semantic search engines.

Categories and Subject Descriptors
H.3.3 [Information Storage And Retrieval]: Information Search
and Retrieval – query formulation, retrieval models, search
process.

General Terms
Algorithms, Theory.

Keywords
Semantic search, phrase query, term proximity, named entity.

1. INTRODUCTION
To answer queries in a document retrieval system, search engines
are expected to return the most relevant documents at the top of
the result list ([13]). Users tend to query terms that often appear in
phrases or are close to each other in a document in which
distances between terms, called term proximity, are implicitly
used. In such cases, documents that have terms occurring close to
each other are often ranked higher as a result. Understanding the
interaction of terms being constituents of phrases within queries
([11]) could be useful to improve the performance. Therefore,
many research works have been looking into the term proximity to
improve the retrieval precision of top returned documents ([1],
[2], [9], [12], [14]). Although those researches used different
approaches, they showed that retrieval effectiveness could be
improved by integrating proximity scores into an existing retrieval
model.
Besides studies focusing on term proximity, there were works in
semantic search considering ontological features of named entities
to enhance document retrieval effectiveness ([3], [4], [5]). Named
entities (NE) are those that are referred to by names such as

people, organizations, and locations ([10]). The work [3], for
instance, explored combinations of ontological features and
keywords to represent a high level semantics of queries and
documents. However, it appears that no work in semantic search
considers proximity queries involving named entities and
keywords.
As a related work, [8] explored proximity measures between
named entities and keywords in the field of expert search, i.e., the
task of finding people who have skills and experience on a given
topic. However, it was not for text retrieval.
For keyword-based search engines, term proximity scoring
models consider the distances among terms in queries and
documents in terms of tokens. For instance, a document is
analyzed into tokens when being indexed; each token is given a
position and the distance between two tokens is computed based
on their positions. For example, consider the following text:
D: “Cultural exhibitions on Ho Chi Minh City development and
integration opened in Lam Son park”

The text is analyzed into 15 tokens: “Cultural”, “exhibitions”,
“on”, “Ho”, “Chi”, “Minh”, “City”, “development”, “and”,
“integration”, “opened”, “in”, “Lam”, “Son”, “park” whose
positions are from 0 to 14, respectively. Distances between these
tokens can then be computed easily based on these positions. For
example, the distance between “on” and “development” is 4
because there are 4 tokens “Ho”, “Chi”, “Minh”, “City” between
them.
However, when taking NEs into account, the distance in terms of
token is no longer applicable. Every NE appearing in the
document often covers more than one token. For example, in the
text D above, there is the NE Ho Chi Minh City that contains 4
tokens. We denote the number of tokens covered by a NE as the
length of that NE. Moreover, a NE may have different aliases of
different lengths. Therefore it can have different lengths in a
document. In addition, a class may have different instances of
NEs, causing the same problem due to variable lengths. Consider
the following phrase queries to see how different lengths of a NE
make token-based term proximity not applicable:
Q1: “Cultural exhibitions on Saigon City development”

Q2: “Cultural exhibitions on city development”

In Q1, Saigon City is a NE containing 2 tokens. Here the query
requires that the term “on” is right before and the term
“development” is right after Saigon City in the document. In the
text D above, there is the phrase “Cultural exhibitions on Ho Chi
Minh City development”. Since Ho Chi Minh City is another name
of Saigon City, intuitively D should match with Q1. However,
according to the token-based term proximity approach, D cannot
be returned because it does not satisfy the proximity conditions of
Q1. Specifically, Saigon City has length 2 in Q1, and thus the
distance between the terms “development” and “on” in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
iiWAS2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam.
Copyright 2011 ACM 978-1-4503-0784-0/11/12...$10.00.

