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Abstract

This dissertation studies the challenges and issues faced in implementing an effective Web

crawler. A crawler is a program that retrieves and stores pages from the Web, commonly

for a Web search engine. A crawler often has to download hundreds of millions of pages in

a short period of time and has to constantly monitor and refresh the downloaded pages. In

addition, the crawler should avoid putting too much pressure on the visited Web sites and

the crawler’s local network, because they are intrinsically shared resources.

This dissertation studies how we can build an effective Web crawler that can retrieve

“high quality” pages quickly, while maintaining the retrieved pages “fresh.” Towards that

goal, we first identify popular definitions for the “importance” of pages and propose simple

algorithms that can identify important pages at the early stage of a crawl. We then explore

how we can parallelize a crawling process to maximize the download rate while minimizing

the overhead from parallelization. Finally, we experimentally study how Web pages change

over time and propose an optimal page refresh policy that maximizes the “freshness” of the

retrieved pages.

This work has been a part of the WebBase project at Stanford University. The WebBase

system currently maintains 130 million pages downloaded from the Web and these pages

are being used actively by many researchers within and outside of Stanford. The crawler

for the WebBase project is a direct result of this dissertation research.
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Chapter 1

Introduction

A Web crawler is a program that downloads Web pages, commonly for a Web search engine

or a Web cache. Roughly, a crawler starts off with an initial set of URLs S0. It first places

S0 in a queue, where all URLs to be retrieved are kept and prioritized. From this queue,

the crawler gets a URL (in some order), downloads the page, extracts any URLs in the

downloaded page, and puts the new URLs in the queue. This process is repeated until the

crawler decides to stop, for any one of various reasons. Every page that is retrieved is given

to a client that saves the pages, creates an index for the pages, or analyzes the content of

the pages.

Crawlers are widely used today. Crawlers for the major search engines (e.g., Google,

AltaVista, and Excite) attempt to visit a significant portion of textual Web pages, in order

to build content indexes. Other crawlers may also visit many pages, but may look only for

certain types of information (e.g., email addresses). At the other end of the spectrum, we

have personal crawlers that scan for pages of interest to a particular user, in order to build

a fast access cache (e.g., NetAttache).

Because the Web is gigantic and being constantly updated, the design of a good crawler

poses many challenges. For example, according to various studies [BYBCW00, LG99, LG98,

BB99], there exist more than a billion pages available on the Web. Given that the average

size of a Web page is around 5–10K bytes, the textual data itself amounts to at least tens of

terabytes. The growth rate of the Web is even more dramatic. According to [LG98, LG99],

the size of the Web has doubled in less than two years, and this growth rate is projected

to continue for the next two years. Aside from these newly created pages, existing pages

are continuously being updated [PP97, WM99, DFK99, CGM01]. For example, according
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2 CHAPTER 1. INTRODUCTION

to our study in Chapter 4, roughly 40% of the Web pages that we monitored were updated

almost once every week.

1.1 Challenges in implementing a crawler

Given this size and change rate of the Web, the crawler needs to address many important

challenges, including the following:

1. What pages should the crawler download? In most cases, the crawler cannot

download all pages on the Web. Even the most comprehensive search engine cur-

rently indexes a small fraction of the entire Web [LG99, BB99]. Given this fact, it is

important for the crawler to carefully select the pages and to visit “important” pages

first, so that the fraction of the Web that is visited (and kept up-to-date) is more

meaningful.

2. How should the crawler refresh pages? Once the crawler has downloaded a sig-

nificant number of pages, it has to start revisiting the downloaded pages in order to

detect changes and refresh the downloaded collection. Because Web pages are chang-

ing at very different rates [CGM00a, WM99], the crawler needs to carefully decide

which pages to revisit and which pages to skip in order to achieve high “freshness” of

pages. For example, if a certain page rarely changes, the crawler may want to revisit

the page less often, in order to visit more frequently changing ones.

3. How should the load on the visited Web sites be minimized? When the

crawler collects pages from the Web, it consumes resources belonging to other orga-

nizations [Kos95]. For example, when the crawler downloads page p on site S, the

site needs to retrieve page p from its file system, consuming disk and CPU resources.

After this retrieval the page then needs to be transferred through the network, which

is another resource shared by multiple organizations. Therefore, the crawler should

minimize its impact on these resources [Rob]. Otherwise, the administrators of a Web

site or a particular network may complain and sometimes may completely block access

by the crawler.

4. How should the crawling process be parallelized? Due to the enormous size

of the Web, crawlers often run on multiple machines and download pages in paral-

lel [BP98, CGM00a]. This parallelization is often necessary in order to download a
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large number of pages in a reasonable amount of time. Clearly these parallel crawlers

should be coordinated properly, so that different crawlers do not visit the same Web

site multiple times. However, this coordination can incur significant communication

overhead, limiting the number of simultaneous crawlers.

1.2 Organization of dissertation

In this dissertation, we address the above challenges by designing, implementing, and eval-

uating a Web crawler. As part of the dissertation, we built the Stanford WebBase crawler,

which can download Web pages at a high rate without imposing too much load on individ-

ual Web sites.1 In this dissertation we present the challenges that we encountered during

the implementation of the WebBase crawler and then describe our experimental and algo-

rithmic solutions that address the challenges. To that end, the rest of this dissertation is

organized as follows.

Chapter 2: Page Selection We start by discussing how a crawler can select “important”

pages early, so that the quality of the downloaded pages are maximized. Clearly, the

importance of a page is a subjective matter that may vary among applications. Thus we first

identify possible definitions of “page importance,” propose crawler evaluation models, and

design page selection algorithms. We then experimentally evaluate the proposed algorithms.

Chapter 3: Parallel Crawlers We discuss how we can parallelize a crawling process to

increase the page download rate. Compared to a single-process crawler, a parallel crawler

needs to address some additional issues (e.g., communication between crawling processes).

Thus we first propose various evaluation metrics for a parallel crawler. Then we explore

the design space for a parallel crawler and how these design choices affect its effectiveness

under the proposed metrics. We also experimentally study what design choices should be

taken in various scenarios.

Chapter 4: Web Evolution Experiment In order to understand how a crawler can

effectively refresh pages, it is imperative to know how Web pages change over time. In this
1Currently, WebBase maintains about 130 million pages downloaded from the Web and it runs at the

rate of 100 pages per second. While the WebBase crawler can increase the download rate by running more
processes, we limit the rate to 100 pages per second because of our network bandwidth constraint.
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chapter, we first explain the design of our Web evolution experiment, in which we tried to

understand howWeb pages change over time. We then describe the results of the experiment

and present observed change characteristics of Web pages. From the experimental data, we

will also develop a mathematical model that describes the changes of Web pages well. The

techniques described in this chapter shed light on how a crawler itself can learn how Web

pages change over time.

Chapter 5: Page Refresh Policy Based on the results obtained from Chapter 4, we

then discuss how a crawler should refresh pages effectively. In determining refresh policies,

many interesting questions arise, including the following: Should a crawler refresh a page

more often if the page is believed to change more often? How often should a crawler refresh

its pages in order to maintain 80% of the pages “up to date”?

The discussion of this chapter answers these questions and helps us understand page

refresh policies better. Surprisingly, some of the answers to the above questions are rather

unexpected, but we explain why we get such unexpected answers.

Chapter 6: Change Frequency Estimation The crawler itself needs to estimate how

often Web pages change in order to implement the policies described in Chapter 5. In this

chapter, we finish our discussion of “page refresh policy” by describing how a crawler can

estimate change frequencies of Web pages. Intuitively, a crawler can estimate the change

frequency based on how many changes were detected in previous visits. But the crawler

has to estimate the frequency correctly even when it may have missed some changes.

Chapter 7: Crawler Architecture In Chapter 7, we conclude by describing the general

architecture of a crawler, which can incorporate the policies presented in this dissertation.

We also discuss some remaining issues for the design of a crawler and explore their impli-

cations.

1.2.1 Related work

Web crawlers have been studied since the advent of the Web [McB94, Pin94, Bur98, PB98,

HN99, CGM00a, Mil98, Eic94, CGMP98, CvdBD99b, DCL+00, CLW98, CGM00b]. These

and other relevant studies can be classified into the following categories.
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Page update Web crawlers need to update the downloaded pages periodically, in order to

maintain the pages up to date. Reference [CLW98] studies how to schedule a Web crawler

to improve freshness. The model used for Web pages is similar to the one used in this

dissertation; however, the model for the crawler and freshness are very different.

Many researchers have studied how to build a scalable and effective Web cache, to

minimize access delay, server load, and bandwidth usage [YBS99, GS96, BBM+97]. While

some of the work touches on the consistency issue of cached pages, they try to develop

new protocols that can help reduce the inconsistency of cached pages. In contrast, this

dissertation proposes a mechanism that can improve freshness of cached pages using the

existing HTTP protocol without any modification.

In the data warehousing context, a lot of work has been done on efficiently maintaining

local copies, or materialized views [HGMW+95, HRU96, ZGMHW95]. However, most of

that work focused on different issues, such as minimizing the size of the view while reducing

the query response time [HRU96].

Web evolution References [WM99, WVS+99, DFK99] experimentally study how often

Web pages change. Reference [PP97] studies the relationship between the “desirability” of

a page and its lifespan. However, none of these studies are as extensive as the study in

this dissertation, in terms of the scale and the length of the experiments. Also, their focus

is different from this dissertation. Reference [WM99] investigates page changes to improve

Web caching policies, and reference [PP97] studies how page changes are related to access

patterns.

Change frequency estimation for Web pages The problem of estimating change

frequency has long been studied in the statistics community [TK98, Win72, MS75, Can72].

However, most of the existing work assumes that the complete change history is known,

which is not true in many practical scenarios. In Chapter 6, we study how to estimate the

change frequency based on an incomplete change history. By using the estimator in this

chapter, we can get a more accurate picture on how often Web pages change.

Page selection Since many crawlers can download only a small subset of the Web,

crawlers need to carefully decide which pages to download. Following up on our work

in [CGMP98], references [CvdBD99b, DCL+00, Muk00, MNRS99] explore how a crawler
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can discover and identify “important” pages early, and propose some algorithms to achieve

this goal.

General crawler architecture References [PB98, HN99, Mil98, Eic94] describe the gen-

eral architecture of various Web crawlers. For example, reference [HN99] describes the ar-

chitecture of an AltaVista crawler and its major design goals. Reference [PB98] describes

the architecture of the initial version of the Google crawler. In contrast to this work, this

dissertation first explores the possible design space for a Web crawler and then compares

these design choices carefully using experimental and analytical methods. During our dis-

cussion, we also try to categorize existing crawlers based on the issues we will describe.

(Unfortunately, very little is known about the internal workings of commercial crawlers as

they are closely guarded secrets. Our discussion will be limited to the crawlers in the open

literature.)



Chapter 2

Page Selection

2.1 Introduction

The design of a good crawler presents many challenges. In particular, the crawler must

deal with huge volumes of data. Unless it has unlimited computing resources and unlimited

time, it must carefully decide what URLs to download and in what order. In this chapter

we address this important challenge: How should a crawler select URLs to download from

its list of known URLs? If a crawler intends to perform a single scan of the entire Web,

and the load placed on target sites is not an issue, then any URL order will suffice. That

is, eventually every single known URL will be visited, so the order is not critical. However,

most crawlers will not be able to visit every possible page for two main reasons:

• The crawler or its client may have limited storage capacity, and may be unable to
index or analyze all pages. Currently the Web is believed to have several terabytes

of textual data and is growing rapidly, so it is reasonable to expect that most clients

will not want or will not be able to cope with all that data [Kah97].

• Crawling takes time, so at some point the crawler may need to start revisiting pre-
viously retrieved pages, to check for changes. This means that it may never get to

some pages. It is currently estimated that there exist more than one billion pages

available on the Web [BYBCW00, LG99, LG98] and many of these pages change at

rapid rates [PP97, WM99, DFK99, CGM01].

In either case, it is important for the crawler to visit “important” pages first, so that

the fraction of the Web that is visited (and kept up to date) is more meaningful. In the

7



8 CHAPTER 2. PAGE SELECTION

following sections, we present several different useful definitions of importance, and develop

crawling priorities so that important pages have a higher probability of being visited first.

We also present experimental results from crawling the Stanford University Web pages that

show how effective the different crawling strategies are.

2.2 Importance metrics

Not all pages are necessarily of equal interest to a crawler’s client. For instance, if the client

is building a specialized database on a particular topic, then pages that refer to that topic

are more important, and should be visited as early as possible. Similarly, a search engine

may use the number of Web URLs that point to a page, the so-called backlink count, to

rank user query results. If the crawler cannot visit all pages, then it is better to visit those

with a high backlink count, since this will give the end-user higher ranking results.

Given a Web page p, we can define the importance of the page, I(p), in one of the

following ways. (These metrics can be combined, as will be discussed later.)

1. Similarity to a Driving Query Q: A query Q drives the crawling process, and I(p) is

defined to be the textual similarity between p and Q. Similarity has been well studied

in the Information Retrieval (IR) community [Sal83] and has been applied to the Web

environment [YLYL95]. We use IS(p) to refer to the importance metric in this case.

We also use IS(p,Q) when we wish to make the query explicit.

To compute similarities, we can view each document (p or Q) as an n-dimensional vec-

tor 〈w1, . . . , wn〉. The term wi in this vector represents the ith word in the vocabulary.

If wi does not appear in the document, then wi is zero. If it does appear, wi is set to

represent the significance of the word. One common way to compute the significance

wi is to multiply the number of times the ith word appears in the document by the

inverse document frequency (idf) of the ith word. The idf factor is one divided by

the number of times the word appears in the entire “collection,” which in this case

would be the entire Web. The idf factor corresponds to the content discriminating

power of a word: A term that appears rarely in documents (e.g., “queue”) has a high

idf, while a term that occurs in many documents (e.g., “the”) has a low idf. (The

wi terms can also take into account where in a page the word appears. For instance,

words appearing in the title of an HTML page may be given a higher weight than

other words in the body.) The similarity between p and Q can then be defined as the
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inner product of the p and Q vectors. Another option is to use the cosine similarity

measure, which is the inner product of the normalized vectors.

Note that if we do not use idf terms in our similarity computation, the importance of

a page, IS(p), can be computed with “local” information, i.e., just p and Q. However,

if we use idf terms, then we need global information. During the crawling process we

have not seen the entire collection, so we have to estimate the idf factors from the

pages that have been crawled, or from some reference idf terms computed at some

other time. We use IS′(p) to refer to the estimated importance of page p, which is

different from the actual importance IS(p) that is computable only after the entire

Web has been crawled. If idf factors are not used, then IS′(p) = IS(p).

2. Backlink Count: The value of I(p) is the number of links to p that appear over the

entire Web. We use IB(p) to refer to this importance metric. Intuitively, a page p that

is linked to by many pages is more important than one that is seldom referenced. This

type of “citation count” has been used extensively to evaluate the impact of published

papers. On the Web, IB(p) is useful for ranking query results, giving end-users pages

that are more likely to be of general interest.

Note that evaluating IB(p) requires counting backlinks over the entire Web. A crawler

may estimate this value with IB′(p), the number of links to p that have been seen so

far.

3. PageRank: The IB(p) metric treats all links equally. Thus, a link from the Yahoo

home page counts the same as a link from some individual’s home page. However,

since the Yahoo home page is more important (it has a much higher IB count), it

would make sense to value that link more highly. The PageRank backlink metric,

IR(p), recursively defines the importance of a page to be the weighted sum of the

importance of the pages that have backlinks to p. Such a metric has been found to

be very useful in ranking results of user queries [PB98, Goo]. We use IR′(p) for the

estimated value of IR(p) when we have only a subset of pages available.

More formally, if a page has no outgoing link, we assume that it has outgoing links to

every single Web page. Next, consider a page p that is pointed at by pages t1, . . . , tn.

Let ci be the number of links going out of page ti. Also, let d be a damping factor

(whose intuition is given below). Then, the weighted backlink count of page p is given
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by

IR(p) = (1− d) + d [IR(t1)/c1 + · · · + IR(tn)/cn]

This leads to one equation per Web page, with an equal number of unknowns. The

equations can be solved for the IR values. They can be solved iteratively, starting

with all IR values equal to 1. At each step, the new IR(p) value is computed from

the old IR(ti) values (using the equation above), until the values converge. This

calculation corresponds to computing the principal eigenvector of the link matrices.

One intuitive model for PageRank is that we can think of a user “surfing” the Web,

starting from any page, and randomly selecting from that page a link to follow. When

the user reaches a page with no outlinks, he jumps to a random page. Also, when

the user is on a page, there is some probability, d, that the next visited page will

be completely random. This damping factor d makes sense because users will only

continue clicking on one task for a finite amount of time before they go on to something

unrelated. The IR(p) values we computed above give us the probability that our

random surfer is at p at any given time.

4. Forward Link Count: For completeness we may want to consider a metric IF (p) that

counts the number of links that emanate from p. Under this metric, a page with many

outgoing links is very valuable, since it may be a Web directory. This metric can be

computed directly from p, so IF ′(p) = IF (p). This kind of metric has been used in

conjunction with other factors to reasonably identify index pages [PPR96]. We could

also define a weighted forward link metric, analogous to IR(p), but we do not consider

it here.

5. Location Metric: The IL(p) importance of page p is a function of its location, not of

its contents. If URL u leads to p, then IL(p) is a function of u. For example, URLs

ending with “.com” may be deemed more useful than URLs with other endings, or

URLs containing the string “home” may be more of interest than other URLs. Another

location metric that is sometimes used considers URLs with fewer slashes more useful

than those with more slashes. All these examples are local metrics since they can be

evaluated simply by looking at the URL u.

As stated earlier, our importance metrics can be combined in various ways. For example,

we may define a metric IC(p) = k1 · IS(p,Q) + k2 · IB(p), for some constants k1, k2. This
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combines the similarity metric (under some given query Q) and the backlink metric. Pages

that have relevant content and many backlinks would be the highest ranked. (Note that a

similar approach was used to improve the effectiveness of a search engine [Mar97].)

2.3 Problem definition

Our goal is to design a crawler that if possible visits high I(p) pages before lower ranked

ones, for some definition of I(p). Of course, the crawler will only have available I′(p) values,

so based on these it will have to guess what are the high I(p) pages to fetch next.

Our general goal can be stated more precisely in three ways, depending on how we

expect the crawler to operate. (In our evaluations of Section 2.5 we use the second model in

most cases, but we do compare it against the first model in one experiment. Nevertheless,

we believe it is useful to discuss all three models to understand the options.)

• Crawl & Stop: Under this model, the crawler C starts at its initial page p0 and

stops after visiting K pages. At this point an “ideal” crawler would have visited

pages r1, . . . , rK , where r1 is the page with the highest importance value, r2 is the

next highest, and so on. We call pages r1 through rK the “hot” pages. The K pages

visited by our real crawler will contain only M pages with rank higher than or equal

to I(rK). We define the performance of the crawler C to be PCS(C) = M/K. The

performance of the ideal crawler is of course 1. A crawler that somehow manages to

visit pages entirely at random, and may revisit pages, would have a performance of

K/T , where T is the total number of pages in the Web. (Each page visited is a hot

page with probability K/T . Thus, the expected number of desired pages when the

crawler stops is K2/T .)

• Crawl & Stop with Threshold: We again assume that the crawler visits K pages.

However, we are now given an importance target G, and any page with I(p) ≥ G

is considered hot. Let us assume that the total number of hot pages is H. The

performance of the crawler, PST (C), is the fraction of the H hot pages that have

been visited when the crawler stops. If K < H, then an ideal crawler will have

performance K/H. If K ≥ H, then the ideal crawler has the perfect performance 1.
A purely random crawler that revisits pages is expected to visit (H/T ) ·K hot pages

when it stops. Thus, its performance is K/T . Only when the random crawler visits
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all T pages is its performance expected to be 1.

• Limited Buffer Crawl: In this model we consider the impact of limited storage on

the crawling process. We assume that the crawler can only keep B pages in its buffer.

Thus, after the buffer fills up, the crawler must decide what pages to flush to make

room for new pages. An ideal crawler could simply drop the pages with lowest I(p)

value, but a real crawler must guess which of the pages in its buffer will eventually

have low I(p) values. We allow the crawler to visit a total of T pages, equal to the

total number of Web pages. At the end of this process, the fraction of the B buffer

pages that are hot gives us the performance PBC(C). We can define hot pages to be

those with I(p) ≥ G, where G is a target importance, or those with I(p) ≥ I(rB),

where rB is the page with the Bth highest importance value. The performance of an

ideal and a random crawler are analogous to those in the previous cases.

Note that to evaluate a crawler under any of these metrics, we need to compute the

actual I(p) values of pages, and this involves crawling the “entire” Web. To keep our

experiments (Section 2.5) manageable, we imagine that the Stanford University pages form

the entire Web, and we only evaluate performance in this context. That is, we assume that

all pages outside of Stanford have I(p) = 0, and that links to pages outside of Stanford or

links from pages outside of Stanford do not count in I(p) computations. In Section 2.5.2

we study the implications of this assumption by also analyzing a smaller Web within the

Stanford domain, and seeing how Web size impacts performance.

2.4 Ordering metrics

A crawler keeps a queue of URLs it has seen during a crawl, and must select from this queue

the next URL to visit. The ordering metric O is used by the crawler for this selection, i.e.,

it selects the URL u such that O(u) has the highest value among all URLs in the queue.

The O metric can only use information seen (and remembered if space is limited) by the

crawler.

The O metric should be designed with an importance metric in mind. For instance, if

we are searching for high IB(p) pages, it makes sense to use O(u) = IB′(p), where p is

the page u points to. However, it might also make sense to use O(u) = IR′(p), even if our

importance metric is not weighted. In our experiments, we explore the types of ordering
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metrics that are best suited for either IB(p) or IR(p).

For a location importance metric IL(p), we can use that metric directly for ordering

since the URL of p directly gives the IL(p) value. However, for forward link IF (p) and

similarity IS(p) metrics, it is much harder to devise an ordering metric since we have not

seen p yet. As we will see, for similarity, we may be able to use the text that anchors the

URL u as a predictor of the text that p might contain. Thus, one possible ordering metric

O(u) is IS(A,Q), where A is the anchor text of the URL u, and Q is the driving query.

2.5 Experiments

To avoid network congestion and heavy loads on the servers, we did our experimental

evaluation in two steps. In the first step, we physically crawled all Stanford Web pages and

built a local repository of the pages. This was done with the Stanford WebBase [BP98], a

system designed to create and maintain large Web repositories.

After we built the repository, we ran our virtual crawlers on it to evaluate different

crawling schemes. Note that even though we had the complete image of the Stanford

domain in the repository, our virtual crawler based its crawling decisions only on the pages

it saw for itself. In this section we briefly discuss how the particular database was obtained

for our experiments.

2.5.1 Description of dataset

To download an image of the Stanford Web pages, we started WebBase with an initial list

of “stanford.edu” URLs. These 89,119 URLs were obtained from an earlier crawl. Dur-

ing the crawl, non-Stanford URLs were ignored. Also, we limited the actual data that we

collected for two reasons. The first is that many heuristics are needed to avoid automati-

cally generated, and potentially infinite, sets of pages. For example, any URLs containing

“/cgi-bin/” are not crawled, because they are likely to contain programs which generate

infinite sets of pages, or produce other undesirable side effects such as an unintended vote in

an online election. We used similar heuristics to avoid downloading pages generated by pro-

grams. Another way the data set is reduced is through the robots exclusion protocol [Rob],

which allows Webmasters to define pages they do not want crawled by automatic systems.

At the end of the process, we had downloaded 375,746 pages and had 784,592 known

URLs to Stanford pages. The crawl was stopped before it was complete, but most of the
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uncrawled URLs were on only a few servers, so we believe the dataset we used to be a

reasonable representation of the stanford.edu Web. In particular, it should be noted

that 352,944 of the known URLs were on one server, http://www.slac.stanford.edu,

which has a program that could generate an unlimited number of Web pages. Since the

dynamically-generated pages on the server had links to other dynamically generated pages,

we would have downloaded an infinite number of pages if we naively followed the links.

Our dataset consisted of about 225,000 crawled “valid” HTML pages,1 which consumed

roughly 2.5GB of disk space. However, out of these 225,000 pages, 46,000 pages were

unreachable from the starting point of the crawl, so the total number of pages for our

experiments was 179,000.

We should stress that the virtual crawlers that will be discussed next do not use WebBase

directly. As stated earlier, they use the dataset collected by the WebBase crawler, and do

their own crawling on it. The virtual crawlers are simpler than the WebBase crawler. For

instance, they can detect if a URL is invalid simply by seeing if it is in the dataset. Similarly,

they do not need to distribute the load to visited sites. These simplifications are fine, since

the virtual crawlers are only used to evaluate ordering schemes, and not to do real crawling.

2.5.2 Backlink-based crawlers

In this section we study the effectiveness of various ordering metrics, for the scenario where

importance is measured through backlinks (i.e., either the IB(p) or IR(p) metrics). We start

by describing the structure of the virtual crawler, and then consider the different ordering

metrics. Unless otherwise noted, we use the Stanford dataset described in Section 2.5.1,

and all crawls are started from the Stanford homepage. For the PageRank metric we use a

damping factor d of 0.9 (for both IR(p) and IR′(p)) for all of our experiments.

Figure 2.1 shows our basic virtual crawler. The crawler manages three main data struc-

tures. Queue url queue contains the URLs that have been seen and need to be visited.