288

document is required to be 2. However, since Ho Chi Minh City
has length 4 in D, so distance between the terms “development”
and “on” is 4, not 2. Therefore, D cannot match with Q1. We can
see that this error occurs because a NE may appear with different
names and different lengths in queries and documents. Although
NEs in a query and a document can match to each other (as
Saigon City and Ho Chi Minh City in this example), their lengths
may be different and this causes token-based term proximity
inapplicable.
In Q2, it does not mention a specific city but all NEs belonging to
the class City. Since Ho Chi Minh City is a NE belonging to the
class City, D intuitively matches with Q2. However, the distance
between the terms “development” and “on” is 1 in Q2 and is 4 in
D. Therefore, D cannot match with Q2. In general, there are many
other cities besides Ho Chi Minh City and each of them may have
a different length. Their different lengths make the distances
between the terms before and after them different too. Therefore
term matching is not straightforward as in the case of plain
keyword matching. It must deal with variable and dynamic
distances caused by NEs of different lengths.
The two examples show that token-based proximity matching
cannot be applied to queries and documents containing NEs. In
this paper, we do not propose a different scoring model to term
proximity. The work of this paper is to consider and analyze
dynamic distances between keywords and named entities, and
then develop an algorithm to compute such a distance on fly.
After distances are computed, any scoring model mentioned
above can be applied for ranking retrieved documents. Until now,
to the best of our knowledge, there is no retrieval system that
supports proximity queries on distances between keywords and
named entities.
We rely on S-Lucene ([3]), which is an extension of Lucene ([6])
for semantic search but does not address and support query term
proximity involving NEs, to implement our algorithm. Section 2
provides a brief introduction to Lucene, in particular about
computing static distances between keywords in Lucene. Section
3 presents the basis of indexing and searching in S-Lucene.
Section 4 presents in detail the algorithm for computing dynamic
distances between keywords and named entities and
implementation of proximity search in S-Lucene. Section 5 draws
some conclusions and future works.

2. PROXIMITY SEARCH IN LUCENE
Lucene ([6]) is an open source library for storing, indexing, and
searching documents. Lucene scoring uses a combination of
the Vector Space Model (VSM) and the Boolean model. In
addition to single or multiple keyword search, Lucene also
supports proximity search based on term proximity. Lucene
supports exact phrase query search and proximity search with
distances greater than 0, but does not require the order of
keywords to be satisfied (using the term slop to mean distance).
In Lucene, the distance between term A and term B in a document
is the number of steps needed to move A (or B) to its correct
position as they appear in the query. For example, given the query
q = “A B”, i.e., B is right after A. Assuming that there are
following documents where “_” represents an anonymous variable
that can be bound to any term:

d1: “A _ _ _ B _”
d2: “B _ A _”

In d1, to be as appearing in the query, B has to be moved as
follows:

d1: “A _ _ _ B _”

That is, it takes three steps to move B to the left to be right after A.
In d2, to be as appearing in the query, B has to be moved as
follows:

d2: “B _ A _”
That is, it takes three steps to move B to the right to be right after
A. Above, in a document, A is fixed and B is moved.
Alternatively, B can be fixed while A is moved as follows:

d1: “A _ _ _ B _” (taking three steps)

d2: “ B _ A _” (taking three steps)
In general, given a query having n terms {t1,…,tn}, in a document
any term t {t1,…,tn} can be fixed the other terms are moved to
their right positions as appearing in the query. The movement
distance of a term ti with respect to the fixed term t0 is calculated
by the following formula:

stepi = (pdi pqi) (pd0 pq0) (1)
where:

pdi: position of term ti in the document,
pqi: position of term ti in the query,
pd0: position of term t0 in the document,
pq0: position of term t0 in the query.

One can see that:
stepi > 0: ti will be moved to the left,
stepi < 0: ti will be moved to the right,
stepi = 0: ti will not be moved.

With such distance movement calculation, Lucene’s conditions
for matching a document d and a proximity query q are as
follows:

slop = 0: d matches with q if i: stepi = 0
slop > 0: d matches with q if maxstep ≤ slop,

where maxstep = max1 ≤ i ≤ n(stepi)
Since there is more than one way of choosing a fixed term, the
maxstep value may vary. Let ∆i = pdi pqi be the difference
between the positions of term ti in the document and in the query.
Lucene can choose any term ti satisfying ∆i = ∆0 = min(∆i), where
1 ≤ i ≤ n as a fixed term to calculate the maxstep. Then, stepi = ∆i

 ∆0 is always greater than or equal to 0 for every term ti, meaning
that if term ti is moved, it will be moved to the left. Generally, in
Lucene, given a proximity query q having n terms {t1,…,tn} and
slop = s, a document d matching with q must contain at least one
set {t1,…,tn} and satisfies the condition that there exists a term ti
to be fixed so that any term tk (k ≠ i) is moved to the left by stepk
steps to arrive at its right position and max(stepk) ≤ s.