Once a page is visited, it is stored (with its URL) in crawled pages. links holds pairs of

the form (u1, u2), where URL u2 was seen in the visited page with URL u1. The crawler’s

ordering metric is implemented by the function reorder queue(), shown in Figure 2.2. We

used three ordering metrics: (1) breadth-first (2) backlink count IB′(p), and (3) PageRank

IR′(p). The breadth-first metric places URLs in the queue in the order in which they are

discovered, and this policy makes the crawler visit pages in breadth-first order.
1We considered a page valid when its Web server responded with the HTTP header “200 OK.”
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Algorithm 2.5.1 Crawling algorithm (backlink based)
Input: starting url: seed URL
Procedure:
[1] enqueue(url queue, starting url)
[2] while (not empty(url queue))
[3] url = dequeue(url queue)
[4] page = crawl page(url)
[5] enqueue(crawled pages, (url, page))
[6] url list = extract urls(page)
[7] foreach u in url list
[8] enqueue(links, (url, u))
[9] if (u/∈url queue and (u,-)/∈crawled pages)
[10] enqueue(url queue, u)
[11] reorder queue(url queue)

Function description:
enqueue(queue, element): append element at the end of queue
dequeue(queue) : remove the element at the beginning

of queue and return it
reorder queue(queue) : reorder queue using information in

links (refer to Figure 2.2)

Figure 2.1: Basic crawling algorithm

(1) breadth first
do nothing (null operation)

(2) backlink count, IB′(p)
foreach u in url queue

backlink count[u] = number of terms (-,u) in links
sort url queue by backlink count[u]

(3) PageRank IR′(p)
solve the following set of equations:

IR[u] = (1− 0.9) + 0.9∑i
IR[vi]

ci
, where

(vi, u) ∈ links and ci is the number of links in the page vi
sort url queue by IR(u)

Figure 2.2: Description of reorder queue() of each ordering metric
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Figure 2.3: Fraction of Stanford Web crawled vs. PST . I(p) = IB(p); O(u) = IB′(p).

We start by showing in Figure 2.3 the crawler’s performance with the backlink ordering

metric. In this scenario, the importance metric is the number of backlinks to a page (I(p) =

IB(p)) and we consider a Crawl & Stop with Threshold model in Section 2.3 with G either

3, 10, or 100. Recall that a page with G or more backlinks is considered important, i.e.,

hot. Under these hot page definitions, about H = 85,000 (47%), 17,500 (10%) and 1,400

(0.8%) pages out of 179,000 total Web pages were considered hot, respectively.

In Figure 2.3, the horizontal axis is the fraction of the Stanford Web pages that has

been crawled over time. At the right end of the horizontal axis, all 179,000 pages have been

visited. The vertical axis represents PST , the fraction of the total hot pages that has been

crawled at a given point. The solid lines in the figure show the results from our experiments.

For example, when the crawler in our experiment visited 0.2 (20%) of the Stanford pages,

it crawled 0.5 (50%) of the total hot pages for G = 100. The dashed lines in the graph

show the expected performance of ideal crawlers. An ideal crawler reaches performance 1

when H pages have been crawled. The dotted line represents the performance of a random

crawler, and it increases linearly over time.

The graph shows that as our definition of a hot page becomes more stringent (larger G),

the faster the crawler can locate the hot pages. This result is to be expected, since pages

with many backlinks will be seen quickly after the crawl starts. Figure 2.3 also shows that

even if G is large, finding the “last” group of hot pages is always difficult. That is, to the

right of the 0.8 point on the horizontal axis, the crawler finds hot pages at roughly the same
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Figure 2.4: Fraction of Stanford Web crawled vs. PST . I(p) = IB(p); G = 100.

rate as a random crawler.

In our next experiment we compare three different ordering metrics: 1) breadth-first

2) backlink-count and 3) PageRank (corresponding to the three functions of Figure 2.2).

We continue to use the Crawl & Stop with Threshold model, with G = 100, and a IB(p)

importance metric. Figure 2.4 shows the results of this experiment. The results are rather

counterintuitive. Intuitively one would expect that a crawler using the backlink ordering

metric IB′(p) that matches the importance metric IB(p) would perform the best. However,

this is not the case, and the PageRank metric IR′(p) outperforms the IB′(p) one. To

understand why, we manually traced the crawler’s operation. We noticed that often the

IB′(p) crawler behaved like a depth-first one, frequently visiting pages in one “cluster”

before moving on to the next. On the other hand, the IR′(p) crawler combined breadth

and depth in a better way.

To illustrate, let us consider the Web fragment of Figure 2.5. With IB′(p) ordering, the

crawler visits a page like the one labeled p1 and quickly finds a cluster A of pages that point

to each other. The A pages temporarily have more backlinks than page p2, so the visit of

page p2 is delayed even if page p2 actually has more backlinks than the pages in cluster A.

On the other hand, with IR′(p) ordering, page p2 may have higher rank (because its link

comes from a high ranking page) than the pages in cluster A (that only have pointers from

low ranking pages within the cluster). Therefore, page p2 is reached faster.

In summary, during the early stages of a crawl, the backlink information is biased by

the starting point. If the crawler bases its decisions on this skewed information, it tries
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Figure 2.6: Fraction of Stanford Web crawled vs. PCS . I(p) = IB(p).

getting locally hot pages instead of globally hot pages, and this bias gets worse as the crawl

proceeds. On the other hand, the IR′(p) PageRank crawler is not as biased towards locally

hot pages, so it gives better results regardless of the starting point.

Figure 2.6 shows that this conclusion is not limited to the Crawl & Stop with Threshold

model. In the figure we show the performance of the crawlers under the Crawl & Stop model

(Section 2.3). Remember that under the Crawl & Stop model, the definition of hot pages

changes over time. That is, the crawler does not have a predefined notion of hot pages,

and instead, when the crawler has visited, say, 30% of the entire Web, it considers the top

30% pages as hot pages. Therefore, an ideal crawler would have performance 1 at all times

because it would download pages in the order of their importance. Figure 2.6 compares

1) breadth-first 2) backlink and 3) PageRank ordering metrics for the IB(p) importance
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Figure 2.7: Fraction of Stanford Web crawled vs. PST . I(p) = IR(p); G = 13.

metric under this model. The vertical axis represents PCS , the crawled fraction of hot pages

at each point under the varying definition of hot pages. The figure shows that the results of

the Crawl & Stop model are analogous to those of the Crawl & Stop with Threshold model:

The PageRank ordering metric shows the best performance.

Returning to the Crawl & Stop with Threshold model, Figure 2.7 shows the results

when we use the IR(p) PageRank importance metric with G = 13.2 Again, the PageRank

ordering metric shows the best performance. The backlink and the breadth-first metrics

show similar performance. Based on these results, we recommend using the PageRank

ordering metric for both the IB(p) and the IR(p) importance metrics.

2.5.3 Small-scale crawl

In some cases the crawler’s client may only be interested in small portions of the Web.

For instance, the client may be interested in a single site (to create a mirror, say). In this

subsection we evaluate the ordering metrics in such a scenario.

To study the impact of scale on the performance of a crawler we ran experiments similar

to those in Section 2.5.2 only on the pages of the Stanford Database Group (on the server

http://www-db.stanford.edu). This subset of the Stanford pages consists of about 1,100

HTML pages, which is much smaller than the entire Stanford domain. In most of our

experiments for the Database Group domain, crawling performance was not as good as for

2When G = 13 for the IR(p) metric, the number of hot pages was about 1, 700 (1%), which is close to
the 1, 400 of Figure 2.4.
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Figure 2.8: Fraction of DB group Web crawled vs. PST . I(p) = IB(p); G = 5.
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Figure 2.9: Histogram of backlink counts within DB group Web

the Stanford domain. Figure 2.8 shows one of the results. In this case, we use the Crawl

& Stop with Threshold model with G = 5 with the importance metric IB(p). The graph

shows that performance can be even worse than that of a random crawler at times, for all

ordering metrics.

This poor performance is mainly because an importance metric based on backlinks is

not a good measure of importance for a small domain. In a small domain, most pages have

only a small number of backlinks and the number of backlinks therefore is very sensitive

to a page creator’s style. For example, Figure 2.9 shows the histogram for the number of

backlinks in the Database Group domain. The vertical axis shows the number of pages with

a given backlink count. We can see that most pages have fewer than 5 backlinks. In this

range, the rank of each page varies greatly according to the style used by the creator of the
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Figure 2.10: Percentage of DB group Web crawled vs. PST . I(p) = IR(p); G = 3.

page. If the creator generates many cross-links between his pages, then his pages have a

high IB(p) rank, otherwise they do not. Therefore, the rank is very sensitive and is not a

good measure of the importance of the pages.

In Figure 2.8 we can see the impact of “locally dense” clusters that have many “locally

popular” but “globally unpopular” pages. The performance of the backlink IB′(p) crawler

is initially quite flat: It initially does a depth-first crawl for the first cluster it found. After

visiting about 20% of the pages, the crawler suddenly discovers a large cluster, and this

accounts for the jump in the graph. On the other hand, the PageRank IR′(p) crawler

found this large cluster earlier, so its performance is much better initially.

In Figure 2.10 we show the results on the Database Group Web when the importance

metric is IR(p) PageRank metric with G = 3.3 All three ordering metrics show better

performance under the IR(p) metric than under the IB(p) metric, but still performance is

not as good as that of the larger Stanford domain. Again, the IR′(p) ordering metric shows

the best performance.

2.5.4 Similarity-based crawlers

In the experiments of two previous subsections, we compared three different backlink-based

crawlers. In this subsection, we present the results of our experiments on similarity-based

crawlers. The similarity-based importance metric, IS(p), measures the relevance of each

page to a topic or a query that the user has in mind. There are clearly many possible
3When G = 3, the number of hot pages is similar to that of Figure 2.8.
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Algorithm 2.5.2 Crawling algorithm (modified similarity based)
Input: starting url: seed URL
Procedure:
[1] enqueue(url queue, starting url)
[2] while (not empty(hot queue) and not empty(url queue))
[3] url = dequeue2(hot queue, url queue)
[4] page = crawl page(url)
[5] enqueue(crawled pages, (url, page))
[6] url list = extract urls(page)
[7] foreach u in url list
[8] enqueue(links, (url, u))
[9] if (u /∈url queue and u /∈ hot queue and (u,-)/∈crawled pages)
[10] if (u contains computer in anchor or url)
[11] enqueue(hot queue, u)
[12] else
[13] enqueue(url queue, u)
[14] reorder queue(url queue)
[15] reorder queue(hot queue)

Function description:
dequeue2(queue1, queue2): if (not empty(queue1)) dequeue(queue1)

else dequeue(queue2)

Figure 2.11: Similarity-based crawling algorithm

IS(p) metrics to consider, so our experiments here are not intended to be comprehensive.

Instead, our goal is to briefly explore the potential of various ordering schemes in some

sample scenarios. In particular, for our first two experiments we consider the following

IS(p) definition: A page is considered hot if it contains the word computer in its title or if

it has more than 10 occurrences of computer in its body.4

For similarity-based crawling, the crawler of Figure 2.1 is not appropriate, since it does

not take the content of the page into account. To give priority to the pages related to the

topic of interest, we modified our crawler as shown in Figure 2.11. This crawler keeps two

queues of URLs to visit: hot queue stores the URLs with the topic word computer in their

anchors or in the URLs themselves. The second queue, url queue, keeps the rest of the

URLs. The crawler always prefers to take URLs to visit from hot queue.

4In our third experiment we consider a different topic, admission, and show the results.
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Figure 2.12: Basic similarity-based crawler. I(p) = IS(p); topic is computer.

Figure 2.12 shows the PST results for this crawler for the IS(p) importance metric

defined above. The horizontal axis represents the fraction of the Stanford Web pages that

has been crawled and the vertical axis shows the crawled fraction of the total hot pages.

The results show that the backlink-count and the PageRank crawler behaved no better

than a random crawler. Only the breadth-first crawler gave a reasonable result. This result

is rather unexpected: All three crawlers differ only in their ordering metrics, which are

neutral to the page content. All crawlers visited computer-related URLs immediately after

their discovery. Therefore, all the schemes are theoretically equivalent and should give

comparable results.

The observed unexpected performance difference arises from the breadth-first crawler’s

FIFO nature. The breadth-first crawler fetches pages in the order they are found. If a

computer-related page is crawled earlier, then the crawler discovers and visits its child

pages earlier as well. These pages have a tendency to be computer related, so performance

is better.

Thus the observed property is that if a page has a high IS(p) value, then its children

are likely to have a high IS(p) value too. To take advantage of this property, we modified

our crawler as shown in Figure 2.13. This crawler places in the hot queue URLs that have

the target keyword in their anchor or URL, or that are within 3 links from a hot page.

Figure 2.14 illustrates the result of this crawling strategy. All crawlers showed sig-

nificant improvement and the difference between the breadth-first crawler and the others

decreased. While the breadth-first crawler is still superior to the other two, we believe that
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Algorithm 2.5.3 Crawling algorithm (similarity based)
Input: starting url: seed URL
Procedure:
[1] enqueue(url queue, starting url)
[2] while (not empty(hot queue) and not empty(url queue))
[3] url = dequeue2(hot queue, url queue)
[4] page = crawl page(url)
[5] if (page contains 10 or more computer in body

or one computer in title)
[6] hot[url] = True
[7] enqueue(crawled pages, (url, page))
[8] url list = extract urls(page)
[9] foreach u in url list
[10] enqueue(links, (url, u))
[11] if (u /∈url queue and u /∈ hot queue and (u,-)/∈crawled pages)
[12] if (u contains computer in anchor or url)
[13] enqueue(hot queue, u)
[14] else if (distance from hotpage(u) < 3)
[15] enqueue(hot queue, u)
[16] else
[17] enqueue(url queue, u)
[18] reorder queue(url queue)
[19] reorder queue(hot queue)

Function description:
distance from hotpage(u):

return 0 if (hot[u] = True)
return 1 if (hot[v] = True and (v, u)∈ links for some v)
. . .

Figure 2.13: Modified similarity-based crawling algorithm
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Figure 2.14: Modified similarity-based crawler. I(p) = IS(p); topic is computer.

0.2 0.4 0.6 0.8 1
Fraction of Stanford Web crawled

0.2

0.4

0.6

0.8

1

P S
T

Ordering metric O(u)

Breadth

PageRank

Random
Ideal

Backlink

Figure 2.15: Modified similarity-based crawler. Topic is admission.

this difference is mainly due to statistical variation. In our other experiments, including

the next one, the PageRank crawler shows similar or sometimes better performance than

the breadth-first crawler.

In our final experiment, with results shown in Figure 2.15, we repeat the scenario re-

ported in Figure 2.14 with a different query topic. In this case, the word admission is

considered of interest. Details are not identical to the previous case, but the overall con-

clusion is the same: When similarity is important, it is effective to use an ordering metric

that considers 1) the content of anchors and URLs and 2) the distance to the hot pages

that have been discovered.
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2.6 Related work

Recently, a focused crawler has been an active area of research. A focused crawler tries

to collect pages related to a particular topic [CvdBD99b, CvdBD99a, DCL+00, Muk00,

AAGY01, MPR01, CGMP98, MNRS99, HJ+98, NW01], by analyzing keywords and the

link structure of the Web.

For instance, references [CvdBD99b, CvdBD99a, DCL+00, AAGY01] propose various

types of focused crawlers. The crawler described in [CvdBD99b, CvdBD99a] has two mod-

ules, a classifier and a distiller, that judge the relevance of pages and determine their down-

load order. The decision is based on the relevance of the page and its potential proximity

to other relevant pages. Reference [DCL+00] uses Web link structure, so called context

graphs, as a means to model the paths leading to relevant web pages. Similarly to our

results in Section 2.5.4, reference [NW01] reports that a breadth-first crawler shows a good

performance when the crawler starts from an appropriate Web page.

Researchers have also tried to usemachine learning techniques to build a focused crawler.

For instance, reference [MNRS99] adopts reinforcement learning and applies Bayes classifiers

to the full text and anchor text of a page when classifying it.

Web believe our work described in this chapter [CGMP98] is one of the earliest work

that studied the issue of downloading “important” or “relevant” pages early.

2.7 Conclusion

In this chapter we addressed the general problem of ordering URLs for crawling. We

defined several different kinds of importance metrics, and built three models to evaluate

crawlers. We experimentally evaluated several combinations of importance and ordering

metrics, using the Stanford Web pages.

In general, our results show that PageRank, IR′(p), is an excellent ordering metric when

either pages with many backlinks or with high PageRank are sought. In addition, if the

similarity to a driving query is important, it is useful to visit earlier URLs that:

• Have anchor text that is similar to the driving query;

• Have some of the query terms within the URL itself; or

• Have a short link distance to a page that is known to be hot.
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With a good ordering strategy, we can build crawlers that can obtain a significant

portion of the hot pages relatively early. This property can be extremely useful when we

are trying to crawl a fraction of the Web, when our resources are limited, or when we need

to revisit pages often to detect changes.

One limitation of our experiments is that they were run only over the Stanford Web

pages. We believe that the Stanford pages are a reasonable sample: For example, they are

managed by many different people who structure their pages in a variety of ways. They

include many individual home pages, and also many clusters that are carefully managed by

organizations. Nevertheless, it will be interesting to investigate in the future non-Stanford

Web pages to analyze structural differences and their implication for crawling.
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Chapter 3

Parallel Crawlers

3.1 Introduction

In this chapter we study how we should parallelize the crawling process so that we can

maximize the download rate while minimizing the overhead from parallelization. As the

size of the Web grows, it becomes more difficult – or impossible – to crawl the entire Web

by a single process. Many search engines run multiple processes in parallel. We refer to

this type of crawler as a parallel crawler.

While many existing search engines already use a parallel crawler internally, there has

been little scientific research conducted on the parallelization of a crawler. Thus, little has

been known about the tradeoffs among various design choices for a parallel crawler. In

particular, we believe the following issues make the study of a parallel crawler difficult, yet

interesting:

• Overlap: When multiple processes run in parallel to download pages, different pro-

cesses may download the same page multiple times. One process may not be aware

of the fact that another process has already downloaded a page. Clearly, multiple

downloads should be minimized to save network bandwidth and increase the crawler’s

effectiveness. How can we coordinate the processes to prevent overlap?

• Quality: As discussed in Chapter 2, a crawler wants to download “important” pages
first. However, in a parallel crawler, each process may not be aware of the whole

image of the Web that they have collectively downloaded so far. For this reason, each

process may make a crawling decision solely based on its own image of the Web (that

29
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it has downloaded) and thus make a poor decision. How can we make sure that the

quality of downloaded pages is as good for a parallel crawler as for a single-process

crawler?

• Communication bandwidth: In order to prevent overlap, or to improve the quality
of the downloaded pages, crawling processes need to periodically communicate and

coordinate with each other. However, this communication may grow significantly as

the number of crawling processes increases. Exactly what do the processes need to

communicate and how significant would the communication overhead be? Can we

minimize this communication while maintaining the effectiveness of the crawler?

While parallel crawlers are challenging to operate, we believe that they have many

important advantages, compared to single-process crawlers:

• Scalability: Due to the enormous size of the Web, it may be imperative to run a
parallel crawler to achieve the required download rate in certain cases.

• Network-load dispersion: Multiple crawling processes of a parallel crawler may run at
geographically distant locations, each downloading “geographically-adjacent” pages.

For example, a process in Germany may download all European pages, while another

one in Japan crawls all Asian pages. In this way, we can disperse the network load

to multiple regions. In particular, this dispersion might be necessary when a single

network cannot handle the heavy load from a large-scale crawl.

• Network-load reduction: In addition to dispersing load, a parallel crawler may actually
reduce the network load. For example, assume that a crawler in North America

retrieves a page from Europe. To be downloaded by the crawler, the page first has to go

through the network in Europe, then the Europe-to-North America inter-continental

network and finally the network in North America. Instead, if a crawling process in

Europe collects all European pages, and if another process in North America crawls

all North American pages, the overall network load will be reduced, because pages

only go through “local” networks.

Note that the downloaded pages may need to be transferred later to a central location,

so that a central index can be built. However, even in that case, we believe that the

transfer can be made significantly smaller than the original page download traffic, by

using some of the following methods:
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– Compression: Once the pages are collected and stored, it is easy to compress the

data before sending them to a central location.

– Difference: Instead of sending the entire image of all downloaded pages, we may

first take the difference between the previous image and the current one and send

only this difference. Since many pages are static and do not change very often,

this scheme may significantly reduce network traffic.

– Summarization: In certain cases, we may need only a central index, not the

original pages themselves. In this case, we may extract the necessary information

for an index construction (e.g., postings lists) and transfer this information only.

In summary, we believe a parallel crawler has many advantages and poses interesting

challenges. This chapter makes the following contributions:

• We identify major issues and problems related to a parallel crawler and discuss how
we can solve these problems.

• We present multiple architectures and techniques for a parallel crawler and discuss
their advantages and disadvantages. As far as we know, most of these techniques

have not been described in open literature. (Very little is known about the internal

workings of commercial crawlers, as they are closely guarded secrets.)

• Using a large dataset (40M web pages) collected from the Web, we experimentally

compare the design choices and study their tradeoffs quantitatively.

• We propose various optimization techniques that can minimize the coordination ef-
fort among crawling processes so that they can operate more independently while

maximizing their effectiveness.

3.2 Architecture of a parallel crawler

In Figure 3.1 we illustrate the general architecture of a parallel crawler. A parallel crawler

consists of multiple crawling processes, which we refer to as C-proc’s. Each C-proc performs

the basic tasks that a single-process crawler conducts. It downloads pages from the Web,

stores the pages locally, extracts URLs from them and follows links. Depending on how the

C-proc’s split the download task, some of the extracted links may be sent to other C-proc’s.
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Figure 3.1: General architecture of a parallel crawler

The C-proc’s performing these tasks may be distributed either on the same local network

or at geographically distant locations.

• Intra-site parallel crawler: When all C-proc’s run on the same local network and

communicate through a high speed interconnect (such as LAN), we call it an intra-

site parallel crawler. In Figure 3.1, this scenario corresponds to the case where all

C-proc’s run only on the local network on the left. In this case, all C-proc’s use the

same local network when they download pages from remote Web sites. Therefore, the

network load from C-proc’s is centralized at a single location where they operate.

• Distributed crawler: When a crawler’s C-proc’s run at geographically distant locations

connected by the Internet (or a wide area network), we call it a distributed crawler.

For example, one C-proc may run in the US, crawling all US pages, and another C-proc

may run in France, crawling all European pages. As we discussed in the introduction,

a distributed crawler can disperse and even reduce the load on the overall network.

When C-proc’s run at distant locations and communicate through the Internet, it

becomes important how often and how much C-proc’s need to communicate. The

bandwidth between C-proc’s may be limited and sometimes unavailable, as is often

the case with the Internet.

When multiple C-proc’s download pages in parallel, different C-proc’s may download

the same page multiple times. In order to avoid this overlap, C-proc’s need to coordinate

with each other on what pages to download. This coordination can be done in one of the

following ways:

• Independent: At one extreme, C-proc’s may download pages totally independently,

without any coordination. That is, each C-proc starts with its own set of seed URLs
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and follows links without consulting with other C-proc’s. In this scenario, downloaded

pages may overlap, but we may hope that this overlap will not be significant, if all

C-proc’s start from different seed URLs.

While this scheme has minimal coordination overhead and can be very scalable, we

do not directly study this option due to its overlap problem. Later we will consider

an improved version of this option which significantly reduces overlap.

• Dynamic assignment: When there exists a central coordinator that logically divides

the Web into small partitions (using a certain partitioning function) and dynamically

assigns each partition to a C-proc for download, we call it dynamic assignment.

For example, assume that a central coordinator partitions the Web by the site name

of a URL. That is, pages in the same site (e.g., http://cnn.com/top.html and http:

//cnn.com/content.html) belong to the same partition, while pages in different sites

belong to different partitions. Then during a crawl, the central coordinator constantly

decides on what partition to crawl next (e.g., the site cnn.com) and sends URLs

within this partition (that have been discovered so far) to a C-proc as seed URLs.

Given this request, the C-proc downloads the pages and extracts links from them.

When the extracted links point to pages in the same partition (e.g., http://cnn.

com/article.html), the C-proc follows the links, but if a link points to a page in

another partition (e.g., http://nytimes.com/index.html), the C-proc reports the

link to the central coordinator. The central coordinator later uses this link as a seed

URL for the appropriate partition.

Note that the Web can be partitioned at various granularities. At one extreme,

the central coordinator may consider every page as a separate partition and assign

individual URLs to C-proc’s for download. In this case, a C-proc does not follow links,

because different pages belong to separate partitions. It simply reports all extracted

URLs back to the coordinator. Therefore, the communication between a C-proc and

the central coordinator may vary dramatically, depending on the granularity of the

partitioning function.

• Static assignment: When the Web is partitioned and assigned to each C-proc before

the start of a crawl, we call it static assignment. In this case, every C-proc knows which

C-proc is responsible for which page during a crawl, and the crawler does not need
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Figure 3.2: Site S1 is crawled by C1 and site S2 is crawled by C2

a central coordinator. We will shortly discuss in more detail how C-proc’s operates

under this scheme.