3. INDEXING WITH NAMED ENTITIES
Lucene efficiently supports indexing and searching based on
keywords. However, semantic indexing and searching, in
particular by named entities, require an extension of Lucene. This
section presents how NEs are indexed along with keywords to
perform searching with NEs. The extended Lucene is called S-
Lucene ([3]).

3.1 Named entity recognition
Cultural exhibitions on Ho Chi Minh City development and integration
opened in Lam Son park

Fig. 1. Text example
For searching documents based on named entities, a document has
to be annotated to identify named entities occurring in them ([7]).
At this stage, an annotation system is used to identify all named
entities appearing in the document along with their aliases, class
and super-classes. Figure 2 shows the result of annotating the text

289

in Figure 1, where Ho Chi Minh City is recognized as of the class
City, with the corresponding ID city_123. The results include
extension of the text with aliases of Ho Chi Minh City, and its
super-classes Location from the knowledge base and ontology of
discourse.
<named-entities url=http://vn-kim.hcmut.edu.vn/demo.html>
 <named-entity startOffset=“24” endOffset=“39”>

<name>Ho Chi Minh City</name>
<class>City</class>
<uri>City_123 </uri>
<aliases>
 <name>Ho Chi Minh City</name>
 <name>Saigon</name>
</aliases>
<classes>
 <class>City</class>
 <class>Location</class>
</classes>

 </named-entity>
</named-entities>

Fig. 2. Recognized named entities

3.2 Indexing based on named entities and
keywords
Ontological features of a named entity include its name appearing
in a text, its most specific class, and its identifier if existing in the
knowledge base of discourse. Users may search for documents by
one or combination of these features. To search by these features,
NE terms are introduced besides normal keyword terms. The
structure of each NE term is the triple (name/class/identifier).
Unspecified name, class, or identifier of a NE term is denoted by
“*”.
For indexing based on named entities and keywords, for each
entity named n possibly with class c and identifier id in a
document, the triples (n/*/*), (*/c/*), (n/c/*), (alias(n)/*/*),
(*/super(c)/*), (n/super(c)/*), (alias(n)/c/*), (alias(n)/ super(c)/*),
and (*/*/id) are added for the document ([3]). Here alias(n) and
super(c) respectively denote any alias of n and any super-class of
c in the ontology and knowledge base of discourse. Thus, indexed
information of documents contain not only the keyword terms
analyzed from the original documents but also additional NE
triples. A field called ne+kw is created to store the keyword terms
and NE triples. Storing these terms into the field consists of two
steps. First, all keyword terms are added to the field. Second, all
NE triples are added. For example, with the text mentioned above
(Figure 1), the field ne+kw is first added with the keyword terms
“Cultural”, “exhibitions”, “on”, “Ho”, “Chi”, “Minh”, “City”,
“development”, “and”, “integration”, “opened”, “in”, “Lam”,
“Son”, “park” whose positions are from 0 to 14, respectively.
After that, it is added with additional NE triples of Ho Chi Minh
City including “ho chi minh city/*/*”, “*/city/*”, “ho chi minh
city/city/*”, “*/*/city_123”, “saigon/*/*”, “saigon/city/*”,
“*/location/*”, “ho chi minh city/location/*”, “saigon/location/*”.

4. PROXIMITY SEARCH WITH NAMED
ENTITIES
To search with named entities, all keywords and entities are
unified and treated as generalized terms, where a term is counted
either as a keyword or a named entity but not both. Each
document is then represented by a single vector over that
generalized term space. Document vector representation, filtering,
and ranking are performed as in the traditional VSM. This section
presents how proximity search are performed when combining
named entities and keywords.