In this thesis, we mainly focus on static assignment and defer the study of dynamic

assignment to future work. Note that in dynamic assignment, the central coordinator may

become a major bottleneck because it has to maintain a large number of URLs reported

from all C-proc’s and has to constantly coordinate all C-proc’s.

3.3 Crawling modes for static assignment

Under static assignment, each C-proc is responsible for a certain partition of the Web and

has to download pages within the partition. However, some pages in the partition may

have links to pages in another partition. We refer to this type of link as an inter-partition

link. To illustrate how a C-proc may handle inter-partition links, we use Figure 3.2 as our

example. In the figure, we assume that two C-proc’s, C1 and C2, are responsible for sites

S1 and S2, respectively. For now, we assume that the Web is partitioned by sites and that

the Web has only S1 and S2. Also, we assume that each C-proc starts its crawl from the

root page of each site, a and f.

1. Firewall mode: In this mode, each C-proc downloads only the pages within its

partition and does not follow any inter-partition link. All inter-partition links are

ignored and thrown away. For example, the links a → g, c → g and h → d in

Figure 3.2 are ignored and thrown away by C1 and C2.

In this mode, the overall crawler does not have any overlap in the downloaded pages,



3.3. CRAWLING MODES FOR STATIC ASSIGNMENT 35

because a page can be downloaded by only one C-proc, if ever. Also, C-proc’s can

run quite independently in this mode because they do not conduct any run-time

coordination or URL exchanges. However, because some pages may be reachable only

through inter-partition links, the overall crawler may not download all pages that it

has to download. For example, in Figure 3.2, C1 can download a, b and c, but not d

and e, because they can be reached only through h→ d link.

2. Cross-over mode: Primarily, each C-proc downloads pages within its partition, but

when it runs out of pages in its partition, it also follows inter-partition links. For

example, consider C1 in Figure 3.2. Process C1 first downloads pages a, b and c by

following links from a. At this point, C1 runs out of pages in S1, so it follows a link

to g and starts exploring S2. After downloading g and h, it discovers a link to d in

S1, so it comes back to S1 and downloads pages d and e.

In this mode, downloaded pages may clearly overlap (pages g and h are downloaded

twice), but the overall crawler can download more pages than the firewall mode (C1

downloads d and e in this mode). Also, as in the firewall mode, C-proc’s do not need

to communicate with each other, because they follow only the links discovered by

themselves.

3. Exchange mode: When C-proc’s periodically and incrementally exchange inter-

partition URLs, we say that they operate in an exchange mode. Processes do not

follow inter-partition links.

For example, C1 in Figure 3.2 informs C2 of page g after it downloads page a (and

c) and C2 transfers the URL of page d to C1 after it downloads page h. Note that

C1 does not follow the links to page g. It only transfers the links to C2, so that

C2 can download the page. In this way, the overall crawler can avoid overlap, while

maximizing coverage.

Note that the firewall and the cross-over modes give C-proc’s much independence (C-

proc’s do not need to communicate with each other), but the cross-over mode may download

the same page multiple times, and the firewall mode may not download some pages. In

contrast, the exchange mode avoids these problems but requires constant URL exchange

among C-proc’s. To reduce this URL exchange, a crawler based on the exchange mode may

use some of the following techniques:
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1. Batch communication: Instead of transferring an inter-partition URL immediately

after it is discovered, a C-proc may wait for a while, to collect a set of URLs and send

them in a batch. That is, with batching, a C-proc collects all inter-partition URLs

until it downloads k pages. Then it partitions the collected URLs and sends them to

an appropriate C-proc. Once these URLs are transferred, the C-proc then purges them

and starts to collect a new set of URLs from the next downloaded pages. Note that a

C-proc does not maintain the list of all inter-partition URLs discovered so far. It only

maintains the list of inter-partition links in the current batch, in order to minimize

the memory overhead for URL storage.

This batch communication has various advantages over incremental communication.

First, it incurs less communication overhead, because a set of URLs can be sent in

a batch, instead of sending one URL per message. Second, the absolute number of

exchanged URLs will also decrease. For example, consider C1 in Figure 3.2. The link

to page g appears twice, in page a and in page c. Therefore, if C1 transfers the link to

g after downloading page a, it needs to send the same URL again after downloading

page c.1 In contrast, if C1 waits until page c and sends URLs in a batch, it needs to

send the URL for g only once.

2. Replication: It is known that the number of incoming links to pages on the Web

follows a Zipfian distribution [BKM+00, BA99, Zip49]. That is, a small number of

Web pages have an extremely large number of links pointing to them, while a majority

of pages have only a small number of incoming links.

Thus, we may significantly reduce URL exchanges, if we replicate the most “popular”

URLs at each C-proc (by most popular, we mean the URLs with most incoming links)

and stop transferring them between C-proc’s. That is, before we start crawling pages,

we identify the most popular k URLs based on the image of the Web collected in a

previous crawl. Then we replicate these URLs at each C-proc, so that the C-proc’s

do not exchange them during a crawl. Since a small number of Web pages have a

large number of incoming links, this scheme may significantly reduce URL exchanges

between C-proc’s, even if we replicate a small number of URLs.

Note that some of the replicated URLs may be used as seed URLs for a C-proc. That

is, if some URLs in the replicated set belong to the same partition that a C-proc is
1When it downloads page c, it does not remember whether the link to g has been already sent.
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responsible for, the C-proc may use those URLs as its seeds rather than starting from

other pages.

Another approach would be to have each C-proc try to discover popular URLs on the

fly during a crawl, instead of identifying them based on a previous image. However,

we believe that the popular URLs from a previous crawl will be a good approximation

for the popular URLs in the current Web; most popular Web pages (such as Yahoo)

maintain their popularity for a relatively long period of time, even if their exact

popularity may change slightly.

So far, we have mainly assumed that the Web pages are partitioned by Web sites.

Clearly, there exist a multitude of ways to partition the Web, including the following:

1. URL-hash based: Based on the hash value of the URL of a page, we assign the

page to a C-proc. In this scheme, pages in the same site can be assigned to different

C-proc’s. Therefore, the locality of link structure2 is not reflected in the partition, and

there will be many inter-partition links.

2. Site-hash based: Instead of computing the hash value on the entire URL, we

compute the hash value only on the site name of a URL (e.g., cnn.com in http:

//cnn.com/index.html) and assign the page to a C-proc.

In this scheme, note that pages in the same site will be allocated to the same partition.

Therefore, only some of inter-site links will be inter-partition links, and thus we can

reduce the number of inter-partition links quite significantly compared to the URL-

hash based scheme.

3. Hierarchical: Instead of using a hash-value, we may partition the Web hierarchically

based on the URLs of pages. For example, we may divide the Web into three partitions

(the pages in the .com domain, .net domain and all other pages) and allocate them

to three C-proc’s.

Note that this scheme may have even fewer inter-partition links than the site-hash

based scheme, because pages may tend to be linked to the pages in the same domain.

2Our experiments suggest that on average about 90% of the links in a page point to pages in the same
site.
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Figure 3.3: Summary of the options discussed

However, in our preliminary experiments, we could not observe any significant differ-

ence between the two schemes, as long as each scheme splits the Web into roughly the

same number of partitions.

In our later experiments, we will mainly use the site-hash based scheme as our parti-

tioning function. We chose this option because it is simple to implement and because it

captures the core issues that we want to study. For example, under the hierarchical scheme,

it is not easy to divide the Web into equal size partitions, while it is relatively straight-

forward under the site-hash based scheme. Also, the URL-hash based scheme generates

many inter-partition links, resulting in more URL exchanges in the exchange mode and less

coverage in the firewall mode.

In Figure 3.3, we summarize the options that we have discussed so far. The right-hand

table in the figure shows a more detailed view of the static coordination scheme. In the

diagram, we highlight the main focus of this chapter with dark gray. That is, we mainly

study the static coordination scheme (the third column in the left-hand table) and we use the

site-hash based partitioning for our experiments (the second row in the right-hand table).

However, during our discussion, we will also briefly explore the implications of other options.

For instance, the firewall mode is an “improved” version of the independent coordination

scheme (in the left-hand table), so our study on the firewall mode will show the implications

of the independent coordination scheme. Also, we show the performance of the URL-hash

based scheme (the first row in the right-hand table) when we discuss the results from the

site-hash based scheme.
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Given our table of the crawler design space, it would be very interesting to see what

options existing search engines selected for their own crawlers. Unfortunately, this infor-

mation is impossible to obtain in most cases because companies consider their technologies

proprietary and want to keep them secret. The only crawler design that we know of is the

prototype Google crawler [PB98] when it was developed at Stanford. At that time, it took

the intra-site, static and site-hash based scheme and ran in the exchange mode [PB98].

Reference [HN99] describes the architecture of the Compaq SRC parallel crawler. However,

the parallelization options were not explicitly described.

3.4 Evaluation models

In this section, we define the metrics that will let us quantify the advantages or disadvantages

of different parallel crawling schemes. These metrics will be used later in our experiments.

1. Overlap: When multiple C-proc’s are downloading Web pages simultaneously, it is

possible that different C-proc’s will download the same page multiple times. Multiple

downloads of the same page are clearly undesirable.

More precisely, we define the overlap of downloaded pages as N−I
I . Here, N represents

the total number of pages downloaded by the overall crawler, and I represents the

number of unique pages downloaded, again, by the overall crawler. Thus, the goal of

a parallel crawler is to minimize the overlap.

Note that a parallel crawler does not have an overlap problem if it is based on the

firewall mode (Item 1 on page 34) or the exchange mode (Item 3 on page 35). In

these modes, a C-proc downloads pages only within its own partition, so the overlap

is always zero.

2. Coverage: When multiple C-proc’s run independently, it is possible that they may

not download all pages that they have to. In particular, a crawler based on the firewall

mode (Item 1 on page 34) may have this problem because its C-proc’s do not follow

inter-partition links or exchange the links with others.

To formalize this notion, we define the coverage of downloaded pages as I
U , where U

represents the total number of pages that the overall crawler has to download and I

is the number of unique pages downloaded by the overall crawler. For example, in

Figure 3.2, if C1 downloaded pages a, b and c, and if C2 downloaded pages f through
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i, the coverage of the overall crawler is 7
9 = 0.77 because it downloaded 7 pages out

of 9.

3. Quality: As we discussed in Chapter 2, crawlers often cannot download the whole

Web, and thus they try to download an “important” or “relevant” section of the Web.

For example, if a crawler has storage space only for 1 million pages and if it uses

backlink counts as its importance metric,3 the goal of the crawler is to download the

most highly-linked 1 million pages. For evaluation we adopt the Crawl & Stop model

of Chapter 2, and use PCS , the fraction of the top 1 million pages that are downloaded

by the crawler, as its quality metric.

Note that the quality of a parallel crawler may be worse than that of a single-process

crawler, because many importance metrics depend on the global structure of the Web

(e.g., backlink count): Each C-proc in a parallel crawler may know only the pages that

are downloaded by itself and may make a poor crawling decision based solely on its

own pages. In contrast, a single-process crawler knows all pages it has downloaded

and may make a more informed decision.

In order to avoid this quality problem, C-proc’s need to periodically exchange informa-

tion on page importance. For example, if the backlink count is the importance metric,

a C-proc may periodically notify other C-proc’s of how many pages in its partition have

links to pages in other partitions.

Note that this backlink exchange can be naturally incorporated in an exchange-mode

crawler (Item 3 on page 35). In this mode, C-proc’s exchange inter-partition URLs pe-

riodically, so a process C1 may send a message like [http://cnn.com/index.html, 3]

to process C2 to notify C2 that C1 has seen 3 links to the page that C2 is responsible

for. On receipt of this message, C2 can properly adjust the estimated importance

of the page. By incorporating this scheme, an exchange-mode crawler may achieve

better quality than a firewall mode or cross-over mode crawler.

However, note that the quality of an exchange-mode crawler may vary depending on

how often it exchanges backlink messages. For instance, if C-proc’s exchange backlink

messages after every page download, they will have essentially the same backlink

information as a single-process crawler does. (They know backlink counts from all

pages that have been downloaded.) Therefore, the quality of the downloaded pages
3Backlink counts and importance metrics were described in Chapter 2.
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Mode Coverage Overlap Quality Communication
Firewall Bad Good Bad Good
Cross-over Good Bad Bad Good
Exchange Good Good Good Bad

Table 3.1: Comparison of three crawling modes

would be virtually the same as that of a single-process crawler. In contrast, if C-proc’s

rarely exchange backlink messages, they do not have “accurate” backlink counts from

the downloaded pages, so they may make poor crawling decisions, resulting in poor

quality. Later, we will study how often C-proc’s should exchange backlink messages

in order to maximize quality.

4. Communication overhead: The C-proc’s in a parallel crawler need to exchange

messages to coordinate their work. In particular, C-proc’s based on the exchange

mode (Item 3 on page 35) swap their inter-partition URLs periodically. To quantify

how much communication is required for this exchange, we define communication

overhead as the average number of inter-partition URLs exchanged per downloaded

page. For example, if a parallel crawler has downloaded 1,000 pages in total and if

its C-proc’s have exchanged 3,000 inter-partition URLs, its communication overhead

is 3, 000/1, 000 = 3. Note that crawlers based on the the firewall and the cross-over

mode do not have any communication overhead because they do not exchange any

inter-partition URLs.

In Table 3.1 we compare the relative merits of the three crawling modes (Items 1–3 on

page 34). In the table, “Good” means that the mode is expected to perform relatively well

for that metric, and “Bad” means that it may perform worse compared to other modes. For

instance, the firewall mode does not exchange any inter-partition URLs (Communication:

Good) and downloads pages only once (Overlap: Good), but it may not download every

page (Coverage: Bad). Also, because C-proc’s do not exchange inter-partition URLs, the

downloaded pages may be of lower quality than those of an exchange-mode crawler. Later,

we will examine these issues more quantitatively through experiments based on real Web

data.
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3.5 Description of dataset

We have discussed various issues related to parallel crawlers and identified multiple alterna-

tives for their design. In the remainder of this chapter, we quantitatively study these issues

through experiments conducted on real Web data.

In all of the following experiments, we used the 40 million Web pages in our Stanford

WebBase repository that was constructed in December 1999. Because the properties of this

dataset may significantly impact the result of our experiments, readers might be interested

in how we collected these pages.

We downloaded the pages using our Stanford WebBase crawler in December 1999 for

a period of 2 weeks. In downloading the pages, the WebBase crawler started with the

URLs listed in Open Directory (http://www.dmoz.org) and followed links. We decided

to use the Open Directory URLs as seed URLs because these pages are the ones that are

considered “important” by its maintainers. In addition, some of our local WebBase users

were keenly interested in the Open Directory pages and explicitly requested that we cover

them. The total number of URLs in the Open Directory was around 1 million at that time.

Conceptually, the WebBase crawler downloaded all these pages, extracted the URLs within

the downloaded pages, and followed the links in a breadth-first manner. (The WebBase

crawler used various techniques to expedite and prioritize the crawling process, but we

believe these optimizations do not affect the final dataset significantly.)

Because our dataset was downloaded by a crawler in a particular way, our dataset may

not correctly represent the actual Web as it is. In particular, our dataset may be biased

towards more “popular pages” because we started from the Open Directory pages. Also,

our dataset does not cover the pages that are accessible only through a query interface. For

example, our crawler did not download pages generated by keyword-based search engines

because it did not try to “guess” appropriate keywords to fill in. However, we empha-

size that many of the dynamically-generated pages were still downloaded by our crawler.

For example, the pages on the Amazon Web site (http://amazon.com) are dynamically

generated, but we could still download most of the pages on the site by following links.

In summary, our dataset may not necessarily reflect the actual image of the Web, but

we believe it represents the image that a parallel crawler would see in its crawl. In most

cases, crawlers are mainly interested in downloading “popular” or “important” pages, and

they download pages by following links, which is what we did for our data collection.
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3.6 Firewall mode and coverage

As we discussed in Section 3.4, a firewall-mode crawler (Item 1 on page 34) has minimal

communication overhead, but it may have coverage and quality problems. In this section,

we quantitatively study the effectiveness of a firewall-mode crawler using the 40 million

pages in our repository. In particular, we estimate the coverage (Section 3.4, Item 2) of a

firewall-mode crawler when it employs n C-proc’s in parallel.

In our experiments, we considered the 40 million pages within our WebBase repository

as the entire Web, and we used site-hash based partitioning (Item 2 on page 37). As seed

URLs, each C-proc was given 5 random URLs from its own partition, so 5n seed URLs were

used in total by the overall crawler.4 Since the crawler ran in a firewall mode, C-proc’s

followed only intra-partition links. Under these settings, we ran C-proc’s until they ran out

of URLs, and we measured the overall coverage at the end.

In Figure 3.4, we summarize the results from the experiments. The horizontal axis

represents n, the number of parallel C-proc’s, and the vertical axis shows the coverage of

the overall crawler for the given experiment. The solid line in the graph is the result from

the 40M-page experiment.5 Note that the coverage is only 0.9 even when n = 1 (a single-

process case). This happened because the crawler in our experiment started with only 5

URLs, while the actual dataset was collected with 1 million seed URLs. Some of the 40

million pages were unreachable from the 5 seed URLs.

From the figure it is clear that the coverage decreases as the number of processes in-

creases. This happens because the number of inter-partition links increases as the Web is
4We discuss the effect of the number of seed URLs shortly.
5The dashed line will be explained later.



44 CHAPTER 3. PARALLEL CRAWLERS

split into smaller partitions, and thus more pages are reachable only through inter-partition

links.

From this result we can see that a firewall-mode crawler gives good coverage when it

runs 4 or fewer C-proc’s. For example, for the 4-process case, the coverage decreases only

10% from the single-process case. At the same time, we can also see that the firewall-mode

crawler yields quite low coverage when a large number of C-proc’s run. Less than 10% of

the Web can be downloaded when 64 C-proc’s run together, each starting with 5 seed URLs.

Clearly, coverage may depend on the number of seed URLs that each C-proc starts with.

To study this issue, we also ran experiments varying the number of seed URLs, s. We show

the results in Figure 3.5. The horizontal axis in the graph represents s, the total number of

seed URLs that the overall crawler used, and the vertical axis shows the coverage for that

experiment. For example, when s = 128, the overall crawler used 128 total seed URLs, so

each C-proc started with 2 seed URLs for the 64 C-proc case. We performed the experiments

for 2, 8, 32, 64 C-proc cases and plotted their coverage values. From this figure, we can

observe the following trends:

• When a large number of C-proc’s run in parallel, (e.g., 32 or 64), the total number

of seed URLs affects coverage very significantly. For example, when 64 processes run

in parallel the coverage value jumps from 0.4% to 10% if the number of seed URLs

increases from 64 to 1024.

• When only a small number of processes run in parallel (e.g., 2 or 8), coverage is not
significantly affected by the number of seed URLs. The coverage increase in these cases

is marginal.

Based on these results, we draw the following conclusions:

1. When a relatively small number of C-proc’s run in parallel, a crawler using the firewall

mode provides good coverage. In this case, the crawler may start with only a small

number of seed URLs because coverage is not much affected by the number of seed

URLs.

2. The firewall mode is not a good choice if the crawler wants to download every single

page on the Web. The crawler may miss some portion of the Web, particularly when

it runs many C-proc’s in parallel.
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Our results in this section are based on a 40 million page dataset, so it is important to

consider how coverage might change with a different dataset, or equivalently, how it might

change as the Web grows or evolves. Unfortunately, it is difficult to predict how the Web

will grow. On one hand, if all “newly created” pages are well connected to existing pages

at their creation site, then coverage will increase. On the other hand, if new pages tend to

form disconnected groups, the overall coverage will decrease. Depending on how the Web

grows, coverage could go either way.

As a preliminary study of the growth issue, we conducted the same experiments with a

subset of 20M pages and measured how the coverage changes. We first randomly selected

half of the sites in our dataset, and ran the experiments using only the pages from those

sites. Thus, one can roughly view the smaller dataset as a smaller Web, that then “over

time” doubled its number of sites to yield the second dataset. The dotted line in Figure 3.4

shows the results from the 20M-page experiments. From the graph we can see that as

“our Web doubles in size,” one can double the number of C-proc’s and retain roughly the

same coverage. That is, the new sites can be visited by new C-proc’s without significantly

changing the coverage they obtain. If the growth did not come exclusively from new sites,

then one should not quite double the number of C-proc’s each time the Web doubles in size,

to retain the same coverage.

Example 3.1 (Generic search engine) To illustrate how our results could guide the

design of a parallel crawler, consider the following example. Assume that to operate a Web

search engine we need to download 1 billion pages in one month. Each machine that we

run our C-proc’s on has a 10 Mbps link to the Internet, and we can use as many machines

as we want.

Given that the average size of a Web page is around 10K bytes, we roughly need to

download 104×109 = 1013 bytes in one month. This download rate corresponds to 34 Mbps,

and we need 4 machines (thus 4 C-proc’s) to obtain the rate. If we want to be conservative,

we can use the results of our 40M-page experiment (Figure 3.4) and estimate that the

coverage will be at least 0.8 with 4 C-proc’s. Therefore, in this scenario, the firewall mode

may be good enough unless it is very important to download the “entire” Web. ✷

Example 3.2 (High freshness) As a second example, let us now assume that we have

strong “freshness” requirement on the 1 billion pages and need to revisit every page once

every week, not once every month. This new scenario requires approximately 140 Mbps for
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Figure 3.6: Coverage vs. Overlap for a cross-over mode crawler

page download, and we need to run 14 C-proc’s. In this case, the coverage of the overall

crawler decreases to less than 0.5 according to Figure 3.4. Of course, the coverage could be

larger than our conservative estimate, but to be safe one would probably want to consider

using a crawler mode different than the firewall mode. ✷

3.7 Cross-over mode and overlap

In this section, we study the effectiveness of a cross-over mode crawler (Item 2 on page 35).

A cross-over crawler may yield improved coverage of the Web, since it follows inter-partition

links when a C-proc runs out of URLs in its own partition. However, this mode incurs overlap

in downloaded pages (Section 3.4, Item 1) because a page can be downloaded by multiple

C-proc’s.

In Figure 3.6, we show the relationship between the coverage and the overlap of a cross-

over mode crawler obtained from the following experiments. We partitioned the 40M pages

using site-hash partitioning and assigned them to n C-proc’s. Each of the n C-proc’s then

was given 5 random seed URLs from its partition and followed links in the cross-over mode.

During this experiment, we measured how much overlap the overall crawler incurred when

its coverage reached various points. The horizontal axis in the graph shows the coverage

at a particular time and the vertical axis shows the overlap at the given coverage. We

performed the experiments for n = 2, 4, . . . , 64.

Note that in most cases the overlap stays at zero until the coverage becomes relatively

large. For example, when n = 16, the overlap is zero until the coverage reaches 0.5. We can

understand this result by looking at the graph in Figure 3.4. According to that graph, a
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crawler with 16 C-proc’s can cover around 50% of the Web by following only intra-partition

links. Therefore, even a cross-over mode crawler will follow only intra-partition links until

its coverage reaches that point. Only after that point will each C-proc start to follow inter-

partition links, thus increasing the overlap. If we adopted the independent model (Item 3.2

on page 32), the crawler would have followed inter-partition links even before it ran out of

intra-partition links, so the overlap would have been worse at the same coverage.

While the cross-over crawler is better than the independent-model-based crawler, it is

clear that the cross-over crawler still incurs quite significant overlap. For example, when 4

C-proc’s run in parallel in the cross-over mode, the overlap becomes almost 2.5 to obtain

coverage close to 1. For this reason, we do not recommend the cross-over mode unless it is

absolutely necessary to download every page without any communication between C-proc’s.

3.8 Exchange mode and communication

To avoid the overlap and coverage problems, an exchange-mode crawler (Item 3 on page 35)

constantly exchanges inter-partition URLs between C-proc’s. In this section, we study the

communication overhead (Section 3.4, Item 4) of an exchange-mode crawler and how much

we can reduce it by replicating the most popular k URLs.

For now, let us assume that a C-proc immediately transfers inter-partition URLs. (We

will discuss batch communication later when we discuss the quality of a parallel crawler.)

In the experiments, again, we split the 40 million pages into n partitions based on site-

hash values and ran n C-proc’s in the exchange mode. At the end of the crawl, we measured

how many URLs had been exchanged during the crawl. We show the results in Figure 3.7.

For comparison purposes, the figure also shows the overhead for a URL-hash based scheme,

although the curve is clipped at the top because of its large overhead values. In the figure,

the horizontal axis represents the number of parallel C-proc’s, n, and the vertical axis shows

the communication overhead (the average number of URLs transferred per page).

To explain the graph, we first note that an average page has 10 out-links, and about

9 of them point to pages in the same site. Therefore, the 9 links are internally followed

by a C-proc under site-hash partitioning. Only the remaining 1 link points to a page in a

different site and may be exchanged between processes. Figure 3.7 indicates that this URL

exchange increases with the number of processes. For example, the C-proc’s exchanged 0.4

URLs per page when 2 processes ran, while they exchanged 0.8 URLs per page when 16
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processes ran. Based on the graph, we draw the following conclusions:

• The site-hash based partitioning scheme significantly reduces communication overhead
compared to the URL-hash based scheme. We need to transfer only up to one link

per page (or 10% of the links), which is significantly smaller than the URL-hash based

scheme. For example, when we ran 2 C-proc’s using the URL-hash based scheme the

crawler exchanged 5 links per page under the URL-hash based scheme, which was

significantly larger than 0.5 links per page under the site-hash based scheme.

• The network bandwidth used for the URL exchange is relatively small, compared to
the actual page download bandwidth. Under the site-hash based scheme, at most 1

URL is exchanged per page, which is about 40 bytes.6 Given that the average size of

a Web page is 10 KB, the URL exchange consumes less than 40/10K = 0.4% of the

total network bandwidth.

• However, the overhead of the URL exchange on the overall system can be quite signif-

icant. The processes need to exchange up to one message per page, and the message

has to go through the TCP/IP network stack at the sender and the receiver. Thus it

is copied to and from kernel space twice, incurring two context switches between the

kernel and the user mode. Since these operations pose significant overhead even if the

message size is small, the overall overhead can be important if the processes exchange

one message per every downloaded page.
6In our estimation, an average URL was about 40 bytes long.
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In order to study how much we can reduce this overhead by replication (Item 2 on

page 36), in Figure 3.8 we show the communication overhead when we replicate the top k

popular URLs. In the figure, the horizontal axis shows the number of replicated URLs, k,

and the vertical axis shows the communication overhead.

Remember that in a real-world scenario we would identify the most popular URLs based

on the image of the Web from a previous crawl. However, in our experiment we identified

the top k URLs based on the 40 million pages in our current WebBase repository, which

was also used for our experiments. Therefore, there had been no change over time, and the

replicated URLs were exactly the most popular ones in the repository. For this reason, in a

real-world scenario, the actual communication overhead might be slightly worse than what

our results show.

From Figure 3.8 it is clear that we can significantly reduce the communication overhead

by replicating a relatively small number of URLs. For example, when 64 C-proc’s run in

parallel, the overhead reduces from 0.86 URLs/page to 0.52 URLs/page (40% reduction)

when we replicate only 10, 000 URLs. From the figure, we can also see that this reduction

diminishes as the number of replicated URLs increases. For example, when we replicate

100, 000 URLs, we can get about 51% reduction (from 0.86 to 0.42, the 64 process case),

while we can get only 53% reduction when we replicate 200, 000 URLs. Based on this result,

we recommend replicating between 10, 000 and 100, 000 URLs in each C-proc in order to

minimize the communication overhead while maintaining a low replication overhead.

While our experiments were based on 40 million pages, the results will be similar even

if we were to run our experiments on a larger dataset. Note that our results depend on the

fraction of the links pointing to the top k URLs. We believe that the links in our experiments

are good samples for the Web because the pages were downloaded from the Web and the

links in the pages were created by independent authors. Therefore a similar fraction of links

would point to the top k URLs even if we download more pages or, equivalently, if the Web

grows over time.

3.9 Quality and batch communication

As we discussed, the quality (Section 3.4, Item 3) of a parallel crawler can be worse than

that of a single-process crawler because each C-proc may make crawling decisions solely

based on the information collected within its own partition. We now study this quality
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issue and the impact of the batch communication technique (Item 1 on page 36) on quality.

Throughout the experiments in this section, we assume that the crawler uses the backlink

counts, IB(p), as its importance metric, and it uses IB′(p) as its ordering metric.7 We use

these metrics because they are easy to implement and test and we believe they capture the

core issues that we want to study. In particular, note that the IB(p) metric depends on

the global structure of the Web. If we use an importance metric that solely depends on a

page itself, not on the global structure of the Web, each C-proc in a parallel crawler will be

able to make good decisions based on the pages that it has downloaded. The quality of a

parallel crawler therefore will be essentially the same as that of a single crawler.

Under the IB′(p) ordering metric, note that the C-proc’s need to periodically exchange

[URL, backlink count] messages so that each C-proc can incorporate backlink counts

from inter-partition links. Depending on how often they exchange the messages, the quality

of the downloaded pages will differ. For example, if the C-proc’s never exchange messages,

the quality will be the same as that of a firewall-mode crawler. If they exchange messages

after every downloaded page, the quality will be similar to that of a single-process crawler.

To study these issues, we compared the quality of the downloaded pages when C-proc’s

exchanged backlink messages at various intervals under the Crawl & Stop model of page 11.

Figures 3.9(a), 3.10(a) and 3.11(a) show the quality, PCS , achieved by the overall crawler

when it downloaded a total of 500K, 2M, and 8M pages, respectively. The horizontal axis in

the graphs represents the total number of URL exchanges during a crawl, x, and the vertical

axis shows the quality for the given experiment. For example, when x = 1, the C-proc’s

exchanged backlink counts only once in the middle of the crawl. Therefore, the case when

x = 0 represents the quality of a firewall-mode crawler, and the case when x → ∞ shows

the quality of a single-process crawler. In Figures 3.9(b), 3.10(b) and 3.11(b), we also show

the communication overhead (Item 4 on page 41), which is the average number of [URL,

backlink count] pairs exchanged per a downloaded page.

From these figures, we can observe the following trends:

• As the number of crawling processes increases, the quality of the downloaded pages
becomes worse unless they exchange backlink messages often. For example, in Fig-

ure 3.9(a), the quality achieved by a 2-process crawler (0.12) is significantly higher

than that of a 64-process crawler (0.025) in the firewall mode (x = 0). Again, this

7The IB(p) importance metric and the IB′(p) ordering metric were discussed in Chapter 2 on page 9.
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happens because each C-proc learns less about the global backlink counts when the

Web is split into smaller parts.

• The quality of the firewall-mode crawler (x = 0) is significantly worse than that of

the single-process crawler (x → ∞) when the crawler downloads a relatively small
fraction of the pages (Figure 3.9(a) and 3.10(a)). However, the difference is not very

significant when the crawler downloads a relatively large fraction (Figure 3.11(a)).

In other experiments, when the crawler downloaded more than 50% of the pages,

the difference was almost negligible in any case. Intuitively, this result makes sense

because quality is an important issue only when the crawler downloads a small portion

of the Web. (If the crawler will visit all pages anyway, quality is not relevant.)

• The communication overhead does not increase linearly as the number of URL ex-
changes increases. The graphs in Figure 3.9(b), 3.10(b) and 3.11(b) are not straight

lines. This is because a popular URL will appear multiple times between backlink

exchanges. Therefore, a popular URL can be transferred as one entry (URL and its

backlink count) in the exchange, even if it has appeared multiple times. This reduction

increases as C-proc’s exchange backlink messages less frequently.

• One does not need a large number of URL exchanges to achieve high quality. Through
multiple experiments, we tried to identify how often C-proc’s should exchange backlink

messages to achieve the highest quality value. From these experiments, we found that

a parallel crawler can get the highest quality values even if its processes communicate

less than 100 times during a crawl.

We use the following example to illustrate how one can use the results of our experiments.

Example 3.3 (Medium-Scale Search Engine) Say we plan to operate a medium-scale

search engine, and we want to maintain about 20% of the Web (200 M pages) in our index.

Our plan is to refresh the index once a month. Each machine that we can use has a separate

T1 link (1.5 Mbps) to the Internet.

In order to update the index once a month, we need about 6.2 Mbps download band-

width, so we have to run at least 5 C-proc’s on 5 machines. According to Figure 3.11(a)

(20% download case), we can achieve the highest quality if the C-proc’s exchange backlink

messages 10 times during a crawl when 8 processes run in parallel. (We use the 8 process

case because it is the closest number to 5). Also, from Figure 3.11(b), we can see that
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Figure 3.9: Crawlers downloaded 500K pages (1.2% of 40M)
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Figure 3.11: Crawlers downloaded 8M pages (20% of 40M)

when C-proc’s exchange messages 10 times during a crawl they need to exchange fewer than

0.17×200M = 34M pairs of [URL, backlink count] in total. Therefore, the total network

bandwidth used by the backlink exchange is only (34M · 40)/(200M · 10K) ≈ 0.06% of the

bandwidth used by actual page downloads. Also, since the exchange happens only 10 times

during a crawl, the context-switch overhead for message transfers (discussed on page 48) is

minimal.

Note that in this scenario we need to exchange 10 backlink messages in one month or one

message every three days. Therefore, even if the connection between C-proc’s is unreliable

or sporadic, we can still use the exchange mode without any problem. ✷

3.10 Related work

References [PB98, HN99, CGM00a, Mil98, Eic94] describe the general architecture of a

Web crawler and studies how a crawler works. For example, Reference [HN99] describes

the architecture of the Compaq SRC crawler and its major design goals. Some of these

studies briefly describe how the crawling task is parallelized. For instance, Reference [PB98]

describes a crawler that distributes individual URLs to multiple machines, which download

Web pages in parallel. The downloaded pages are then sent to a central machine, on which

links are extracted and sent back to the crawling machines. However, in contrast to our

work, these studies do not try to understand the fundamental issues related to a parallel

crawler and how various design choices affect performance. In this thesis, we first identified
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multiple techniques for a parallel crawler and compared their relative merits carefully using

real Web data.

There also exists a significant body of literature studying the general problem of parallel

and distributed computing [MDP+00, OV99, QD84, TR85]. Some of these studies focus

on the design of efficient parallel algorithms. For example, References [QD84, NS82, Hir76]

present various architectures for parallel computing, propose algorithms that solve various

problems (e.g., finding maximum cliques) under the architecture, and study the complexity

of the proposed algorithms. While the general principles described are being used in our

work,8 none of the existing solutions can be directly applied to the crawling problem.

Another body of literature designs and implements distributed operating systems, where

a process can use distributed resources transparently (e.g., distributed memory, distributed

file systems) [TR85, SKK+90, ADN+95, LH89]. Clearly, such OS-level support makes it

easy to build a general distributed application, but we believe that we cannot simply run

a centralized crawler on a distributed OS to achieve parallelism. A web crawler contacts

millions of web sites in a short period of time and consumes extremely large network, storage

and memory resources. Since these loads push the limit of existing hardwares, the task

should be carefully partitioned among processes and they should be carefully coordinated.

Therefore, a general-purpose distributed operating system that does not understand the

semantics of web crawling will lead to unacceptably poor performance.

3.11 Conclusion

In this chapter, we studied various strategies and design choices for a parallel crawler.

As the size of the Web grows, it becomes increasingly important to use a parallel crawler.

Unfortunately, almost nothing is known (at least in the open literature) about options for

parallelizing crawlers and their performance using 40 million pages downloaded from the

Web. This chapter addressed this shortcoming by presenting several design choices and

strategies for parallel crawlers and by studying their performance. We believe this chapter

offers some useful guidelines for crawler designers, helping them, for example, select the

right number of crawling processes or select the proper inter-process coordination scheme.

In summary, the main conclusions of our study were the following:

8For example, we may consider that our proposed solution is a variation of “divide and conquer” approach,
since we partition and assign the Web to multiple processes.
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• When a small number of crawling processes run in parallel (in our experiment, fewer

than or equal to 4), the firewall mode provides good coverage. Given that firewall-

mode crawlers can run totally independently and are easy to implement, we believe

that it is a good option to consider. The cases when the firewall mode might not be

appropriate are:

1. when we need to run more than 4 crawling processes

or

2. when we download only a small subset of the Web and the quality of the down-

loaded pages is important.

• A crawler based on the exchange mode consumes small network bandwidth for URL

exchanges (less than 1% of the network bandwidth). It can also minimize other

overheads by adopting the batch communication technique. In our experiments, the

crawler could maximize the quality of the downloaded pages, even if it exchanged

backlink messages fewer than 100 times during a crawl.

• By replicating between 10, 000 and 100, 000 popular URLs, we can reduce the com-
munication overhead by roughly 40%. Replicating more URLs does not significantly

reduce the overhead.
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Chapter 4

Web Evolution Experiments

4.1 Introduction

Because Web pages constantly change, a crawler should periodically refresh downloaded

pages, so that the pages are maintained up to date. In Chapters 4 through 6, we study how

a crawler can effectively refresh downloaded pages to maximize their “freshness.”

To study this problem, it is imperative to understand how the Web pages change over

time, because the effectiveness of various refresh policies may depend on the change fre-

quency. For example, if Web pages change at vastly different rates, we may improve the

“freshness” of the downloaded pages by refreshing them at varying frequencies, depending

on how often the pages change. In contrast, if most Web pages change at similar frequencies,

it may be acceptable to visit the pages exactly at the same frequency.

In this chapter, therefore, we present our experimental results that show how often Web

pages change, how the Web as a whole evolves over time, and how we can model page

changes. Based on this understanding, in subsequent chapters we develop good refresh

policies that can maximize the “freshness” of downloaded pages.

4.2 Experimental setup

Through our experiment, we try to answer the following questions about the evolving Web:

• How often does a Web page change?

• What is the lifespan of a page?

• How long does it take for 50% of the Web to change?

57
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• Can we describe the changes of Web pages by a mathematical model?

Note that a Web crawler itself also has to answer some of these questions. For instance,

the crawler has to estimate how often a page changes, in order to decide how often to refresh

the page. The techniques used for our experiment will shed light on how a crawler should

operate and which statistics-gathering mechanisms it should adopt.

To answer our questions, we crawled around 720,000 pages from 270 sites every day, from

February 17th through June 24th, 1999. Again, this experiment was done with the Stanford

WebBase crawler, a system designed to create and maintain large Web repositories. In this

section we briefly discuss how the particular sites and pages were selected.

4.2.1 Monitoring technique

For our experiment, we adopted an active crawling approach with a page window. With

active crawling, a crawler visits pages of interest periodically to see if they have changed.

This is in contrast to a passive scheme, where, say, a proxy server tracks the fraction of new

pages it sees, driven by the demand of its local users. A passive scheme is less obtrusive,

since no additional load is placed on Web servers beyond what would naturally be placed.

However, we use active crawling because it lets us collect much better statistics, i.e., we can

determine what pages to check and how frequently.

The pages to actively crawl are determined as follows. We start with a list of root pages

for sites of interest. We periodically revisit these pages, and visit some predetermined

number of pages that are reachable, breadth first, from that root. This gives us a window of

pages at each site, whose contents may vary from visit to visit. Pages may leave the window

if they are deleted or moved deeper within the site. Pages may also enter the window, as

they are created or moved closer to the root. Thus, this scheme is superior to one that

simply tracks a fixed set of pages, since such a scheme would not capture new pages.

We considered a variation of the page window scheme, where pages that disappeared

from the window would still be tracked, if they still exist elsewhere in the site. This scheme

could yield slightly better statistics on the lifetime of pages. However, we did not adopt

this variation because it would have forced us to crawl a growing number of pages at each

site. As we discuss in more detail below, we very much wanted to bound the load placed

on Web servers throughout our experiment.
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domain number of sites
com 132
edu 78

netorg 30 (org: 19, net: 11)
gov 30 (gov: 28, mil: 2)

Table 4.1: Number of sites within a domain

4.2.2 Site selection

To select the actual sites for our experiment, we used the snapshot of 25 million Web pages

in our WebBase repository in December 1999. Based on this snapshot, we identified the

top 400 “popular” sites as the candidate sites (The definition of a “popular” site is given

below.). Then, we contacted the Webmasters of all candidate sites to get their permission

for our experiment. After this step, 270 sites remained, including sites such as Yahoo (http:

//yahoo.com), Microsoft (http://microsoft.com), and Stanford (http://www.stanford.

edu). Obviously, focusing on the “popular” sites biases our results to a certain degree, but

we believe this bias is toward what most people are interested in.

To measure the popularity of a site, we used a modified PageRank metric. As we

discussed in Section 2.2, the PageRank metric considers a page “popular” if it is linked to

by many other Web pages. Roughly, the PageRank of page p, PR(p), is defined by

PR(p) = d+ (1− d)[PR(p1)/c1 + ...+ PR(pn)/cn]

where p1,. . . ,pn are the pages pointing to p, and c1,. . . ,cn are the number of links going out

from pages p1,. . . ,pn, and d is a damping factor, which was 0.9 in our experiment. However,

note that the PageRank computes the popularity of Web pages not of Web sites, so we

need to slightly modify the definition of the PageRank. To do that, we first construct a

hypergraph, where the nodes correspond to Web sites and the edges correspond to the links

between the sites. Then for this hypergraph, we can define a PR value for each node (site)

using the formula above. The value for a site then gives us the measure of the popularity

of the Web site.

In Table 4.1, we show how many sites in our list are from which domain. In our site

list, 132 sites belong to .com (com) and 78 sites to .edu (edu). The sites ending with “.net”

and “.org” are classified as netorg and the sites ending with “.gov” and “.mil” as gov.
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Figure 4.1: The cases when the estimated change interval is lower than the real value

4.2.3 Number of pages at each site

After selecting the Web sites to monitor, we still need to decide the window of pages to crawl

from each site. In our experiment, we crawled 3,000 pages at each site. That is, starting

from the root pages of the selected sites we followed links in a breadth-first search, up to

3,000 pages per site. This “3,000 page window” was decided for practical reasons. In order

to minimize the load on a site, we ran the crawler only at night (9PM through 6AM PST),

waiting at least 10 seconds between requests to a single site. Within these constraints, we

could crawl at most 3,000 pages from a site every day.

4.3 How often does a page change?

From the experiment described in the previous section, we collected statistics on how often

pages change and how long they stay on the Web, and we report the results in the following

sections.

Based on the data that we collected, we can analyze how long it takes for a Web page

to change. For example, if a page existed within our window for 50 days, and if the page

changed 5 times in that period, we can estimate the average change interval of the page to

be 50 days/5 = 10 days. Note that the granularity of the estimated change interval is one

day, because we can detect at most one change per day, even if the page changes more often

(Figure 4.1(a)). Also, if a page changes several times a day and then remains unchanged,

say, for a week (Figure 4.1(b)), the estimated interval might be much longer than the true

value. Later in Chapter 6, we will discuss how we can account for these “missed” changes

and estimate the change frequency more accurately, but for now we assume the described

estimation method gives us a good picture on how often Web pages change.

In Figure 4.2 we summarize the result of this analysis. In the figure, the horizontal axis

represents the average change interval of pages, and the vertical axis shows the fraction of
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pages changed at the given average interval. Figure 4.2(a) shows the statistics collected

over all domains, and Figure 4.2(b) shows the statistics broken down to each domain. For

instance, from the second bar of Figure 4.2(a) we can see that 15% of the pages have a

change interval longer than a day and shorter than a week.

From the first bar of Figure 4.2(a), we can observe that a surprisingly large number of

pages change at very high frequencies: More than 20% of pages had changed whenever we

visited them! As we can see from Figure 4.2(b), these frequently updated pages are mainly

from the com domain. More than 40% of pages in the com domain changed every day, while

less than 10% of the pages in other domains changed at that frequency (Figure 4.2(b) first

bars). In particular, the pages in edu and gov domain are very static. More than 50% of

pages in those domains did not change at all for 4 months (Figure 4.2(b) fifth bars). Clearly,

pages at commercial sites, maintained by professionals, are updated frequently to provide

timely information and attract more users.

Note that it is not easy to estimate the average change interval over all Web pages,

because we conducted the experiment for a limited period. While we know how often a

page changes if its change interval is longer than one day and shorter than 4 months, we do

not know exactly how often a page changes, when its change interval is out of this range (the

pages corresponding to the first or the fifth bar of Figure 4.2(a)). As a crude approximation,

if we assume that the pages in the first bar change every day and the pages in the fifth bar

change every year, the overall average change interval of a Web page is about 4 months.

In summary, Web pages change rapidly overall, and the actual rates vary dramatically

from site to site. Thus, a good crawler that is able to effectively track all these changes will

be able to provide much better data than one that is not sensitive to changing data.

4.4 What is the lifespan of a page?

In this section we study how long we can access a particular page, once it appears on

the Web. To address this question, we investigated how long we could detect each page

during our experiment. That is, for every page that we crawled, we checked how many

days the page was accessible within our window (regardless of whether the page content

had changed), and used that number as the visible lifespan of the page. Note that the

visible lifespan of a page is not the same as its actual lifespan, because we measure how long

the page was visible within our window. However, we believe the visible lifespan is a close
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Figure 4.3: Issues in estimating the lifespan of a page

approximation to the lifespan of a page conceived by users of the Web. That is, when a user

looks for information from a particular site, she often starts from its root page and follows

links. Since the user cannot infinitely follow links, she concludes that the page of interest

does not exist or has disappeared, if the page is not reachable within a few links from the

root page. Therefore, many users often look at only a window of pages from a site, not the

entire site.

Because our experiment was conducted in a limited time period, measuring the visible

lifespan of a page is not as straightforward as we just described. Figure 4.3 illustrates

the problem in detail. For the pages that appeared and disappeared during our experiment

(Figure 4.3(b)), we can measure how long the page stayed in our window precisely. However,

for the pages that existed from the beginning (Figure 4.3(a) and (d)) or at the end of our

experiment (Figure 4.3(c) and (d)), we do not know exactly how long the page was in our

window, because we do not know when the page appeared/disappeared. To take this error

into account, we estimated the visible lifespan in two different ways. First, we used the

length s in Figure 4.3 as the lifespan of a page (Method 1), and second, we assumed that

the lifespan is 2s for pages corresponding to (a), (c) and (d) (Method 2). Clearly, the

lifespan of (a), (c) and (d) pages can be anywhere between s and infinity, but we believe 2s

is a reasonable guess, which gives an approximate range for the lifespan of pages.

Figure 4.4(a) shows the result estimated by the two methods. In the figure, the hor-

izontal axis shows the visible lifespan, and the vertical axis shows the fraction of pages

with a given lifespan. For instance, from the second bar of Figure 4.4(a), we can see that

Method 1 estimates that around 19% of the pages have a lifespan of longer than one week

and shorter than 1 month, and Method 2 estimates that the fraction of the corresponding

pages is around 16%. Note that Methods 1 and 2 give us similar numbers for the pages

with a short lifespan (the first and the second bar), but their estimates are very different
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Figure 4.5: Fraction of pages that did not change or disappear until given date.

for longer lifespan pages (the third and fourth bar). This result is because the pages with

a longer lifespan have higher probability of spanning over the beginning or the end of our

experiment and their estimates can be different by a factor of 2 for Method 1 and 2. In

Figure 4.4(b), we show the lifespan of pages for different domains. To avoid cluttering the

graph, we only show the histogram obtained by Method 1.

Interestingly, we can see that a significant number of pages are accessible for a relatively

long period. More than 70% of the pages over all domains remained in our window for

more than one month (Figure 4.4(a), the third and the fourth bars), and more than 50% of

the pages in the edu and gov domain stayed for more than 4 months (Figure 4.4(b), fourth

bar). As expected, the pages in the com domain were the shortest lived, and the pages in

the edu and gov domain lived the longest.

4.5 How long does it take for 50% of the Web to change?

In the previous sections, we mainly focused on how an individual Web page evolves over

time. For instance, we studied how often a page changes, and how long it stays within our

window. Now we slightly change our perspective and study how theWeb as a whole evolves

over time. That is, we investigate how long it takes for p% of the pages within our window

to change.

To get this information, we traced how many pages in our window remained unchanged

after a certain period, and the result is shown in Figure 4.5. In the figure, the horizontal
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axis shows the number of days from the beginning of the experiment, and the vertical axis

shows the fraction of pages that were unchanged by the given day.

From Figure 4.5(a), we can see that it takes about 50 days for 50% of the Web to

change or to be replaced by new pages. From Figure 4.5(b), we can confirm that different

domains evolve at highly different rates. For instance, it took only 11 days for 50% of the

com domain to change, while the same amount of change took almost 4 months for the gov

domain (Figure 4.5(b)). According to these results, the com domain is the most dynamic,

followed by the netorg domain. The edu and the gov domains are the most static. Again,

our results highlight the need for a crawler that can track these massive but skewed changes

effectively.

4.6 What is a good Web-page change model?

Now we study whether we can describe the changes of Web pages by a mathematical model.

In particular, we study whether the changes of Web pages follow a Poisson process. Building

a change model of the Web is very important, in order to compare how effective different

crawling policies are. For instance, if we want to compare how “fresh” crawlers maintain

their local collections, we need to compare how many pages in the collection are maintained

up to date, and this number is hard to get without a proper change model for the Web.

A Poisson process is often used to model a sequence of random events that happen

independently with a fixed rate over time. For instance, occurrences of fatal auto accidents,

arrivals of customers at a service center, telephone calls originating in a region, etc., are

usually modeled by a Poisson process.

More precisely, let us use X(t) to refer to the number of occurrences of a certain event

in the interval (0, t]. If the event happens randomly, independently, and with a fixed average

rate λ (events/unit interval), it is called a Poisson process of rate or frequency λ. In a

Poisson process, the random variable X(t) has the following properties [TK98]:

1. for any time points t0 = 0 < t1 < t2 < · · · < tn, the process increments (the number

of events occurring in a certain interval) X(t1)−X(t0), X(t2)−X(t1), . . . ,X(tn)−
X(tn−1) are independent random variables;

2. for s ≥ 0 and t > 0, the random variable X(s+ t)−X(s) has the Poisson probability
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distribution

Pr{X(s+ t)−X(s) = k} = (λt)k

k!
e−λt for k = 0, 1, . . .

3. X(0) = 0.

By calculating how many events are expected to occur in a unit interval, we can verify that

the parameter λ corresponds to the rate, or the frequency of the event:

E[X(t+ 1)−X(t)] =
∞∑
k=0

kPr{X(t+ 1)−X(t) = k} = λe−λ
∞∑
k=1

λk−1

(k − 1)! = λe
−λeλ = λ

In summary, an event may occur randomly at any point of time, but the average rate of

the event is fixed to λ for a Poisson process.