For proximity search with NEs, as noted in Section 1, the problem
is that token-based positions are inadequate when taking NEs into
account. To solve this problem we use another type of positions
that we call NE-based positions when executing proximity queries
containing NEs. As in Figure 1, we have the terms “Cultural”,
“exhibitions”, “on”, “Ho”, “Chi”, “Minh”, “City”, “development”,
“and”, “integration”, “opened”, “in”, “Lam”, “Son”, “park”
whose token-based positions are from 0 to 14, respectively. NE-
based positions are computed based on token-based positions as
follows.
Given a term A in a document with a token-based position x and N
NEs appearing on the left of A, the NE-based position of A is
defined by:

 x –)1)((
1

N

i
iNENELength (2)

NELength(E) is the number of tokens that a NE E covers in the
document. Note that the term A may be a keyword term or a NE
term but not both. The token-based position of a NE term is the
token-based position of the left-most token covered by the NE.
For example, the token-based position of the NE city_123 is 3,
because its left most token is “Ho” whose token-based position is
3. The terms covered by a NE do not have NE-based positions and
are virtually omitted from a document when performing proximity
queries containing NEs.
In the text in Figure 1, the NE city_123 has NELength of 4
because it covers the four tokens “Ho”, “Chi”, “Minh”, “City” in
the document. One can see that, when NE-based positions are
applied, the distance between “on” and “development” is only 1.
Meanwhile, using token-based positions, the distance between
them is 4. It means that all tokens covered by a NE are treated as a
single term and this term has a single position in the document.
That is why we call it NE-based position. Note that term positions
in a query must be processed in the same way as for documents.
For example, in Q1, the NE-based positions of the terms
“Cultural”, “exhibitions”, “on”, “Saigon City” “development” are
0, 1, 2, 3, 4, respectively, because “Saigon City” is a NE whose
NELength is 2. As such, in Q1 the distance between “on” and
“development” is also 1 and thus the text D can now match with
Q1.
Input: a query q={t1…tn} and a document d.
Output: Frequency of {t1…tn} occurring in d satisfying slop = 0.

1: for each ti q do
2: pd first position of Pd(ti); ∆i pd pqi
3: end for
4: freq 0; maxterm tk where ∆k = max(∆i)
5: do
6: loop until min(∆i) = max(∆i)
7: do
8: minterm tm where ∆m = min(∆i)
9: if next position of Pd(minterm) exists then
10: pd next position of Pd(minterm)
11: ∆k pd pqk /* update the value ∆ of minterm */
12: else return freq end if
13: while ∆k < ∆m /* ∆m is the value ∆ of maxterm */
14: end loop
15: freq freq + 1
16: while
17: return freq

Fig. 3. Algorithm for matching d with q in the case slop = 0
Although NE-based positions have to be applied to process
proximity queries containing NEs, token-based positions are still
needed for purely keyword-based proximity search. For example,

290

we may want to search for “ho chi minh city development” in the
pure keyword form, treating all the tokens covered by a NE as
separate keywords.
Since the number of NEs in a document is known at the time of
indexing, NE-based positions can be computed at the indexing
phase. In the query answering phase, if a query is purely keyword-
based, then token-based positions are used; otherwise, NE-based
positions are used.
For executing a NE-based query, NE-based positions are used in
equation (1) introduced in Section 2 to compute the distances
between NEs and keywords. Specifically, for a document d of
length l (i.e., with l tokens) and a term t, the positions of t in d is
denoted by Pd(t) {1,…,l}. Given a query q={t1…tn}, the
position of term ti q is denoted by pqi. The algorithms for
matching d with q in the cases slop = 0 and slop > 0 are
respectively presented in Figure 3 and Figure 4. As mentioned at
the end of Section 2, a document d matching with q must contain
at least one set {t1,…,tn} that satisfies the slop condition. Here the
algorithms do not halt when finding one such set, but they find all
and return the number of times (frequency) the set {t1,…,tn}
occurring in d and satisfying the slop condition. When the
returned frequency is greater than 0, it means d matches with q;
otherwise, d does not match with q. We note that after such
distances and frequencies are computed, the ranking function of
Lucene taking into account term proximity is employed for
ranking retrieved documents.
Input: a query q={t1…tn}, a document d, and slop.
Output: Frequency of {t1…tn} occurring in d satisfying slop condition.