We believe a Poisson process is a good model for the changes of Web pages, because

many Web pages have the properties that we just mentioned. For instance, pages in the

CNN Web site change at the average rate of once a day, but the change of a particular page

is quite random, because updates of the page depend on how the news related to that page

develops over time.

Under a Poisson process, we can compute the time between two events. To compute

this interval, let us assume that the first event happened at time 0, and let T be the time

when the next event occurs. Then the probability density function of T is given by the

following lemma [TK98].

Lemma 4.1 If T is the time to the occurrence of the next event in a Poisson process with

rate λ, the probability density function for T is

fT (t) =

{
λe−λt for t > 0

0 for t ≤ 0

We can use Lemma 4.1 to verify whether Web changes follow a Poisson process. That is,

if changes to a page follow a Poisson process of rate λ, its change intervals should follow the

distribution λe−λt. To compare this prediction to our experimental data, we assume that

each page pi on the Web has an average rate of change λi, where λi may differ from page

to page. Then we select only the pages whose average change intervals are, say, 10 days

and plot the distribution of their change intervals. If the pages indeed follow a Poisson
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Figure 4.6: Change intervals of pages

process, this graph should be distributed exponentially. In Figure 4.6, we show some of

the graphs plotted this way. Figure 4.6(a) is the graph for the pages with 10 day change

interval, and Figure 4.6(b) is for the pages with 20 day change interval. The horizontal

axis represents the interval between successive changes, and the vertical axis shows the

fraction of changes with that interval. The vertical axis in the graph is logarithmic to

emphasize that the distribution is exponential. The lines in the graphs are the predictions

by a Poisson process. While there exist small variations, we can clearly see that a Poisson

process predicts the observed data very well. We also plotted the same graph for the pages

with other change intervals and got similar results when we had sufficient data.

Although our results indicate that a Poisson process describes the Web page changes

very well, they are limited due to the constraint of our experiment. We crawled Web pages

on a daily basis, so our result does not verify the Poisson model for the pages that change

very often. Also, the pages that change very slowly were not verified either, because we

conducted our experiment for four months and did not detect any changes to those pages.

However, we believe that most crawlers may not have high interest in learning exactly how

often those pages change. For example, the crawling interval of most crawlers is much longer

than a day, so they do not particularly care whether a page changes exactly once every day

or more than once every day.

Also, a set of Web pages may be updated at a regular interval, and their changes may

not necessarily follow a Poisson process. However, a crawler cannot easily identify these

pages when it maintains hundreds of millions of Web pages, so the entire set of pages that
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the crawler manages may be considered to change by a random process on average. Thus, in

the remainder of this dissertation, we will mainly use the Poisson model to compare crawler

strategies.

4.7 Related work

There exist a body of literature that studies the evolution of the Web [WM99, WVS+99,

DFK99, PP97]. For example, reference [PP97] studies the relationship between the “de-

sirability” of a page and its lifespan to facilitate the user’s ability to make sense of large

collections of Web pages. Reference [WM99] presents statistics on the Web page changes

and the responses from Web servers to improve Web caching policies. However, none of

these studies are as extensive as the study in this dissertation, in terms of the scale and

the length of the experiments. Also, their focus is different from this dissertation. As

we said, reference [WM99] investigates page changes to improve Web caching policies, and

reference [PP97] studies how page changes are related to access patterns.

The study of [BC00] is very similar to the work in this chapter, because it also presents

change statistics of Web pages based on the analysis of real Web data. While it does not

explicitly propose a Poisson model as the Web change model, it shows some results that we

believe is a good indicator of a Poisson model. While some part of the work overlaps with

ours, most of the analysis of data is quite different, and thus it presents another interesting

set of Web change statistics.

Lawrence et al. [LG98, LG99] tried to measure the number of publicly-indexable pages

on the Web. They conducted two experiments (first in 1997 and second in 1999) and

reported that the number of public Web pages increased from 320 million in December

1999 to 800 million in February 1999. Since they used slightly different methods for the

two experiments, the actual growth rate of the Web may not be accurate. However, their

work still presented an interesting estimate on how rapidly the Web grows over time. In

this chapter, we mainly focused on the changes of existing Web pages, not on the growth

rate of the overall Web.
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4.8 Conclusion

In this chapter we tried to understand how Web pages evolve over time, through a compre-

hensive experiment conducted on 720,000 Web pages. Through our discussion, we identified

various issues that a Web crawler itself may encounter when it tries to estimate how often

Web pages change. Also, we identified a good model that describes well the changes of Web

pages. In the remainder of this dissertation, we will frequently refer to the results in this

chapter when we need actual statistics.



Chapter 5

Page Refresh Policy

5.1 Introduction

In order to maintain locally stored pages “fresh,” a crawler has to update its Web pages

periodically. In this chapter we study how a crawler can effectively synchronize the local

copy. As the size of the Web grows, it becomes more difficult to maintain the copy “fresh,”

making it crucial to synchronize the copy effectively. A recent study shows that it takes up

to 6 months for a new page to be indexed by popular Web search engines [LG99]. Also, a

lot of users express frustration, when a search engine returns obsolete links, and the users

follow the links in vain. According to the same study, up to 14% of the links in search

engines are invalid.

While our study is driven by the needs of a Web crawler, local copies of remote data

sources are frequently made to improve performance or availability. For instance, a data

warehouse may copy remote sales and customer tables for local analysis. Similarly, a Web

cache stores Web pages locally, to minimize access delay by the users. In many cases, the

remote source is updated independently without pushing updates to the client that has a

copy, so the client must periodically poll the source to detect changes and refresh its copy.

This scenario is illustrated in Figure 5.1.

The effective synchronization of a local copy introduces many interesting challenges.

First of all, measuring the freshness of the copy is not trivial. Intuitively, the copy is

considered fresh when it is not different from the remote source data. Therefore, we can

measure its freshness only when we know the current status of the source data. But how

can we know the current status of the source data, when it is spread across thousands of

71
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Data source Local copy

Figure 5.1: Conceptual diagram of the problem

Web sites? Second, we do not know exactly when a particular data item will change, even

if it changes at a certain average rate. For instance, the pages in the CNN Web site are

updated about once a day, but the update of a particular page depends on how the news

related to that page develops over time. Therefore, visiting the page once a day does not

guarantee its freshness.

In this chapter, we will formally study how to synchronize the data to maximize its

freshness. The main contributions we make are:

• We present a formal framework to study the synchronization problem, and we define
the notions of freshness and age of a copy. While our study focuses on the Web en-

vironment, we believe our analysis can be applied to other contexts, such as a data

warehouse. In a warehouse, materialized views are maintained on top of autonomous

databases, and again, we need to poll the underlying database periodically to guaran-

tee some level of freshness.

• We present several synchronization policies that are currently employed, and we com-
pare how effective they are. Our study will show that some policies that may be

intuitively appealing might actually perform worse than a naive policy.

• We also propose a new synchronization policy which may improve the freshness by

orders of magnitude in certain cases.

• We validate our analysis using the experimental data from Chapter 4. The results

show that our new policy is indeed better than any of the current policies.

5.2 Framework

To study the synchronization problem, we first need to understand the meaning of “fresh-

ness,” and we need to know how data changes over time. In this section we present our
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framework to address these issues. In our discussion, we refer to the Web sites (or the

data sources) that we monitor as the real-world database and their local copies as the local

database, when we need to distinguish them. Similarly, we refer to individual Web pages

(or individual data items) as the real-world elements and as the local elements.

In Section 5.2.1, we start our discussion with the definition of two freshness metrics,

freshness and age. Then in Section 5.2.2, we discuss how we model the evolution of indi-

vidual real-world elements. Finally in Section 5.2.3 we discuss how we model the real-world

database as a whole.

5.2.1 Freshness and age

Intuitively, we consider a database “fresher” when the database has more up-to-date ele-

ments. For instance, when database A has 10 up-to-date elements out of 20 elements, and

when database B has 15 up-to-date elements, we consider B to be fresher than A. Also,

we have a notion of “age:” Even if all elements are obsolete, we consider database A “more

current” than B, if A was synchronized 1 day ago, and B was synchronized 1 year ago.

Based on this intuitive notion, we define freshness and age as follows:

1. Freshness: Let S = {e1, . . . , eN} be the local database with N elements. Ideally, all

N elements will be maintained up-to-date, but in practice, only M(< N) elements

will be up-to-date at a specific time. (By up-to-date we mean that their values equal

those of their real-world counterparts.) We define the freshness of S at time t as

F (S; t) = M/N . Clearly, the freshness is the fraction of the local database that is

up-to-date. For instance, F (S; t) will be one if all local elements are up-to-date, and

F (S; t) will be zero if all local elements are out-of-date. For mathematical convenience,

we reformulate the above definition as follows:

Definition 5.1 The freshness of a local element ei at time t is

F (ei; t) =

{
1 if ei is up-to-date at time t

0 otherwise.

Then, the freshness of the local database S at time t is

F (S; t) =
1
N

N∑
i=1

F (ei; t). ✷
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Note that freshness is hard to measure exactly in practice since we need to “instan-

taneously” compare the real-world data to the local copy. But as we will see, it is

possible to estimate freshness given some information about how the real-world data

changes.

2. Age: To capture “how old” the database is, we define the metric age as follows:

Definition 5.2 The age of the local element ei at time t is

A(ei; t) =

{
0 if ei is up-to-date at time t

t−modification time of ei otherwise.

Then the age of the local database S is

A(S; t) =
1
N

N∑
i=1

A(ei; t). ✷

The age of S tells us the average “age” of the local database. For instance, if all

real-world elements changed one day ago and we have not synchronized them since,

A(S; t) is one day.

In Figure 5.2, we show the evolution of F (ei; t) and A(ei; t) of an element ei. In this graph,

the horizontal axis represents time, and the vertical axis shows the value of F (ei; t) and

A(ei; t). We assume that the real-world element changes at the dotted lines and the local

element is synchronized at the dashed lines. The freshness drops to zero when the real-world

element changes, and the age increases linearly from that point on. When the local element

is synchronized to the real-world element, its freshness recovers to one, and its age drops to

zero.

Obviously, the freshness (and age) of the local database may change over time. For

instance, the freshness might be 0.3 at one point of time, and it might be 0.6 at another

point of time. To compare different synchronization methods, it is important to have a

metric that fairly considers freshness over a period of time, not just at one instant. In this

thesis we use the freshness averaged over time as this metric.

Definition 5.3 We define the time average of freshness of element ei, F̄ (ei), and the time
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Figure 5.2: An example of the time evolution of F (ei; t) and A(ei; t)

average of freshness of database S, F̄ (S), as

F̄ (ei) = lim
t→∞

1
t

∫ t

0
F (ei; t)dt F̄ (S) = lim

t→∞
1
t

∫ t

0
F (S; t)dt.

The time average of age can be defined similarly. ✷

From the definition, we can prove that F̄ (S) is the average of F̄ (ei).

Theorem 5.1 F̄ (S) =
1
N

N∑
i=1

F̄ (ei) Ā(S) =
1
N

N∑
i=1

Ā(ei) ✷

Proof

F̄ (S) = lim
t→∞

1
t

∫ t

0
F (S; t)dt (definition of F̄ (S))

= lim
t→∞

1
t

∫ t

0

(
1
N

N∑
i=1

F (ei; t)

)
dt (definition of F (S; t))

=
1
N

N∑
i=1

lim
t→∞

1
t

∫ t

0
F (ei; t)dt

=
1
N

N∑
i=1

F̄ (ei) (definition of F̄ (ei))

The proof for age is similar. �
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5.2.2 Poisson process and probabilistic evolution of an element

To study how effective different synchronization methods are, we need to know how the

real-world elements change. In this thesis, we assume that each element ei is modified by a

Poisson process with change rate λi, based on the result in Chapter 4. That is, each element

ei changes at its own average rate λi, and this rate may differ from element to element.

For example, one element may change once a day, and another element may change once a

year.

Under the Poisson process model, we can analyze the freshness and the age of the

element ei over time. More precisely, let us compute the expected value of the freshness

and the age of ei at time t. For the analysis, we assume that we synchronize ei at t = 0

and at t = I. Since the time to the next event follows an exponential distribution under a

Poisson process (Lemma 4.1 on page 67), we can obtain the probability that ei changes in

the interval (0, t] by the following integration:

Pr{T ≤ t} =
∫ t

0
fT (t)dt =

∫ t

0
λie

−λitdt = 1− e−λit

Because ei is not synchronized in the interval (0, I), the local element ei may get out-of-

date with probability Pr{T ≤ t} = 1−e−λit at time t ∈ (0, I). Hence, the expected freshness
is

E[F (ei; t)] = 0 · (1− e−λit) + 1 · e−λit = e−λit for t ∈ (0, I).

Note that the expected freshness is 1 at time t = 0 and that the expected freshness ap-

proaches 0 as time passes.

We can obtain the expected value of age of ei similarly. If ei is modified at time s ∈ (0, I),
the age of ei at time t ∈ (s, I) is (t − s). From Lemma 4.1, ei changes at time s with

probability λie−λis, so the expected age at time t ∈ (0, I) is

E[A(ei; t)] =
∫ t

0
(t− s)(λie−λis)ds = t(1− 1− e−λit

λit
)

Note that E[A(ei; t)] → 0 as t → 0 and that E[A(ei; t)] ≈ t as t → ∞; the expected age is
0 at time 0 and the expected age is approximately the same as the elapsed time when t is

large. In Figure 5.3, we show the graphs of E[F (ei; t)] and E[A(ei; t)]. Note that when we

resynchronize ei at t = I, E[F (ei; t)] recovers to one and E[A(ei; t)] goes to zero.
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Figure 5.3: Time evolution of E[F (ei; t)] and E[A(ei; t)]

5.2.3 Evolution model of database

In the previous subsection we modeled the evolution of an element. Now we discuss how

we model the database as a whole. Depending on how its elements change over time, we

can model the real-world database by one of the following:

• Uniform change-frequency model: In this model, we assume that all real-world

elements change at the same frequency λ. This is a simple model that could be useful

when:

– we do not know how often the individual element changes over time. We only

know how often the entire database changes on average, so we may assume that

all elements change at the same average rate λ.

– the elements change at slightly different frequencies. In this case, this model will

work as a good approximation.

• Non-uniform change-frequency model: In this model, we assume that the ele-

ments change at different rates. We use λi to refer to the change frequency of the

element ei. When the λi’s vary, we can plot the histogram of λi’s as we show in

Figure 5.4. In the figure, the horizontal axis shows the range of change frequencies

(e.g., 9.5 < λi ≤ 10.5) and the vertical axis shows the fraction of elements that change
at the given frequency range. We can approximate the discrete histogram by a con-

tinuous distribution function g(λ), when the database consists of many elements. We

will adopt the continuous distribution model whenever convenient.
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symbol meaning
(a) F̄ (S), F̄ (ei) Freshness of database S (and element ei) averaged over time
(b) Ā(S), Ā(ei) Age of database S (and element ei) averaged over time
(c) F̄ (λi, fi), Ā(λi, fi) Freshness (and age) of element ei averaged over time, when

the element changes at the rate λi and is synchronized at
the frequency fi

(i) λi Change frequency of element ei
(j) fi (= 1/Ii) Synchronization frequency of element ei
(k) λ Average change frequency of database elements
(l) f (= 1/I) Average synchronization frequency of database elements

Table 5.1: The symbols that are used throughout this chapter and their meanings

For the reader’s convenience, we summarize our notation in Table 5.1. As we continue

our discussion, we will explain some of the symbols that have not been introduced yet.

5.3 Synchronization policies

So far we discussed how the real-world database changes over time. In this section we study

how the local copy can be refreshed. There are several dimensions to this synchronization

process:

1. Synchronization frequency: We first need to decide how frequently we synchronize

the local database. Obviously, as we synchronize the database more often, we can

maintain the local database fresher. In our analysis, we assume that we synchronize

N elements per I time-units. By varying the value of I, we can adjust how often we

synchronize the database.
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2. Resource allocation: Even after we decide how many elements we synchronize per

unit interval, we still need to decide how frequently we synchronize each individual

element. We illustrate this issue by an example.

Example 5.1 A database consists of three elements, e1, e2 and e3. It is known that

the elements change at the rates λ1 = 4, λ2 = 3, and λ3 = 2 (times/day). We have

decided to synchronize the database at the total rate of 9 elements/day. In deciding

how frequently we synchronize each element, we consider the following options:

• Synchronize all elements uniformly at the same rate. That is, synchronize e1, e2
and e3 at the same rate of 3 (times/day).

• Synchronize an element proportionally more often when it changes more often.
In other words, synchronize the elements at the rates of f1 = 4, f2 = 3, f3 = 2

(times/day) for e1, e2 and e3, respectively. ✷

Based on how fixed synchronization resources are allocated to individual elements,

we can classify synchronization policies as follows. We study these policies later in

Section 5.5.

(a) Uniform-allocation policy: We synchronize all elements at the same rate,

regardless of how often they change. That is, each element ei is synchronized at

the fixed frequency f . In Example 5.1, the first option corresponds to this policy.

(b) Non-uniform-allocation policy: We synchronize elements at different rates.

In particular, with a proportional-allocation policy we synchronize element ei
with a frequency fi that is proportional to its change frequency λi. Thus, the

frequency ratio λi/fi, is the same for any i under the proportional-allocation

policy. In Example 5.1, the second option corresponds to this policy.

3. Synchronization order: Now we need to decide in what order we synchronize the

elements in the database.

Example 5.2 Wemaintain a local database of 10,000 Web pages from site A. In order

to maintain the local copy up-to-date, we continuously update our local database by

revisiting the pages in the site. In performing the update, we may adopt one of the

following options:
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• We maintain an explicit list of all URLs in the site, and we visit the URLs

repeatedly in the same order. Notice that if we update our local database at a

fixed rate, say 10,000 pages/day, then we synchronize a page, say p1, at the fixed

interval of one day.

• We only maintain the URL of the root page of the site, and whenever we crawl the
site, we start from the root page, following links. Since the link structure (and the

order) at a particular crawl determines the page visit order, the synchronization

order may change from one crawl to the next. Notice that under this policy, we

synchronize a page, say p1, at variable intervals. For instance, if we visit p1 at

the end of one crawl and at the beginning of the next crawl, the interval is close

to zero, while in the opposite case it is close to two days.

• Instead of actively synchronizing pages, we synchronize pages on demand, as
they are requested by a user. Since we do not know which page the user will

request next, the synchronization order may appear random. Under this policy,

the synchronization interval of p1 is not bound by any value. It may range from

zero to infinity. ✷

We can summarize the above options as follows. In Section 5.4 we will compare how

effective these synchronization order policies are.

(a) Fixed order: We synchronize all elements in the database in the same order re-

peatedly. Therefore, a particular element is synchronized at a fixed interval under

this policy. This policy corresponds to the first option of the above example.

(b) Random order: We synchronize all elements repeatedly, but the synchroniza-

tion order may be different in each iteration. This policy corresponds to the

second option in the example.

(c) Purely random: At each synchronization point, we select a random element

from the database and synchronize it. Therefore, an element is synchronized at

intervals of arbitrary length. This policy corresponds to the last option in the

example.

4. Synchronization points: In some cases, we may need to synchronize the database

only in a limited time window. For instance, if a Web site is heavily accessed during

daytime, it might be desirable to crawl the site only in the night, when it is less
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Figure 5.5: Several options for the synchronization points

frequently visited. We illustrate several options for dealing with this constraint by an

example.

Example 5.3 We maintain a local database of 10 pages from site A. The site is heav-

ily accessed during daytime. We consider several synchronization policies, including

the following:

• Figure 5.5(a): We synchronize all 10 pages in the beginning of a day, say

midnight.

• Figure 5.5(b): We synchronize most pages in the beginning of a day, but we

still synchronize some pages during the rest of the day.

• Figure 5.5(c): We synchronize 10 pages uniformly over a day. ✷

In this chapter we assume that we synchronize a database uniformly over time. We

believe this assumption is valid especially for the Web environment. Because the Web

sites are located in many different time zones, it is not easy to identify which time zone

a particular Web site resides in. Also, the access pattern to a Web site varies widely.

For example, some Web sites are heavily accessed during daytime, while others are

accessed mostly in the evening, when the users are at home. Since crawlers cannot

guess the best time to visit each site, they typically visit sites at a uniform rate that

is convenient to the crawler.

5.4 Synchronization-order policies

Clearly, we can increase the database freshness by synchronizing more often. But exactly

how often should we synchronize, for the freshness to be, say, 0.8? Conversely, how much

freshness do we get if we synchronize 100 elements per second? In this section, we will
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Algorithm 5.4.1 Fixed-order synchronization
Input: ElemList = {e1, e2, . . . , eN}
Procedure
[1] While (TRUE)
[2] SyncQueue := ElemList
[3] While (not Empty(SyncQueue))
[4] e := Dequeue(SyncQueue)
[5] Synchronize(e)

Figure 5.6: Algorithm of fixed-order synchronization policy

address these questions by analyzing synchronization-order policies. Through the analysis,

we will also learn which synchronization-order policy is the best in terms of freshness and

age.

In this section we assume that all real-world elements are modified at the same average

rate λ. That is, we adopt the uniform change-frequency model (Section 5.2.3). When the

elements change at the same rate, it does not make sense to synchronize the elements at

different rates, so we also assume uniform-allocation policy (Item 2a in Section 5.3). These

assumptions significantly simplify our analysis, while giving us solid understanding on the

issues that we address. Based on these assumptions, we analyze different synchronization-

order policies in the subsequent subsections. A reader who is not interested in mathematical

details may skip to Section 5.4.4.

5.4.1 Fixed-order policy

Under the fixed-order policy, we synchronize the local elements in the same order repeatedly.

We describe the fixed-order policy more formally in Figure 5.6. Here, ElemList records

ordered list of all local elements, and SyncQueue records the elements to be synchronized in

each iteration. In step [3] through [5], we synchronize all elements once, and we repeat this

loop forever. Note that we synchronize the elements in the same order in every iteration,

because the order in SyncQueue is always the same,

Now we compute the freshness of the database S. (Where convenient, we will refer to

the time-average of freshness simply as freshness, if it does not cause any confusion.) Since

we can compute the freshness of S from freshness of its elements (Theorem 5.1), we first

study how a random element ei evolves over time.
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Figure 5.7: Time evolution of E[F (ei; t)] for fixed-order policy

Assuming that it takes I seconds to synchronize all elements in S, the expected freshness

of ei will evolve as in Figure 5.7. In the graph, we assumed that we synchronize ei initially

at t = 0, without losing generality. Note that E[F (ei; t)] recovers to 1 every I seconds,

when we synchronize it. Intuitively, ei goes through exactly the same process every I

seconds, so we can expect that we can learn anything about ei by studying how ei evolves

in the interval (0, I). In particular, we suspect that the freshness of ei averaged over time

(limt→∞ 1
t

∫ t
0 F (ei; t)dt) should be equal to the expected freshness of ei averaged over the

interval (0, I) (i.e., 1
I

∫ I
0 E[F (ei; t)]dt). The following theorem shows that our intuition is

correct.

Theorem 5.2 When the element ei is synchronized at the fixed interval of I seconds, the

time average of the freshness of ei is the same as the time average of E[F (ei; t)] over the

interval (0, I).
F̄ (ei) =

1
I

∫ I

0
E[F (ei; t)]dt ✷

Proof

F̄ (ei) = lim
t→∞

∫ t
0 F (ei; t)dt

t

= lim
n→∞

∑n−1
j=0

∫ (j+1)I
jI F (ei; t)dt∑n−1

j=0 I

= lim
n→∞

∑n−1
j=0

∫ I
0 F (ei; t+ jI)dt
nI

=
1
I

∫ I

0


 lim
n→∞

1
n

n−1∑
j=0

F (ei; t+ jI)


 dt (5.1)

Because we synchronize ei every I seconds from t = 0, F (ei; t + jI) is the freshness of ei
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at t seconds after each synchronization. Therefore, 1
n

∑n−1
j=0 F (ei; t + jI), the average of

freshness at t seconds after synchronization, will converge to its expected value, E[F (ei; t)],

as n→∞. That is,
lim
n→∞

1
n

n−1∑
j=0

F (ei; t+ jI) = E[F (ei; t)].

Then,

1
I

∫ I

0


 lim
n→∞

1
n

n−1∑
j=0

F (ei; t+ jI)


 dt = 1

I

∫ I

0
E[F (ei; t)]dt. (5.2)

From Equation 5.1 and 5.2, F (ei) =
1
I

∫ I

0
E[F (ei; t)]dt. �

Based on Theorem 5.2, we can compute the freshness of ei.

F̄ (ei) =
1
I

∫ I

0
E[F (ei; t)]dt =

1
I

∫ I

0
e−λtdt =

1− e−λI

λI
=
1− e−λ/f

λ/f

We assumed that all elements change at the same frequency λ and that they are synchronized

at the same interval I, so the above equation holds for any element ei. Therefore, the

freshness of database S is

F̄ (S) =
1
N

N∑
i=1

F̄ (ei) =
1− e−λ/f

λ/f
.

We can analyze the age of S similarly, and we get

Ā(S) = I(
1
2
− 1
λ/f

+
1− e−λ/f

(λ/f)2
).

5.4.2 Random-order policy

Under the random-order policy, the synchronization order of elements might be different

from one crawl to the next. Figure 5.8 describes the random-order policy more precisely.

Note that we randomize the order of elements before every iteration by applying random

permutation (step [2]).

Obviously, the random-order policy is more complex to analyze than the fixed-order

policy. Since we may synchronize ei at any point during interval I, the synchronization



5.4. SYNCHRONIZATION-ORDER POLICIES 85

Algorithm 5.4.2 Random-order synchronization
Input: ElemList = {e1, e2, . . . , eN}
Procedure
[1] While (TRUE)
[2] SyncQueue := RandomPermutation(ElemList)
[3] While (not Empty(SyncQueue))
[4] e := Dequeue(SyncQueue)
[5] Synchronize(e)

Figure 5.8: Algorithm of random-order synchronization policy

interval of ei is not fixed any more. In one extreme case, it may be almost 2I, when ei is

synchronized at the beginning of the first iteration and at the end of the second iteration.

In the opposite case, it may be close to 0, when ei is synchronized at the end of the first

iteration and at the beginning of second iteration. Therefore, the synchronization interval

of ei,W , is not a fixed number any more, but follows a certain distribution fW (t). Therefore

the equation of Theorem 5.2 should be modified accordingly:

F̄ (ei) = lim
t→∞

1
t

∫ t

0
F (ei; t)dt =

∫ 2I
0 fW (s)

(∫ s
0 E[F (ei; t)]dt

)
ds∫ 2I

0 fW (s) s ds
(5.3)

In Theorem 5.2, we simply divided
∫ I
0 E[F (ei; t)]dt by I, because the synchronization interval

was fixed to I. But now we take the average of
∫ s
0 E[F (ei; t)]dt and s weighted by the relative

frequencies of the interval s (fW (s)). To perform the above integration, we need to derive

the closed form of fW (t).

Lemma 5.1 Let T1(T2) be the time when element ei is synchronized in the first (second)

iteration under the random-order policy. Then the p.d.f. ofW = T1−T2, the synchronization

interval of ei, is

fW (t) =




t
I2 0 ≤ t ≤ I
2I−t
I2 I ≤ t ≤ 2I
0 otherwise.

✷
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Proof The p.d.f.’s of T1 and T2 are

fT1(t) =

{
1
I 0 ≤ t ≤ I
0 otherwise

and fT2(t) =

{
1
I I ≤ t ≤ 2I
0 otherwise.

Then

fW (t) = f(T2 − T1 = t)

=
∫ I

0
f(T1 = s)f(T2 − T1 = t|T1 = s) ds

=
∫ I

0
f(T1 = s)f(T2 = s+ t) ds

=
1
I

∫ I

0
f(T2 = s+ t) ds. �

When t < 0 or t > 2I, f(T2 = s+ t) = 0 for any s ∈ (0, I). Therefore,

fW (t) =
1
I

∫ I

0
f(T2 = s+ t) ds = 0.

When 0 ≤ t ≤ I, f(T2 = s+ t) = 1
I for s ∈ (I − t, I). Then,

fW (t) =
1
I

∫ I

I−t

1
I
ds =

t

I2
.

When I ≤ t ≤ 2I, f(T2 = s+ t) = 1
I for s ∈ (0, 2I − t), and therefore

fW (t) =
1
I

∫ 2I−t

0

1
I
ds =

2I − t
I2

.

Based on the Lemma 5.1 and Equation 5.3, we can compute the freshness of the random-

order policy, and the result is

F̄ (ei) =
1
λ/f


1−

(
1− e−λ/f

λ/f

)2

 .
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Algorithm 5.4.3 Purely-random synchronization
Input: ElemList = {e1, e2, . . . , eN}
Procedure
[1] While (TRUE)
[2] SyncQueue := RandomPermutation(ElemList)
[3] e := Dequeue(SyncQueue)
[4] Synchronize(e)

Figure 5.9: Algorithm of purely-random synchronization policy

Since the above analysis is valid for any element ei, the freshness of S becomes

F̄ (S) =
1
λ/f


1−

(
1− e−λ/f

λ/f

)2

 .

We can compute Ā(S) similarly.

Ā(S) = I


1
3
+
(
1
2
− 1
λ/f

)2

−
(
1− e−λ/f

(λ/f)2

)2



5.4.3 Purely-random policy

Whenever we synchronize an element, we pick an arbitrarily random element under the

purely-random policy. Figure 5.9 describes the policy more formally. Note that we pick

a completely random element at every synchronization point, since we rebuild SyncQueue

before every synchronization.

The analysis of purely-random policy is similar to that of random-order policy. Here

again, the time between synchronizations of ei, W , is a random variable with a probability

density function fW (t), and the freshness of ei becomes

F̄ (ei) = lim
t→∞

1
t

∫ t

0
F (ei; t)dt =

∫∞
0 fW (s)

(∫ s
0 E[F (ei; t)]dt

)
ds∫∞

0 fW (s) s ds
.

Note that the outer integral is over (0,∞), since the synchronization interval of ei may get
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policy Freshness F̄ (S) Age Ā(S)

Fixed-order 1−e−r

r I(1
2 − 1

r +
1−e−r

r2 )

Random-order 1
r (1− (1−e−r

r )2) I(13 + (
1
2 − 1

r )
2 − (1−e−r

r2 )2)

Purely-random 1
1+r I( r

1+r )

Table 5.2: Freshness and age formula for various synchronization-order policies
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(a) Freshness graph over r = λ/f
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(b) Age graph over r = λ/f

Figure 5.10: Comparison of freshness and age of various synchronization policies

arbitrarily large. From the raw of rare events [TK98], we can prove that fW (t) is

fW (t) =

{
fe−ft t ≥ 0
0 otherwise

and we get

F̄ (S) =
1

1 + λ/f
Ā(S) = I

(
λ/f

1 + λ/f

)
.

5.4.4 Comparison of synchronization-order policies

In Table 5.2, we summarize the results in the preceding subsections. In the table, we use

r to represent the frequency ratio λ/f , where λ is the frequency at which a real-world

element changes and f(= 1/I) is the frequency at which a local element is synchronized.

When r < 1, we synchronize the elements more often than they change, and when r > 1,

the elements change more often than we synchronize them.
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To help readers interpret the formulas, we show the freshness and the age graphs in

Figure 5.10. In the figure, the horizontal axis is the frequency ratio r, and the vertical

axis shows the freshness and the age of the local database. Notice that as we synchronize

the elements more often than they change (λ � f , thus r = λ/f → 0), the freshness

approaches 1 and the age approaches 0. Also, when the elements change more frequently

than we synchronize them (r = λ/f →∞), the freshness becomes 0, and the age increases.
Finally, notice that the freshness is not equal to 1, even if we synchronize the elements as

often as they change (r = 1). This fact has two reasons. First, an element changes at

random points of time, even if it changes at a fixed average rate. Therefore, the element

may not change between some synchronizations, and it may change more than once between

other synchronizations. For this reason, it cannot be always up-to-date. Second, some delay

may exist between the change of an element and its synchronization, so some elements may

be “temporarily obsolete,” decreasing the freshness of the database.

The graphs of Figure 5.10 have many practical implications. For instance, we can answer

all of the following questions by looking at the graphs.

• How can we measure how fresh a local database is? By measuring how fre-

quently real-world elements change, we can estimate how fresh a local database is. For

instance, when the real-world elements change once a day, and when we synchronize

the local elements also once a day (λ = f or r = 1), the freshness of the local database

is (e− 1)/e ≈ 0.63, under the fixed-order policy.

Note that we derived the equations in Table 5.2 assuming that the real-world elements

change at the same rate λ. Therefore, the equations may not be true when the real-

world elements change at different rates. However, we can still interpret λ as the

average rate at which the whole database changes, and we can use the formulas as

approximations. Later in Section 5.5, we derive an exact formula for when the elements

change at different rates.

• How can we guarantee certain freshness of a local database? From the graph,

we can find how frequently we should synchronize local elements in order to achieve

certain freshness. For instance, if we want at least 0.8 freshness, the frequency ratio r

should be less than 0.46 (fixed-order policy). That is, we should synchronize the local

elements at least 1/0.46 ≈ 2 times as frequently as the real-world elements change.
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• Which synchronization-order policy is the best? The fixed-order policy per-

forms best by both metrics. For instance, when we synchronize the elements as often

as they change (r = 1), the freshness of the fixed-order policy is (e − 1)/e ≈ 0.63,

which is 30% higher than that of the purely-random policy. The difference is more

dramatic for age. When r = 1, the age of the fixed-order policy is only one fourth

of the random-order policy. In general, as the variability in the time between visits

increases, the policy gets less effective.

5.5 Resource-allocation policies

In the previous section, we addressed various questions assuming that all elements in the

database change at the same rate. But what can we do if the elements change at different

rates and we know how often each element changes? Is it better to synchronize an element

more often when it changes more often? In this section we address this question by analyzing

different resource-allocation policies (Item 2 in Section 5.3). For the analysis, we model the

real-world database by the non-uniform change-frequency model (Section 5.2.3), and we

assume the fixed-order policy for the synchronization-order policy (Item 3 in Section 5.3),

because the fixed-order policy is the best synchronization-order policy. In other words,

we assume that the element ei changes at the frequency λi (λi’s may be different from

element to element), and we synchronize ei at the fixed interval Ii(= 1/fi, where fi is

synchronization frequency of ei). Remember that we synchronize N elements in I(= 1/f)

time units. Therefore, the average synchronization frequency ( 1
N

∑N
i=1 fi) should be equal

to f .

In Sections 5.5.1 and 5.5.2, we start our discussion by comparing the uniform allocation

policy with the proportional allocation policy. Surprisingly, the uniform policy turns out

to be always more effective than the proportional policy. Then in Section 5.5.3 we try to

understand why this happens by studying a simple example. Finally in Section 5.5.4 we

study how we should allocate resources to the elements to achieve the optimal freshness or

age. A reader who is not interested in mathematical details may skip to Section 5.5.3.

5.5.1 Uniform and proportional allocation policy

In this subsection, we first assume that the change frequencies of real-world elements follow

the gamma distribution, and compare how effective the proportional and the uniform policies
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are. In Section 5.5.2 we also prove that the conclusion of this section is valid for any

distribution.

The gamma distribution is often used to model a random variable whose domain is

non-negative numbers. Also, the distribution is known to cover a wide array of distribu-

tions. For instance, the exponential and the chi-square distributions are special instances

of the gamma distribution, and the gamma distribution is close to the normal distribution

when the variance is small. This mathematical property and versatility makes the gamma

distribution a desirable one for describing the distribution of change frequencies.

To compute the freshness, we assume that we synchronize element ei at the fixed fre-

quency fi (Fixed-order policy, Item 3a of Section 5.3). In Section 5.4.1, we showed that the

freshness of ei in this case is

F̄ (λi, fi) =
1− e−λi/fi

λi/fi
(5.4)

and the age of ei is

Ā(λi, fi) =
1
fi
(
1
2
− 1
λi/fi

+
1− e−λi/fi

(λi/fi)2
). (5.5)

The gamma distribution g(x) with parameters α > 0 and µ > 0 is

g(x) =
µ

Γ(α)
(µx)α−1e−µx for x > 0 (5.6)

and the mean and the variance of the distribution are

E[X] =
α

µ
and Var[X] =

α

µ2
. (5.7)

Now let us compute the freshness of S for the uniform allocation policy. By the definition

of the uniform allocation policy, fi = f for any i. Then from Theorem 5.1,

F̄ (S)u =
1
N

N∑
i=1

F̄ (ei) =
1
N

N∑
i=1

F̄ (λi, f)

where subscript u stands for the uniform allocation policy. When N is large, we can
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approximate the above average by the weighted integral

F̄ (S)u =
1
N

N∑
i=1

F̄ (λi, f) =
∫ ∞

0
g(λ)F̄ (λ, f)dλ (5.8)

where g(λ) is the gamma distribution. By substituting g(λ) and F̄ (λ, f) using Equation 5.6

and 5.4, we get

F̄ (S)u =
µf

1− α
(
(1 +

1
µf
)1−α − 1

)
.

It is more intuitive to deal with the mean and the variance of the distribution than α and

µ, so we reformulate the above formula with

λ = (mean) =
α

µ
and δ2 =

(variance)
(mean)2

=
α/µ2

(α/µ)2
(From Equation 5.7).

Then F̄ (S)u becomes

F̄ (S)u =
1− (1 + rδ2)1− 1

δ2

r(1− δ2) (r = λ/f)

.

We can compute the age of the database, Ā(S)u, similarly.

Ā(S)u =
1
N

N∑
i=1

Ā(λi, f) =
∫ ∞

0
g(λ)Ā(λ, f)dλ

=
1

f(1− δ2)

[
1− δ2
2
− 1
r
+
1− (1 + rδ2)2− 1

δ2

r2(1− 2δ2)

]

Now let us compute the freshness of the proportional allocation policy. By the definition

of the proportional policy, λi/fi = λ/f for any i. Then from Equation 5.4 and 5.5, we can

derive

F̄ (λi, fi) =
1− e−λ/f

λ/f
Ā(λi, fi) =

1
λi

[
λ

f

(
1
2
− 1
λ/f

+
1− e−λ/f

(λ/f)2

)]
.

Therefore, F̄ (S)p and Ā(S)p becomes
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policy Freshness F̄ (S) Age Ā(S)

Uniform allocation 1−(1+rδ2)
1− 1

δ2

r(1−δ2)
I

(1−δ2) [
1−δ2

2 − 1
r +

1−(1+rδ2)
2− 1

δ2

r2(1−2δ2) ]

Proportional allocation 1−e−r

r
I

(1−δ2)
[12 − 1

r +
1−e−r

r2 ]

Table 5.3: Freshness and age formula for various resource-allocation policies

F̄ (S)p =
1
N

N∑
i=1

F̄ (λi, fi) =
1− e−λ/f

λ/f

Ā(S)p =
1
N

N∑
i=1

Ā(λi, fi)

=

[
λ

f

(
1
2
− 1
λ/f

+
1− e−λ/f

(λ/f)2

)](
1
N

N∑
i=1

1
λi

)

=

[
λ

f

(
1
2
− 1
λ/f

+
1− e−λ/f

(λ/f)2

)]∫ ∞

0
g(λ)

1
λ
dλ

=
1

f(1− δ2)

[
1
2
− 1
λ/f

+
1− e−λ/f

(λ/f)2

]
.

In Table 5.3 we summarize the results of our analyses. In the table, r represents the

frequency ratio λ/f , where λ is the average rate at which elements change (the mean

of the gamma distribution), and f is the average rate at which we synchronize them

(1/I). Also, δ represents the standard deviation of change frequencies (more precisely,

δ2 =(variance)/(mean)2 of the gamma distribution). Note that the uniform policy is better

than the proportional one if F̄ (S)p < F̄ (S)u and Ā(S)u < Ā(S)p. To compare the two

policies, we plot F̄ (S)p/F̄ (S)u and Ā(S)u/Ā(S)p graphs in Figure 5.11. When the uni-

form policy is better, the ratios are below 1 (F̄ (S)p/F̄ (S)u < 1 and Ā(S)u/Ā(S)p < 1),

and when the proportional policy is better, the ratios are above 1 (F̄ (S)p/F̄ (S)u > 1 and

Ā(S)u/Ā(S)p > 1).

Surprisingly, we can clearly see that the ratios are below 1 for any r and δ values: The

uniform policy is always better than the proportional policy! In fact, the uniform policy

gets more effective as the elements change at more different frequencies. That is, when the

variance of change frequencies is zero (δ = 0), all elements change at the same frequency,
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Figure 5.11: F̄ (S)p/F̄ (S)u and Ā(S)u/Ā(S)p graphs over r and δ

so two policies give the same result (F̄ (S)p/F̄ (S)u = 1 and Ā(S)u/Ā(S)p = 1). But as δ

increases (i.e., as the elements change at more different frequencies), F̄ (S)u grows larger

than F̄ (S)p (F̄ (S)p/F̄ (S)u → 0) and Ā(S)u gets smaller than Ā(S)p (Ā(S)u/Ā(S)p → 0).

Interestingly, we can observe that the age ratio does not change much as r increases, while

the freshness ratio heavily depends on the r value.

While we showed that the uniform policy is better than the proportional one only for

the gamma-distribution assumption, it is in fact a very general conclusion. In the next

subsection, we prove that the uniform policy is always better than the proportional policy

under any distribution.

5.5.2 Superiority of the uniform policy over the proportional policy

To prove that the uniform policy is better than the propotional policy under any distribu-

tion, we first derive the following lemma.

Lemma 5.2 When f(x) is a convex function,

1
n

n∑
i=1

f(xi) ≥ f( 1
n

n∑
i=1

xi) for any xi
′s (i = 1, 2, . . . , n).
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Similarly, when f(x) is concave,

1
n

n∑
i=1

f(xi) ≤ f( 1
n

n∑
i=1

xi) for any xi
′s (i = 1, 2, . . . , n).

Proof We prove it by mathematical induction.

1. Base case: When n = 1, it is obvious that f(x1) ≥ f(x1) for any x1.

2. Induction step: We assume 1
k

∑k
i=1 f(xi) ≥ f( 1

k

∑k
i=1 xi) when k ≤ n − 1, and we

prove it when k = n.

1
n

n∑
i=1

f(xi) =
1
n

[
n− 1
n− 1

n−1∑
i=1

f(xi) + f(xn)

]

≥ 1
n

[
(n− 1)f( 1

n− 1
n−1∑
i=1

xi) + f(xn)

]
(induction hypothesis)

=
n− 1
n

f(
1

n− 1
n−1∑
i=1

xi) +
1
n
f(xn) (5.9)

We assumed f(x) is convex. From the definition of convexity,

pf(a) + (1− p)f(b) ≥ f(pa+ (1− p)b) for any 0 ≤ p ≤ 1. (5.10)

When we set p = (n− 1)/n, a =∑n−1
i=1 xi/(n− 1) and b = xn, Equation 5.10 becomes

n− 1
n

f(
1

n− 1
n−1∑
i=1

xi) +
1
n
f(xn) ≥ f(n− 1

n

1
n− 1

n−1∑
i=1

xi +
1
n
xn) = f(

1
n

n∑
i=1

xi).

(5.11)

From Equation 5.9 and 5.11, it is clear that

1
n

n∑
i=1

f(xi) ≥ f( 1
n

n∑
i=1

xi).

The proof for concavity is similar. �



96 CHAPTER 5. PAGE REFRESH POLICY

Now we prove that the freshness of the uniform policy, F̄ (S)u, is better than the fresh-

ness of the proportional policy, F̄ (S)p. The proof is based on the convexity of the func-

tion F̄ (λi, fi) over λi. That is, the analytic forms of F̄ (λi, fi) that we derived for vari-

ous synchronization-order policies were all convex over λi,1 so we can apply the result of

Lemma 5.2 to F̄ (λi, fi).

Theorem 5.3 It is always true that F̄ (S)u ≥ F̄ (S)p. ✷

Proof By definition, the uniform policy is fi = f for any i. Then

F̄ (S)u =
1
N

N∑
i=1

F̄ (λi, fi) =
1
N

N∑
i=1

F̄ (λi, f). (5.12)

For the proportional policy, λi/fi = λ/f for any i, so the freshness of ei is

F̄ (λi, fi) = F̄ (λ, f)

for any synchronization order policy. Therefore,

F̄ (S)p =
1
N

N∑
i=1

F̄ (λi, fi) =
1
N

N∑
i=1

F̄ (λ, f) = F̄ (λ, f). (5.13)

Then

F̄ (S)u =
1
N

N∑
i=1

F̄ (λi, f) (Equation 5.12)

≥ F̄ ( 1
N

N∑
i=1

λi, f) (convexity of F̄ )

= F̄ (λ, f) (definition of λ)

= F̄ (S)p. (Equation 5.13) �

Similarly, we can prove that the age of the uniform policy, Ā(S)u, is always less than

the age of the proportional policy, Ā(S)p, based on the concavity of Ā(λi, fi) over λi.

Theorem 5.4 It is always true that Ā(S)u ≤ Ā(S)p. ✷

1We can verify that F̄ (λi, fi) is convex over λi by computing ∂2F̄ (λi, fi)/∂λ2
i for the analytic forms.
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Proof From the definition of the uniform and the proportional policies,

Ā(S)u =
1
N

N∑
i=1

Ā(λi, f) (5.14)

Ā(S)p =
1
N

N∑
i=1

Ā(λi, fi) =
1
N

N∑
i=1

λ

λi
Ā(λ, f). (5.15)

Then

Ā(S)u =
1
N

N∑
i=1

Ā(λi, f) (Equation 5.14)

≤ Ā( 1
N

N∑
i=1

λi, f)(concavity of Ā)

= Ā(λ, f) (definition of λ)

Ā(S)p = λĀ(λ, f)

(
1
N

N∑
i=1

1
λi

)
(Equation 5.15)

≥ λĀ(λ, f) 1
1
N

∑N
i=1 λi

(convexity of function
1
x
)

= λĀ(λ, f)
1
λ

(definition of λ)

= Ā(λ, f).

Therefore, Ā(S)u ≤ Ā(λ, f) ≤ Ā(S)p. �

5.5.3 Two element database

Intuitively, we expected that the proportional policy would be better than the uniform

policy, because we allocate more resources to the elements that change more often, which

may need more of our attention. But why is it the other way around? In this subsection,

we try to understand why we get the counterintuitive result, by studying a very simple

example: a database consisting of two elements. The analysis of this simple example will

let us understand the result more concretely, and it will reveal some intuitive trends. We



98 CHAPTER 5. PAGE REFRESH POLICY

1 day

e
2

v

 : element modification timev

e
1

v vvvvvvv v

Figure 5.12: A database with two elements with different change frequency

will confirm the trends more precisely when we study the optimal synchronization policy

later in Section 5.5.4.

Now we analyze a database consisting of two elements: e1 and e2. For the analysis, we

assume that e1 changes at 9 times/day and e2 changes at once/day. We also assume that

our goal is to maximize the freshness of the database averaged over time. In Figure 5.12,

we visually illustrate our simple model. For element e1, one day is split into 9 intervals, and

e1 changes once and only once in each interval. However, we do not know exactly when the

element changes in one interval. For element e2, it changes once and only once per day, and

we do not know when it changes. While this model is not exactly a Poisson process model,

we adopt this model due to its simplicity and concreteness.

Now let us assume that we decided to synchronize only one element per day. Then

what element should we synchronize? Should we synchronize e1 or should we synchronize

e2? To answer this question, we need to compare how the freshness changes if we pick

one element over the other. If the element e2 changes in the middle of the day and if

we synchronize e2 right after it changed, it will remain up-to-date for the remaining half

of the day. Therefore, by synchronizing element e2 we get 1/2 day “benefit”(or freshness

increase). However, the probability that e2 changes before the middle of the day is 1/2,

so the “expected benefit” of synchronizing e2 is 1/2 × 1/2 day = 1/4 day. By the same

reasoning, if we synchronize e1 in the middle of an interval, e1 will remain up-to-date for

the remaining half of the interval (1/18 of the day) with probability 1/2. Therefore, the

expected benefit is 1/2×1/18 day = 1/36 day. From this crude estimation, we can see that

it is more effective to select e2 for synchronization!

Table 5.4 shows the expected benefits for several other scenarios. The second column

shows the total synchronization frequencies (f1+f2) and the third column shows how much

of the synchronization is allocated to f1 and f2. In the fourth column we estimate the

expected benefit, and in the last column we show the f1 and f2 values that give the highest
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row f1 + f2 f1 f2 benefit best
(a) 1 1 0 1

2 × 1
18 =

1
36 0 1

(b) 0 1 1
2 × 1

2 =
9
36

(c) 2 2 0 1
2 × 1

18 +
1
2 × 1

18 =
2
36 0 2

(d) 1 1 1
2 × 1

18 +
1
2 × 1

2 =
10
36

(e) 0 2 1
3 × 2

3 +
1
3 × 1

3 =
12
36

(f) 5 3 2 3
36 +

12
36 =

30
72 2 3

(g) 2 3 2
36 +

6
16 =

31
72

(h) 10 9 1 9
36 +

1
4 =

36
72 7 3

(i) 7 3 7
36 +

6
16 =

41
72

(j) 5 5 5
36 +

15
36 =

40
72

Table 5.4: Estimation of benefits for different choices

expected benefit. To reduce clutter, when f1+f2 = 5 and 10, we show only some interesting

(f1, f2) pairs. Note that since λ1 = 9 and λ2 = 1, row (h) corresponds to the proportional

policy (f1 = 9, f2 = 1), and row (j) corresponds to the uniform policy (f1 = f2 = 5). From

the table, we can observe the following interesting trends:

1. Rows (a)-(e): When the synchronization frequency (f1 + f2) is much smaller than

the change frequency (λ1+λ2), it is better to give up synchronizing the elements that

change too fast. In other words, when it is not possible to keep up with everything,

it is better to focus on what we can track.

2. Rows (h)-(j): Even if the synchronization frequency is relatively large (f1 + f2 =

10), the uniform allocation policy (row (j)) is more effective than the proportional

allocation policy (row (h)). The optimal point (row (i)) is located somewhere between

the proportional policy and the uniform policy.

We can verify this trend using our earlier analysis based on a Poisson process. We

assume that the changes of e1 and e2 are Poisson processes with change frequencies λ1 = 9

and λ2 = 1. To help the discussion, we use F̄ (λi, fi) to refer to the time average of freshness

of ei when it changes at λi and is synchronized at fi. Then, the freshness of the database is

F̄ (S) =
1
2
(F̄ (e1) + F̄ (e2)) =

1
2
(F̄ (λ1, f1) + F̄ (λ2, f2)) =

1
2
(F̄ (9, f1) + F̄ (1, f2)).