1: freq 0; done false
2: for each ti q do
3: pd first position of Pd(ti); ∆i pd pqi
4: end for
5: do
6: maxterm tk where ∆k = max(∆i)
7: minterm tm where ∆m = min(∆i)
8: start ∆m; end ∆k; pos start
9: next min({∆i\∆m}) /* next min value of ∆i */
10: while pos ≤ next
11: start pos
12: if next position of Pd(tm) exists then
13: pos next position of Pd(tm)
14: else done true end if
15: end while
16: matchLength end start
17: if matchLength ≤ slop then
18: freq sloppyFreq(matchLength)
19: /* sloppyFreq(matchLength) = 1.0f / (matchLength + 1) */
20: end if
21: if pos > end then end pos end if
22: while !done
23: return freq

Fig. 4. Algorithm for matching d with q in the case slop > 0

5. CONCLUSION AND FUTURE WORK
We have presented our developed general open source for
semantic indexing and searching documents annotated with
named entities. For proximity search with named entities, we have
considered and analyzed dynamic distances between keywords
and named entities in queries and documents, and have developed
algorithms to compute such a distance on fly.

The novelty and contribution are that it can deal with phrase and
proximity queries for which the token-based lengths and positions
of the queried named entities in a document may vary. Therefore,
it is useful for development of ontology-based search engines
when distances between queried terms are significant.
In this work, we are still using the vector-based document ranking
function of Lucene. Other ranking models are worth being
explored to be integrated with our developed ontology-based
proximity searching method. Besides, we have not considered
semantic relations between keywords for which synonymous
concepts may have different token-based lengths, and thus
dynamic computation of distances between concepts for proximity
queries is also needed. These are among the topics that we are
currently investigating.

6. REFERENCES
[1] Büttcher, S., Clarke, C. L. A. Efficiency vs. Effectiveness in

Terabyte-Scale Information Retrieval. In Proceedings of the 14th
Text REtrieval Conference (TREC-2005), 2005.

[2] Büttcher, S., Clarke, C. L. A., Lushman, B. Term proximity
scoring for ad-hoc retrieval on very large text collections. In
Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pp. 621–622, 2006.

[3] Cao, T. H., Le, C. K., Ngo, V. M. Exploring Combinations of
Ontological Features and Keywords for Text Retrieval. In
Proceedings of the 10th Pacific Rim International Conference on
Artificial Intelligence, LNCS, Springer, pp. 603-613, 2008.

[4] Castells, P., Vallet, D., Fernández, M. An Adaptation of the
Vector Space Model for Ontology-Based Information Retrieval.
IEEE Transactions of Knowledge and Data Engineering, pp.
261-272, 2006.

[5] Gonçalves, A., Zhu, J., Song, D., Uren, V., Pacheco, R. LRD:
Latent Relation Discovery for Vector Space Expansion and
Information Retrieval. In Proceedings of the 7th International
Conference on Web-Age Information Management, 2006.

[6] Gospodnetic, O., Hatcher, E. foreword by Cutting, D. Lucene In
Action. A guide to the Java searrch engine, 2004.

[7] Nguyen, V. T. T., Cao, T. H. VN-KIM IE: Automatic extraction
of Vietnamese entities on the Web, New Generation Computing
Journal, Vol. 25, No. 3, pp. 277-292, 2007.

[8] Petkova, D., Croft, W. B. Proximity-based document
representation for named entity retrieval. In Proceedings of the
Sixteenth ACM Conference on Information and Knowledge
Management, pp. 731-740, 2007.

[9] Rasolofo, Y., Savoy, J. Term proximity scoring for keyword-
based retrieval systems. In Proceedings of the 25th European
Conference on Information Retrieval Research (ECIR-2003).
LNCS, Springer, vol. 2633, pp. 207–218, 2003.

[10] Sekine, S. Named Entity: History and Future. Proteus Project
Report, 2004.

[11] Silverstein, C., Henzinger, M., Marais, H. And Moricz, M.:
Analysis of a very large Web search engine query log. ACM
SIGIR Forum, Vol. 33, No. 1, pp. 6-12, 1999.

[12] Song, R., et al. Viewing term proximity from a different
perspective. Technical Report MSR-TR-2005-69, Microsoft
Research Asia, 2005.

[13] Spink, A. Wolfram, D., Jansen, B.J., Saracevic, T. Searching the
Web: The public and their queries. Journal of the American
Society for Information Science and Technology, Vol. 52, No. 3,
pp. 226-234, 2001.

[14] Tao, T., Zhai, C. An exploration of proximity measures in
information retrieval. In Proceedings of the 30th Annual SIGIR
Conference on Research and Development in Information
Retrieval, pp. 295-302, 2007.

291