When we fix the value of f1 + f2, the above equation has only one degree of freedom, and

we can plot F̄ (S) over, say, f2. In Figure 5.13, we show a series of graphs obtained this
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Horizontal axis: fraction of the synchronization resources allocated to e2

Figure 5.13: Series of freshness graphs for different synchronization frequency constraints.
In all of the graphs, λ1 = 9 and λ2 = 1.
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way. The horizontal axis here represents the fraction of the synchronization allocated to

e2. That is, when x = 0, we do not synchronize element e2 at all (f2 = 0), and when

x = 1 we synchronize only element e2 (f1 = 0 or f2 = f1 + f2). Therefore, the middle

point (x = 0.5) corresponds to the uniform policy (f1 = f2), and x = 0.1 point corresponds

to the proportional policy (Remember that λ1 = 9 and λ2 = 1). The vertical axis in the

graph shows the normalized freshness of the database. We normalized the freshness so that

F̄ (S) = 1 at the uniform policy (x = 0.5). To compare the uniform and the proportional

policies more clearly, we indicate the freshness of the proportional policy by a dot, and the

x and the y axes cross at the uniform policy.

From these graphs, we can clearly see that the uniform policy is always better than the

proportional policy, since the dots are always below the origin. Also note that when the

synchronization frequency is small (graph (a) and (b)), it is better to give up on the element

that changes too often (We get the highest freshness when x = 1 or f1 = 0). When f1 + f2
is relatively large (graph (e) and (f)), the optimal point is somewhere between the uniform

policy and the proportional policy. For example, the freshness is highest when x ≈ 0.3 in

Figure 5.13(e) (the star in the graph).

5.5.4 The optimal resource-allocation policy

From the previous discussion, we learned that the uniform policy is indeed better than the

proportional policy. Also, we learned that the optimal policy is neither the uniform policy

nor the proportional policy. For instance, we get the highest freshness when x ≈ 0.3 for

Figure 5.13(e). Then, what is the best way to allocate the resource to elements for a general

database S? In this section, we will address this question. More formally, we will study

how often we should synchronize individual elements when we know how often they change,

in order to maximize the freshness or age. Mathematically, we can formulate our goal as

follows:

Problem 5.1 Given λi’s (i = 1, 2, . . . , N), find the values of fi’s (i = 1, 2, . . . , N) which

maximize

F̄ (S) =
1
N

N∑
i=1

F̄ (ei) =
1
N

N∑
i=1

F̄ (λi, fi)
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e1 e2 e3 e4 e5
(a) change frequency 1 2 3 4 5
(b) synchronization frequency (freshness) 1.15 1.36 1.35 1.14 0.00
(c) synchronization frequency (age) 0.84 0.97 1.03 1.07 1.09

Table 5.5: The optimal synchronization frequencies of Example 5.4

when fi’s satisfy the constraints

1
N

N∑
i=1

fi = f and fi ≥ 0 (i = 1, 2, . . . , N) ✷

Because we can derive the closed form of F̄ (λi, fi),2 we can solve the above problem by

the method of Lagrange multipliers [Tho69].

Solution The freshness of database S, F̄ (S), takes its maximum when all fi’s satisfy the

equations
∂F̄ (λi, fi)

∂fi
= µ3 and

1
N

N∑
i=1

fi = f.

Notice that we introduced another variable µ in the solution,4 and the solution consists

of (N+1) equations (N equations of ∂F̄ (λi, fi)/∂fi = µ and one equation of 1
N

∑N
i=1 fi = f)

with (N + 1) unknown variables (f1, . . . , fN , µ). We can solve these (N + 1) equations for

fi’s, since we know the closed form of F̄ (λi, fi). �

From the solution, we can see that all optimal fi’s satisfy ∂F̄ (λi, fi)/∂fi = µ. That is,

all optimal (λi, fi) pairs are on the graph of ∂F̄ (λ, f)/∂f = µ. To illustrate the property of

the solution, we use the following example.

Example 5.4 The real-world database consists of five elements, which change at the fre-

quencies of 1, 2, . . . , 5 (times/day). We list the change frequencies in row (a) of Table 5.5.

(We explain the meaning of rows (b) and (c) later, as we continue our discussion.) We

decided to synchronize the local database at the rate of 5 elements/day total, but we still

need to find out how often we should synchronize each element.

2For instance, F̄ (λi, fi) = (1− e−λi/fi)/(λi/fi) for the fixed-order policy.
3When ∂F̄ (λi, fi)/∂fi = µ does not have a solution with fi ≥ 0, fi should be equal to zero.
4This is a typical artifact of the method of Lagrange multipliers.
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Figure 5.14: Solution of the freshness and age optimization problem of Example 5.4

For this example, we can solve Problem 5.1 numerically, and we show the graph of its

solution in Figure 5.14(a). The horizontal axis of the graph corresponds to the change

frequency of an element, and the vertical axis shows the optimal synchronization frequency

of the element with that given change frequency. For instance, the optimal synchronization

frequency of e1 is 1.15 (f = 1.15), because the change frequency of element e1 is 1 (λ = 1).

Similarly from the graph, we can find the optimal synchronization frequencies of other

elements, and we list them in row (b) of Table 5.5.

Notice that while e4 changes twice as often as e2, we need to synchronize e4 less fre-

quently than e2. Furthermore, the synchronization frequency of e5 is zero, while it changes

at the highest rate. This result comes from the shape of Figure 5.14(a). In the graph,

when λ > 2.5, f decreases as λ increases. Therefore, the synchronization frequencies of the

elements e3, e4 and e5 gets smaller and smaller. ✷

While we obtained Figure 5.14(a) by solving Example 5.4, we prove in the next sub-

section that the shape of the graph is the same for any distributions of λi’s. That is, the

optimal graph for any database S is exactly the same as Figure 5.14(a), except that the

graph of S is scaled by a constant factor from Figure 5.14(a). Since the shape of the graph

is always the same, the following statement is true in any scenario: To improve freshness,

we should penalize the elements that change too often.

Similarly, we can compute the optimal age solution for Example 5.4, and we show the

result in Figure 5.14(b). The axes in this graph are the same as before. Also, we list the

optimal synchronization frequencies in row (c) of Table 5.5. Contrary to the freshness, we

can observe that we should synchronize an element more often when it changes more often
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Figure 5.15: ∂F̄ (λ, f)/∂f = µ graph when µ = 1 and µ = 2

(f1 < · · · < f5). However, notice that the difference between the synchronization frequencies
is marginal: All fi’s are approximately close to one. In other words, the optimal solution

is rather closer to the uniform policy than to the proportional policy. Similarly for age, we

can prove that the shape of the optimal age graph is always the same as Figure 5.14(b).

Therefore, the trend we observed here is very general and holds for any database.

5.5.5 The graph of the equation ∂F̄ (λ, f)/∂f = µ

We now study the property of the solution for Problem 5.1. In particular, we prove that

the graph ∂F̄ (λ, f)/∂f = µ is only scaled by a constant factor for different µ values. For

example, Figure 5.15 shows the graphs of the equation for µ = 1 and 2. The graph clearly

shows that the µ = 2 graph is simply a scaled version of the µ = 1 graph by a factor of 2;

the µ = 1 graph converges to zero when λ → 1, while the µ = 2 graph converges to zero

when λ → 1/2. Also, the µ = 1 graph takes its maximum at (0.53, 0.3), while the µ = 2

takes its maximum at (0.53/2, 0.3/2). The following theorem proves this scaling property

for any µ.

Theorem 5.5 Let (λ, f) satisfy the equation ∂F̄
∂f (λ, f) = µ. Then (µλ, µf), the point scaled

by the factor µ from (λ, f), satisfies the equation ∂F̄
∂f (µλ, µf) = 1. ✷

Proof For the fixed-order policy,5

∂F̄

∂f
(λ, f) = −e

−λ/f

f
+
1− e−λ/f

λ
.

5We can similarly prove the theorem for other synchronization-order policies.
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Then,

∂F̄

∂f
(µλ, µf) = −e

−µλ/µf

µf
+
1− e−µλ/µf

µλ

=
1
µ

(
−e

−λ/f

f
+
1− e−λ/f

λ

)

=
1
µ

∂F̄

∂f
(λ, f)

=
1
µ
µ (assumption)

= 1.

Therefore, the points (µλ, µf) satisfies the equation ∂F̄
∂f (µλ, µf) = 1. �

From Theorem 5.5, we can see that the graph of ∂F̄ (λ, f)/∂f = µ for any µ value is

essentially a scaled version of the graph ∂F̄ (λ, f)/∂f = 1. Therefore, its shape is always

the same for any value of µ. Since µ is the only constant affected by the distribution of λi’s,

this “scaling property” for different µ values shows that the shape of the graph is always

the same under any distribution.

Similarly for age, we can prove that the graphs are always the same except a constant

scaling factor.

5.6 Extension: weighted model

So far, we assumed that the freshness and the age of every element is equally important

to the users. But what if the elements have different “importance”? For example, if the

database S has two elements, e1 and e2, and if the users access e1 twice as often as e2, how

should we synchronize the elements to maximize the freshness of the database perceived by

the users? Should we refresh e1 more often than e2? In this section, we study how we can

extend our model to address this scenario.

5.6.1 Weighted freshness metrics

When the users access element e1 2 times more often than e2, we may consider that e1 is

twice as important as e2, because we can make the users see fresh elements twice as often by
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Figure 5.16: Solution of the freshness and age optimization problem of Example 5.5

maintaining e1 up-to-date. To capture this concept of “importance”, we may give different

“weights” wi’s to element ei’s and define the freshness of a database as follows:

Definition 5.4 (Weighted freshness and age) Let wi be the weight (or importance) of

element ei. The freshness and the age of a database S is defined as

F (S; t) =
1∑N

i=1wi

[
N∑
i=1

wiF (ei; t)

]

A(S; t) =
1∑N

i=1wi

[
N∑
i=1

wiA(ei; t)

]
✷

Note that when all wi’s are equal to 1, the above definition reduces to our previous

definition. Under this weighted definition, we can analyze the Poisson-process model using

a similar technique described in Section 5.5.4. We illustrate the result with the following

example.

Example 5.5 We maintain 6 elements in our local database, whose weights and change

frequencies are listed in the rows (a) and (b) of Table 5.6. In this example, there exist

two classes of elements, the elements with weight 1 (e1∗) and the elements with weight 2

(e2∗). Each class contains 3 elements (e∗1, e∗2, e∗3) with different change frequencies, and

we assume that we synchronize a total of 6 elements every day. Under these parameters, we

can analyze the freshness maximization problem, whose result is shown in Figure 5.16(a).

The horizontal axis of the graph represents the change frequency of an element, and the
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e11 e12 e13 e21 e22 e23
(a) weight (wi) 1 2
(b) change frequency (times/day) 1 2 3 1 2 3
(c) synchronization frequency (freshness) 0.78 0.76 0.00 1.28 1.56 1.62
(d) synchronization frequency (age) 0.76 0.88 0.94 0.99 1.17 1.26

Table 5.6: The optimal synchronization frequencies of Example 5.5

vertical axis shows the optimal synchronization frequency for the given change frequency.

The graph consists of two curves because the elements in different classes follow different

curves. The wi = 2 elements (e2∗) follow the outer curve, and the wi = 1 elements (e1∗)

follow the inner curve. For example, the optimal synchronization frequency if e11 is 0.78,

because its weight is 1 and its change frequency is once a day. We list the optimal synchro-

nization frequencies for all elements in row (c) of Table 5.6. From this result, we can clearly

see that we should visit an element more often when its weight is higher. For instance, the

synchronization frequency of e21 is 1.28, which is higher than 0.78 of e11. (Note that both

e21 and e11 change at the same frequency.)

However, note that the optimal synchronization frequency is not proportional to the

weight of an element. For example, the optimal synchronization frequency of e23 is infinitely

larger than that of e13! In fact, we can prove that the weight of an element determines the

scale of the optimal curve that the element follows. That is, the optimal curve that wi = 2

elements follow is exactly twice as large as the curve that wi = 1 elements follow. Math-

ematically, we can prove the following property of the optimal curve under any scenario:

When the weight of e1 is k times as large as that of e2, the optimal freshness curve that e1
follows is k times larger than the curve that e2 follows.

Similarly, we can analyze the weighted age metric for the example, and we show the

result in Figure 5.16(b). Again, we can see that we should visit an element more often when

its weight is higher, but not necessarily proportionally more often. In general, we can prove

the following property for age: When the weight of e1 is k times as large as that of e2, the

optimal age curve that e1 follows is
√
k times larger than the curve that e2 follows. ✷

5.7 Improvement from optimal policies

In Chapter 4, we reported how many pages change how often in Figure 4.2. In the figure,

the horizontal axis represents the average change interval of pages, and the vertical axis



108 CHAPTER 5. PAGE REFRESH POLICY

policy Freshness Age

Proportional 0.12 400 days

Uniform 0.57 5.6 days

Optimal 0.62 4.3 days

Table 5.7: Freshness and age prediction based on the real Web data

shows the fraction of the pages that changed at the given average interval. For instance, we

see that about 23% of pages changed more than once a day from the first bar of Figure 4.2.

From this data, we can estimate how much improvement we can get, if we adopt the

optimal allocation policy. For the estimation, we assume that we maintain 100 million

pages locally and that we synchronize all pages every month.6 Also based on Figure 4.2, we

assume that 23% of pages change every day, 15% of pages change every week, etc. For the

pages that did not change in 4 months, we assume that they change every year. While it is

a crude approximation, we believe we can get some idea on how effective different policies

are.

In Table 5.7, we show the predicted freshness and age for various resource-allocation

policies. To compute the numbers, we assumed the fixed-order policy (Item 3a in Sec-

tion 5.3) as the synchronization-order policy. We can clearly see that the optimal policy is

significantly better than any other policies. For instance, the freshness increases from 0.12

to 0.62 (500% increase!), if we use the optimal policy instead of the proportional policy.

Also, the age decreases by 23% from the uniform policy to the optimal policy. From these

numbers, we can also learn that we need to be very careful when we optimize the policy

based on the frequency of changes. For instance, the proportional policy, which people may

intuitively prefer, is significantly worse than any other policies: The age of the proportional

policy is 100 times worse than that of the optimal policy!

5.8 Related work

In general, we may consider the problem of this chapter as a replicated-data-maintenance

problem. A lot of work has been done to maintain replicated-data consistency [BG84,

ABGM90, BBC80, BGM95, dCR82, CKLlSM97, KB91, KB94, LLSG92, GL93, PL91, OW00].
6Many popular search engines report numbers similar to these.
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This body of work studies the tradeoff between consistency and read/write performance

[KB94, LLSG92, ABGM90, OW00] and tries to guarantee a certain type of consistency

[ABGM90, BGM95, BBC80]. For example, reference [YV00] tries to limit that the num-

ber of pending writes that have not been propagated to all replicas and proposes a new

distributed protocol. Reference [OW00] guarantees an interval bound on the values of

replicated data through the cooperation of the source data.

In most of the existing work, however, researchers have assumed a push model, where the

sources notify the replicated data sites of the updates. In the Web context this push model

is not very appropriate, because most of the Web site managers do not inform others of the

changes they made. We need to assume a poll model where updates are made independently

and autonomously at the sources.

Reference [CLW98] studies how to schedule a Web crawler to improve freshness. The

model used for Web pages is similar to the one used in this dissertation; however, the model

for the Web crawler and freshness are very different. In particular, the reference assumes

that the “importance” or the “weight” of a page is proportional to the change frequency of

the page. While this assumption makes the analysis simple, it also prevented the authors

from discovering the fundamental trend that we identified in this thesis. We believe the

result of this thesis is more general, because we study the impact of the change frequency

and the importance of a page separately. We also proposed an age metric, which was not

studied the the reference.

5.9 Conclusion

In this chapter we studied how a crawler should refresh Web pages to improve their freshness

and age. We presented a formal framework, which provides a theoretical foundation for this

problem, and we studied the effectiveness of various policies. In our study we identified a

potential pitfall (proportional synchronization), and proposed an optimal policy that can

improve freshness and age very significantly. Finally, we estimated potential improvement

from our policies based on the experimental data described in Chapter 4.

As more and more digital information becomes available on the Web, it will be in-

creasingly important to collect it effectively. A crawler simply cannot refresh all its data
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constantly, so it must be very careful in deciding what data to poll and check for fresh-

ness. The policies we have studied in this chapter can make a significant difference in the

“temporal quality” of the data that is collected.



Chapter 6

Change Frequency Estimation

6.1 Introduction

In order to implement the refresh policies in the previous chapter, a crawler needs to estimate

how often Web pages change, because Web pages are updated autonomously by independent

maintainers. For instance, popular news Web sites, such as CNN and NY Times, update

their contents whenever there are new developments, and many online stores update the

price/availability of their products depending on their inventory and on market conditions.

In these cases, the crawler usually does not know exactly when and how often the pages

change.

In this chapter we study how a crawler can estimate the change frequencies of Web

pages. While this study is motivated by the need of a Web crawler, we believe that our

results are very general and our techniques can be applied to other scenarios. For instance,

the following applications can use our estimation techniques to improve their effectiveness.

• Improving Web caching: A Web cache saves recently accessed Web pages, so that

the next access to a page can be served locally. Caching pages reduces the number of

remote accesses to minimize access delay and network bandwidth. Typically, a Web

cache uses an LRU (least recently used) page replacement policy, but it may improve

the cache hit ratio by estimating how often a page changes. For example, if a page

was cached a day ago and if the page changes every hour on average, the system may

safely discard that page, because the cached page is most probably obsolete.

• Improving the update policy of a data warehouse: A data warehouse maintains

111
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a local snapshot, called a materialized view, of underlying data sources, which are

often autonomous. This materialized view is usually updated during off-peak hours,

to minimize the impact on the underlying source data. As the size of the data grows,

however, it becomes more difficult to update the view within the limited time window.

If we can estimate how often an individual data item (e.g., a row in a table) changes,

we may selectively update only the items likely to have changed, and thus incorporate

more changes within the same amount of time.

• Data mining: In many cases, the frequency of change itself might be useful infor-

mation. For instance, when a person suddenly accesses his bank account very often,

it may signal fraud, and the bank may wish to take an appropriate action.

In this chapter, we study how we can effectively estimate how often a Web page (in

general, a data element) changes. We assume that we access an element repeatedly through

normal activities, such as a periodic crawling of Web pages or the users’ repeated access to

Web pages. From these repeated accesses, we detect changes to the element, and then we

estimate its change frequency.

We have motivated the usefulness of “estimating the frequency of change,” and how we

accomplish the task. However, there exist important challenges in estimating the frequency

of change, including the following:

1. Incomplete change history: Often, we do not have complete information on how

often and when an element changed. For instance, a Web crawler can tell if a page

has changed between accesses, but it cannot tell how many times the page changed.

Example 6.1 A Web crawler accessed a page on a daily basis for 10 days, and it

detected 6 changes. From this data, the crawler may naively conclude that its change

frequency is 6/10 = 0.6 times a day. But this estimate can be smaller than the actual

change frequency, because the page may have changed more than once between some

accesses. Then, what would be the fair estimate for the change frequency? How can

the crawler account for the missed changes? ✷

Previous work has mainly focused on how to estimate the change frequency given the

complete change history [TK98, Win72]. As far as we know, there has been no work

on how to estimate the frequency based on incomplete information.
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2. Irregular access interval: In certain applications, such as a Web cache, we cannot

control how often and when a data item is accessed. The access is entirely decided

by the user’s request pattern, so the access interval can be arbitrary. When we

have limited change history and when the access pattern is irregular, it becomes

very difficult to estimate the change frequency.

Example 6.2 In a Web cache, a user accessed a Web page 4 times, at day 1, day 2,

day 7 and day 10. In these accesses, the system detected changes at day 2 and day

7. Then what can the system conclude about its change frequency? Does the page

change every (10 days)/2 = 5 days on average? ✷

3. Difference in available information: Depending on the application, we may get

different levels of information for different data items. For instance, certain Web sites

tell us when a page was last-modified, while many Web sites do not provide this

information. Depending on the scenario, we may need different “estimators” for the

change frequency, to fully exploit the available information.

In this chapter we study how we can estimate the frequency of change when we have

incomplete change history of a data item. To that end, we first identify various issues and

place them into a taxonomy (Section 6.2). Then, for each branch in the taxonomy, we pro-

pose an “estimator” and show analytically how good the proposed estimator is (Sections 6.4

through 6.6). In summary, this chapter makes the following contributions:

• We identify the problem of estimating the frequency of change and we present a formal

framework to study the problem.

• We propose several estimators that measure the frequency of change much more effec-
tively than existing ones. For the scenario of Example 6.1, for instance, our estimator

will predict that the page changes 0.8 times per day (as opposed to the 0.6 we guessed

earlier), which reduces the “bias” by 33% on average.

• We present analytical and experimental results that show how precise/effective our

proposed estimators are.
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6.2 Taxonomy of issues

Before we start discussing how to estimate the change frequency of an element, we first need

to clarify what we mean by “change of an element.” What do we mean by an “element” and

what does “change” mean? To make our discussion concrete, we assume that an element is

a Web page and that the change is any modification to the page. However, note that the

technique that we develop is independent of this assumption. The element can be defined

as a whole Web site or a single row in a database table, etc. Also the change may be defined

as more than, say, a 30% modification to the page, or as updates to more than 3 columns

of the row. Regardless of the definition, we can apply our technique/analysis, as long as

we have a clear notion of the element and a precise mechanism to detect changes to the

element.

Given a particular definition of an element and change, we assume that we repeatedly

access an element to estimate how often the element changes. This access may be per-

formed at a regular interval or at random intervals. Also, we may acquire different levels

of information at each access. Based on how we access the element and what information

is available, we develop the following taxonomy.

1. How do we trace the history of an element? In this chapter we assume that we

repeatedly access an element, either actively or passively.

• Passive monitoring: We do not have any control over when and how often we

access an element. In a Web cache, for instance, Web pages are accessed only

when users access the page. In this case, the challenge is how to analyze the

given change history to best estimate its change frequency.

• Active monitoring: We actively monitor the changes of an element and can

control the access to the element. For instance, a crawler can decide how often

and when it will visit a particular page. When we can control the access, another

important question is how often we need to access a particular element to best

estimate its change frequency. For instance, if an element changes about once a

day, it might be unnecessary to access the element every minute, while it might

be insufficient to access it every month.

In addition to the access control, different applications may have different access

intervals.
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• Regular interval: In certain cases, especially for active monitoring, we may

access the element at a regular interval. Obviously, estimating the frequency of

change will be easier when the access interval is regular. In this case, (number

of detected changes)/(monitoring period) may give us a good estimation of the

change frequency.

• Random interval: Especially for passive monitoring, the access intervals might

be irregular. In this case, frequency estimation is more challenging.

2. What information do we have? Depending on the application, we may have

different levels of information regarding the changes of an element.

• Complete history of changes: We know exactly when and how many times

the element changed. In this case, estimating the change frequency is relatively

straightforward; it is well known that (number of changes)/(monitoring period)

gives a “good” estimation of the frequency of change [TK98, Win72]. In this

thesis, we do not study this case.

• Last date of change: We know when the element was last modified, but not

the complete change history. For instance, when we monitor a bank account

which records the last transaction date and its current balance, we can tell when

the account was last modified by looking at the transaction date.

• Existence of change: The element that we monitor may not provide any

history information and only give us its current status. In this case, we can com-

pute the “signature” of the element at each access and compare these signatures

between accesses. By comparing signatures, we can tell whether the element

changed or not. However, we cannot tell how many times or when the element

changed by this method.

In Section 6.4, we study how we can estimate the frequency of change, when we only

know whether the element changed or not. Then in Section 6.5, we study how we can

exploit the “last-modified date” to better estimate the frequency of change.

3. How do we use estimated frequency? Different applications may use the fre-

quency of change for different purposes.
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• Estimation of frequency: In data mining, for instance, we may want to study

the correlation between how often a person uses his credit card and how likely

it is that the person will default. In this case, it might be important to estimate

the frequency accurately.

• Categorization of frequency: We may only want to classify the elements

into several frequency categories. For example, a Web crawler may perform a

“small-scale” crawl every week, crawling only the pages that are updated very

often. Also, the crawler may perform a “complete” crawl every three months

to completely refresh all pages. In this case, the crawler may not be interested

in exactly how often a page changes. It may only want to classify pages into

two categories, the pages to visit every week and the pages to visit every three

months.

In Section 6.4 and 6.5, we study the problem of estimating the frequency of change, and

in Section 6.6, we study the problem of categorizing the frequency of change.

6.3 Preliminaries

In this section, we will review some of the basic concepts for the estimation of frequency,

to help readers understand our later discussion. A reader familiar with estimation theory

may skip this section.

6.3.1 Quality of estimator

In this thesis, again, we assume that an element, or a Web page, follows a Poisson process

based on the results in Chapter 4. A Poisson process has an associated parameter λ, which

is the average frequency that a change occurs. Note that it is also possible that the average

change frequency λ itself may change over time. In this chapter we primarily assume λ

does not change over time. That is, we adopt a stationary Poisson process model. Later

in Section 6.7, we also discuss possible options when the process is non-stationary. Also in

Section 6.8.1, we study how our proposed estimators perform, when the elements do not

necessarily follow a Poisson process.

The goal of this chapter is to estimate the frequency of change λ, from repeated accesses

to an element. To estimate the frequency, we need to summarize the observed change history,
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proability

(b)

(a)

λ
λ̂

Figure 6.1: Two possible distributions of the estimator λ̂

or samples, as a single number that corresponds to the frequency of change. In Example 6.1,

for instance, we summarized the six changes in ten visits as the change frequency of 6/10 =

0.6/day. We call this summarization procedure the estimator of the change frequency.

Clearly, there exist multiple ways to summarize the same observed data, which can lead

to different change frequencies. In this subsection, we will study how we can compare the

effectiveness of various estimators.

An estimator is often expressed as a function of the observed variables. For instance, let

X be the number of changes that we detected and T be the total access period. Then, we

may use λ̂ = X/T as the estimator of the change frequency λ as we did in Example 6.1. (We

use the notation “hat” to show that we want to measure the parameter underneath it.) Here,

note that X is a random variable, which is measured by sampling (or repeated accesses).

Therefore, the estimator λ̂ is also a random variable that follows a certain probability

distribution. In Figure 6.1, we show two possible distributions of λ̂. As we will see, the

distribution of λ̂ determines how effective the estimator λ̂ is.

1. Unbiasedness: Let us assume that the element changes at the average frequency

λ, which is shown at the bottom center of Figure 6.1. Intuitively we would like the

distribution of λ̂ to be centered around the value λ. Mathematically, λ̂ is said to be

unbiased, when the expected value of λ̂, E[λ̂], is equal to λ.

2. Efficiency: In Figure 6.1, it is clear that λ̂ may take a value other than λ, even if

E[λ̂] = λ. For any estimator, the estimated value might be different from the real

value λ, due to some statistical variation. Clearly, we want to keep the variation as

small as possible. We say that the estimator λ̂1 is more efficient than the estimator

λ̂2, if the distribution of λ̂1 has smaller variance than that of λ̂2. In Figure 6.1, for
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instance, the estimator with the distribution (a) is more efficient than the estimator

of (b).

3. Consistency: Intuitively, we expect that the value of λ̂ approaches λ, as we increase

the sample size. This convergence of λ̂ to λ can be expressed as follows:

Let λ̂n be the estimator with sample size n. Then λ̂n is said to be a consistent

estimator of λ if

lim
n→∞Pr{|λ̂n − λ| ≤ ε} = 1 for any positive ε

6.4 Estimation of frequency: existence of change

How can we estimate how often an element changes, when we only know whether the element

changed or not between our accesses? Intuitively, we may use X/T (X: the number of

detected changes, T : monitoring period) as the estimated frequency of change, as we did

in Example 6.1. This estimator has been used in most of the previous work that tried to

estimate the change frequency of Web pages [DFK99, WM99, WVS+99].

In Section 6.4.1 we first study how effective this naive estimator X/T is, by analyzing

its bias, consistency and efficiency. Then in Section 6.4.2, we will propose a new estimator,

which is less intuitive than X/T , but is much more effective.

6.4.1 Intuitive frequency estimator: X/T

To help the discussion, we first define some notation. We assume that we access the element

at a regular interval I and that we access the element n times. (Estimating the change

frequency for an irregular accesses is discussed later Section 6.4.3.) Also, we use Xi to

indicate whether the element changed or not in the ith access. More precisely,

Xi =


1 if the element changed in ith access,

0 otherwise.

Then, X is defined as the sum of all Xi’s, X =
∑n

i=1Xi, and represents the total number of

changes that we detected. We use T to refer to the total time elapsed during our n accesses.

Since we access the element every I time units, T = nI = n/f , where f(= 1/I) is the

frequency at which we access the element. We also assume that the changes of the element
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follow a Poisson process with rate λ. Then, we can define the frequency ratio r = λ/f , the

ratio of the change frequency to the access frequency. When r is large (λ� f), the element

changes more often than we access it, and when r is small (λ� f), we access the element

more often than it changes.

Note that our goal is to estimate λ, given Xi’s and T (= n/f). However, we may estimate

the frequency ratio r(= λ/f) first and estimate λ indirectly from r (by multiplying r by f).

In the rest of this subsection, we will assume that our estimator is the frequency ratio r̂,

where

r̂ =
λ̂

f
=
1
f

(
X

T

)
=
X

n

Note that we need to measure X through an experiment and then use the number X to

estimate r.

1. Is the estimator r̂ biased? As we argued in Example 6.1, the estimated r̂ will be

smaller than the actual r, because the detected number of changes, X, will be smaller

than the actual number of changes. Furthermore, this bias will grow larger as the

element changes more often than we access it (i.e, as r = λ/f grows larger), because

we miss more changes when the element changes more often.

We can verify this intuition by computing the expected value of r̂, E[r̂], and comparing

it with the actual r. To compute E[r̂], we first compute the probability q that the

element does not change between accesses [TK98].

Lemma 6.1 Let q be the probability that the element does not change during time

interval I (= 1/f). Then q = Pr{X(t+ I)−X(t) = 0} = λ0e−λI

0!
= e−λI =

e−λ/f = e−r
✷

By definition, Xi is equal to zero when the element does not change between the

(i− 1)th and the ith access. Because the change of the element is a Poisson process,
the changes at different accesses are independent, and each Xi takes the value

Xi =


1 with probability 1− q
0 with probability q (= e−r)

independently from other Xi’s. Then from the definition of X, X is equal to m, when
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Figure 6.2: Bias of the intuitive estimator
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Figure 6.3: Statistical variation of r̂ = X/n
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m Xi’s are equal to 1: Pr{X = m} = (nm)(1− q)mqn−m. Therefore,

E[r̂] =
n∑

m=0

m

n
Pr
{
r̂ =

m

n

}
=

n∑
m=0

m

n
Pr{X = m} = 1− e−r

Note that for r̂ to be unbiased, E[r̂] should be always equal to r. Clearly, 1−e−r is not

r, and the estimator r̂ is biased. In Figure 6.2, we visualize the bias of r̂, by plotting

E[r̂]/r over r. The horizontal axis is logarithmic because it shows the values more

clearly when r is small and large. (In the rest of this chapter, we use a logarithmic

scale, whenever convenient.) If r̂ is unbiased (E[r̂] = r), the graph E[r̂]/r would be

equal to 1 for any r (the dotted line), but because the estimated r̂ is smaller than the

actual r, E[r̂]/r is always less than 1. From the graph, it is clear that E[r̂] is about

the same as r (E[r̂]/r ≈ 1) when r (= λ/f) is small (i.e., when the element changes

less often than we access it), but E[r̂] is significantly smaller than r (E[r̂]/r � 1),

when r is large. Intuitively, this is because we miss more changes as we access the

element less often (r = λ/f � 1). From the graph, we can see that the bias is smaller

than 10% (E[r̂]/r > 0.9) when the frequency ratio r is smaller than 0.21. That is, we

should access the element 1/0.21 ≈ 5 times as frequently as it changes, in order to get
less than 10% bias.

2. Is the estimator r̂ consistent? The estimator r̂ = X/n is not consistent, because

the bias of r̂ does not decrease even if we increase the sample size n; the difference

between r and E[r̂] (E[r̂]/r = (1−e−r)/r) remains the same independently of the size
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of n.

This result coincides with our intuition; r̂ is biased because we miss some changes.

Even if we access the element for a longer period, we still miss a certain fraction of

changes, if we access the element at the same frequency.

3. How efficient is the estimator? To evaluate the efficiency of r̂, let us compute its

variance.

V [r̂] = E[r̂2]−E[r̂]2 = e−r(1− e−r)/n

Then, the standard deviation of r̂ is σ =
√
V [r̂] =

√
e−r(1− e−r)/n

Remember that the standard deviation tells us how clustered the distribution of r̂ is

around E[r̂]; Even if E[r̂] ≈ r, the estimator r̂ may take a value other than r, because
our sampling process (or access to the element) inherently induces some statistical

variation.

From the basic statistics theory, we know that r̂ takes a value in the interval (E[r̂]−
2σ,E[r̂]+2σ) with 95% probability, assuming r̂ follows the normal distribution [WMS97].

In most applications, we want to make this confidence interval (whose length is pro-

portional to σ) small compared to the actual frequency ratio r. Therefore, we want

to reduce the ratio of the confidence interval to the frequency ratio, σ/r, as much as

we can. In Figure 6.3, we show how this ratio changes over the sample size n by plot-

ting its graph. Clearly, the statistical variation σ/r decreases as n increases; While

we cannot decrease the bias of r̂ by increasing the sample size, we can minimize the

statistical variation (or the confidence interval) with more samples.

Also note that when r is small, we need a larger sample size n to get the same variation

σ/r. For example, to make σ/r = 0.5, n should be 1 when r = 1, while n should be 9

when r = 0.3. We explain what this result implies by the following example.

Example 6.3 A crawler wants to estimate the change frequency of a Web page by

visiting the page 10 times, and it needs to decide on the access frequency.

Intuitively, the crawler should not visit the page too slowly, because the crawler misses

many changes and the estimated change frequency is biased. But at the same time,

the crawler should not visit the page too often, because the statistical variation σ/r

can be large and the estimated change frequency may be inaccurate.
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For example, let us assume that the actual change frequency of the page is, say, once

every week (λ = 1/week), and the crawler accesses the page once every two weeks

(f = 1/2 weeks). Then the bias of the estimated change frequency is 57%! (When

r = 2, E[r̂]/r ≈ 0.43.) On the other hand, if the crawler revisits the page every day
(f = 1/day), then the statistical variation is large and the 95% confidence interval

is 1.5 times as large as the actual frequency! (When r = 1/7, the 95% confidence

interval, 2σ/r is 1.5.) In the next subsection, we will try to identify the best revisit

frequency that estimates the change frequency most accurately. ✷

6.4.2 Improved estimator: − log(X̄/n)

While the estimator X/T is known to be quite effective when we have a complete change

history of an element [TK98, Win72], our analysis showed that it is less than desirable

when we have an incomplete change history. The estimator is biased and we cannot reduce

the bias by increasing the sample size. In this subsection, we propose another estimator

− log(X̄/n), which has more desirable properties.
Intuitively, we can derive our new estimator from Lemma 6.1.1 In the lemma, we

computed the probability q that the element does not change at each access: q = e−λ/f =

e−r. By rearranging this equation, we get

r = − log q

Note that we can measure the probability q in the above equation by an experiment; For

example, if we accessed an element 100 times, and if the element did not change in 70

accesses, we can reasonably infer that the probability q is 70/100. Then from the equation,

we can estimate that the frequency ratio r = − log(70/100) = 0.36. Note that this estimated

frequency ratio 0.36 is slightly larger than the 0.30 (= 30/100) that the previous X/n

estimates. This increase is because our new estimator accounts for the changes that we

may have missed between some accesses. Also note that we can estimate the value of q

more accurately by increasing the sample size. Therefore, we can estimate r more precisely

and decrease the bias by increasing the sample size! (We verify this claim later.) This

property has a significant implication in practice. If we use the estimator X/n, we can

1We can derive the new estimator using the method of maximum likelihood estimator [WMS97], but we
show a more intuitive derivation here.
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reduce the bias only by adjusting the access frequency f (or by adjusting r), which might

not be possible for certain applications. However, if we use the estimator − log q, we can
reduce the bias to the desirable level, simply by increasing the number of accesses to the

element. For this reason, we believe our new estimator can be useful for a wider range of

applications than X/n is.

To define the new estimator more formally, let X̄ be the number of accesses where the

element did not change (X̄ = n−X). Then, our new estimator is

λ̂/f = − log(X̄/n) or r̂ = − log(X̄/n)

While intuitively attractive, the estimator − log(X̄/n) has a mathematical singularity.
When the element changes in all our accesses (i.e., X̄ = 0), the estimator produces infinity,

because − log(0/n) = ∞. This singularity makes the estimator technically unappealing,
because the expected value of the estimator, E[r̂], is now infinity due to this singularity.

(In other words, r̂ is biased to infinity!)

Intuitively, we can avoid the singularity if we increase X̄ slightly when X̄ = 0, so that

the logarithmic function does not get 0 even when X̄ = 0. In general, we may avoid the

singularity if we add small numbers a and b (> 0) to the numerator and the denominator of

the estimator, so that the estimator is − log(X̄+a
n+b ). Note that when X̄ = 0, − log(X̄+a

n+b ) =

− log( a
n+b) �=∞ if a > 0.

Then what value should we use for a and b? To answer this question, we use the fact

that we want the expected value, E[r̂], to be as close to r as possible. As we will show

shortly, the expected value of r̂ is

E[r̂] = E
[
− log

(
X̄ + a
n+ b

)]
= −

n∑
i=0

log
(
i+ a
n+ b

)(
n

i

)
(1− e−r)n−i(e−r)i

which can be approximated to

E[r̂] ≈
[
− log

(
n+ a
n+ b

)]
+
[
n log

(
n+ a

n− 1 + b
)]
r + . . .

by Taylor expansion [Tho69]. Note that we can make the above equation to E[r̂] ≈ r+ . . . ,
by setting the constant term − log(n+a

n+b ) = 0, and the factor of the r term, n log( n+a
n−1+b) = 1.

From the equation − log(n+a
n+b ) = 0, we get a = b, and from n log( n+a

n−1+a ) = 1, we get the
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Figure 6.4: The a values which satisfy the equation n log( n+a
n−1+a ) = 1

graph of Figure 6.4. In the graph, the horizontal axis shows the value of n and the vertical

axis shows the value of a which satisfies the equation log( n+a
n−1+a) = 1 for a given n. We can

see that the value of a converges to 0.5 as n increases and that a is close to 0.5 even when n

is small. Therefore, we can conclude that we can minimize the bias by setting a = b = 0.5.

In summary, we can avoid this singularity by adding a small constant, 0.5, to X̄ and n:

r̂ = − log
(
X̄ + 0.5
n+ 0.5

)

In the rest of this subsection, we will study the properties of this modified estimator r̂ =

− log( X̄+0.5
n+0.5 )

1. Is the estimator unbiased? To see whether the estimator is biased, let us compute

the expected value of r̂. From the definition of X̄ ,

Pr{X̄ = i} = Pr{X = n− i} =
(
n

i

)
(1− q)n−iqi

Then,

E[r̂] = E
[
− log

(
X̄ + 0.5
n+ 0.5

)]
= −

n∑
i=0

log
(
i+ 0.5
n+ 0.5

)(
n

i

)
(1− e−r)n−i(e−r)i (6.1)

We cannot obtain a closed-form expression in this case. Thus we study its property

by numerically evaluating the expression and plotting the results. In Figure 6.5 we

show the graph of E[r̂]/r over r for several n values. For comparison, we also show

the graph of the previous estimator X/n, in the figure.
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Figure 6.5: Bias of the estimator − log(X̄+0.5
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Figure 6.6: The region where the estimator
− log( X̄+0.5

n+0.5 ) is less than 10% biased

From the graph, we can see that our new estimator − log(X̄+0.5
n+0.5 ) is much better than

X/n. While X/n is heavily biased for most r, − log(X̄+0.5
n+0.5 ) is not heavily biased until

r > 1 for n ≥ 3. Clearly, the new estimator becomes less biased as we increase the

sample size n. For instance, when n = 3, r̂ shows bias if r > 1, but when n = 50, it

is not heavily biased until r > 3.

Given that the estimator becomes less biased as the sample size grows, we may ask

how large the sample size should be in order to get an unbiased result. For instance,

what sample size gives us less than 10% bias? Mathematically, this can be formulated

as follows: Find the region of n and r, where

∣∣∣∣E[r̂]− rr

∣∣∣∣ ≤ 0.1
is satisfied. From the formula of Equation 6.1, we can numerically compute the region

of n and r where the above condition is met, and we show the result in Figure 6.6. In

the figure, the gray area is where the bias is less than 10%. Note that the unbiased

region grows larger as we increase the sample size n. When n = 20, r̂ is unbiased

when r < 3.5, but when n = 80, r̂ is unbiased when r < 5. We illustrate how we can

use these graphs to select the revisit frequency when we discuss the efficiency of the

new estimator.

2. How efficient is the estimator? As we discussed in Section 6.4.1, r̂ may take

a value other than r even if E[r̂] ≈ r, and the value of σ/r tells us how large this
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statistical variation can be.

To plot the σ/r graph of − log(X̄+0.5
n+0.5 ), we first compute the variance of r̂

V [r̂] = E[r̂2]−E[r̂]2

=
n∑

i=0

(
log
(
i+ 0.5
n+ 0.5

))2(n
i

)
(e−r)i(1− e−r)n−i

−
(

n∑
i=0

log
(
i+ 0.5
n+ 0.5

)(
n

i

)
(e−r)i(1− e−r)n−i

)2

(6.2)

From this formula, we can numerically compute σ/r =
√
V [r̂]/r for various r and n

values and we show the result in Figure 6.7. As expected, the statistical variation σ/r

gets smaller as the sample size n increases. For instance, σ/r is 0.4 for r = 1.5 when

n = 10, but σ/r is 0.2 for the same r value when n = 40.

Also note that the statistical variation σ/r takes its minimum at r ≈ 1.5 within the
unbiased region of r. For instance, when n = 20, the estimator is practically unbiased

when r < 2 (the bias is less than 0.1% in this region) and within this range, σ/r is

minimum when r ≈ 1.35. For other values of n, we can similarly see that σ/r takes

its minimum when r ≈ 1.5. We can use this result to decide on the revisit frequency
for an element.

Example 6.4 A crawler wants to estimate the change frequency of a Web page by

visiting it 10 times. While the crawler does not know exactly how often that particular

page changes, say many pages within the same domain are known to change roughly

once every week. Based on this information, the crawler wants to decide how often to

access that page.

Because the statistical variation (thus the confidence interval) is smallest when r ≈
1.5 and because the current guess for the change frequency is once every week, the

optimal revisit frequency for that page is 7 days × 1.5 ≈ once every 10 days. Under

these parameters, the estimated change frequency is less than 0.3% biased and the

estimated frequency may be different from the actual frequency by up to 35% with

75% probability. We believe that this confidence interval will be more than adequate

for most crawling and caching applications.

In certain cases, however, the crawler may learn that its initial guess for the change
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Figure 6.8: The graphs of E[r̂] and V [r̂] over
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frequency may be quite different from the actual change frequency, and the crawler

may want to adjust the access frequency in the subsequent visits. We briefly discuss

this adaptive policy later. ✷

3. Is the estimator consistent? We can prove that the estimator r̂ is consistent,

by showing that lim
n→∞E[r̂] = r and lim

n→∞V [r̂] = 0 for any r [WMS97]. Although it

is not easy to formally prove, we believe our estimator r̂ is indeed consistent. In

Figure 6.5, E[r̂]/r gets close to 1 as n → ∞ for any r, and in Figure 6.7, σ/r (thus

V [r̂]) approaches zero as n → ∞ for any r. As an empirical evidence, we show the

graphs of E[r̂] and V [r̂] over n when r = 1 in Figure 6.8. E[r̂] clearly approaches 1

and V [r̂] approaches zero.

6.4.3 Irregular access interval

When we access an element at irregular intervals, it becomes more complicated to estimate

its change frequency. For example, assume that we detected a change when we accessed an

element after 1 hour and we detected another change when we accessed the element after

10 hours. While all changes are considered equal when we access an element at regular

intervals, in this case the first change “carries more information” than the second, because

if the element changes more than once every hour, we will definitely detect a change when

we accessed the element after 10 hours.

In order to obtain an estimator for the irregular case, we can use a technique, called

maximum likelihood estimator [WMS97]. Informally, the maximum likelihood estimator
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: Change detected
: Element accessed6h 4h 3h 7h

(= tc1) (= tu1) (= tc2) (= tu2)

Figure 6.9: An example of irregular accesses

computes which λ value has the highest probability of producing the observed set of events,

and use this value as the estimated λ value. Using this method for the irregular access case,

we obtain (derivation not given here) the following equation:

m∑
i=1

tci
eλ tci − 1 =

n−m∑
j=1

tuj (6.3)

Here, tci represents the interval in which we detected the ith change, and tuj represents the

jth interval in which we did not detect a change. Also, m represents the total number of

changes we detected, from n accesses. Note that all variables in Equation 6.3 (except λ)

can be measured by an experiment. Therefore, we can compute the estimated frequency

by solving this equation for λ. Also note that all access intervals, tci’s and tuj ’s, take part

in the equation. It is because depending on the access interval, the detected change or

non-change carries different levels of information. We illustrate how we can use the above

estimator by the following example.

Example 6.5 We accessed an element 4 times in 20 hours (Figure 6.9), in which we de-

tected 2 changes (the first and the third accesses). Therefore, the two changed intervals are

tc1 = 6h, tc2 = 3h and the two unchanged intervals are tu1 = 4h, tu2 = 7h. Then by solving

Equation 6.3 using these numbers, we can estimate that λ = 2.67 changes/20 hours. Note

that the estimated λ is slightly larger than 2 changes/20 hours, which is what we actually

observed. This result is because the estimator takes “missed” changes into account. ✷

In this thesis we do not formally analyze the bias and the efficiency of the above estimator,

because the analysis requires additional assumption on how we access the element. However,

we believe the proposed estimator is “good” for three reasons:

1. The estimated λ has the highest probability of generating the observed changes.

2. When the access to the element follows a Poisson process, the estimator is consistent.

That is, as we access the element more, the estimated λ converges to the actual λ.
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3. When the access interval is always the same, the estimator reduces to the one in

Section 6.4.2.

6.5 Estimation of frequency: last date of change

When the last-modification date of an element is available, how can we use it to estimate

change frequency? For example, assume that a page changed 10 hours before our first ac-

cess and 20 hours before our second access. Then what will be a fair guess for its change

frequency? Would it be once every 15 hours? Note that in this scenario we cannot ap-

ply standard statistical techniques (e.g., the maximal-likelihood estimator), because the

observed last-modified dates might be correlated: If the page did not change between two

accesses, the last-modification date in the first access would be the same as the modification

date in the second access. In this section, we propose a new estimator which can use the

last-modified date for frequency estimation.

6.5.1 Initial estimator

The final estimator that we propose is relatively complex, so we obtain the estimator step

by step, instead of presenting the estimator in its final form.

We can derive the initial version of our estimator based on the following well-known

lemma [WMS97]:

Lemma 6.2 Let T be the time to the previous event in a Poisson process with rate λ. Then

the expected value of T is E[T ] = 1/λ ✷

That is, in a Poisson process the expected time to the last change is 1/λ. Therefore, if we

define Ti as the time from the last change at the ith access, E[Ti] is equal to 1/λ. When we

accessed the element n times, the sum of all Ti’s, T =
∑n

i=1 Ti, is E[T ] =
∑n

i=1E[Ti] = n/λ.

From this equation, we suspect that if we use n/T as our estimator, we may get an unbiased

estimator E[n/T ] = λ. Note that T in this equation is a number that needs to be measured

by repeated accesses.

While intuitively appealing, this estimator has a serious problem because the element

may not change between some accesses. In Figure 6.10, for example, the element is accessed

5 times but it changed only twice. If we apply the above estimator naively to this example, n

will be 5 and T will be T1+· · ·+T5. Therefore, this naive estimator practically considers that
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Figure 6.10: Problems with the estimator based on last modified date

Init()
N = 0; /* number of accesses */
X = 0; /* number of changes detected */
T = 0; /* sum of time to change */

Update(Ti, Ii)
N = N + 1;
/* Has the element changed? */
If (Ti < Ii) then

/* The element has changed. */
X = X + 1;
T = T + Ti;

else
/* The element has not changed */
T = T + Ii;

Estimate()
return X/T;

Figure 6.11: The estimator using last-modified dates

the element changed 5 times with the last modified dates of T1, T2, . . . , T5. This estimation

clearly does not match with the actual changes of the element, and thus leads to bias.2

Intuitively, we may get a better result if we divide the actual number of changes, 2, by the

sum of T2 and T5, the final last-modified dates for the two changes. Based on this intuition,

we modify the naive estimator to the one shown in Figure 6.11.

The new estimator consists of three functions, Init(), Update() and Estimate(), and it

maintains three global variables N, X, and T. Informally, N represents the number of accesses

to the element, X represents the number of detected changes, and T represents the sum of

2We can verify the bias by computing E[n/T ] when λ � f .
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the time to the previous change at each access. (We do not use the variable N in the current

version of the estimator, but we will need it later.) Initially, the Init() function is called to

set all variables to zero. Then whenever the element is accessed, the Update() function is

called, which increases N by one and updates X and T values based on the detected change.

The argument Ti to Update() is the time to the previous change in the ith access and the

argument Ii is the interval between the accesses. If the element has changed between the

(i−1)th access and the ith access, Ti will be smaller than the access interval Ii. Note that
the Update() function increases X by one, only when the element has changed (i.e., when Ti

< Ii). Also note that the function increases T by Ii, not by Ti, when the element has not

changed. By updating X and T in this way, this algorithm implements the estimator that we

intend. Also note that the estimator of Figure 6.11 predicts the change frequency λ directly.

In contrast, the estimator of Section 6.4 predicts the change frequency by estimating the

frequency ratio r.

6.5.2 Bias-reduced estimator

In this section, we analyze the bias of the estimator described in Figure 6.11. This analysis

will show that the estimator has significant bias when N is small. By studying this bias care-

fully, we will then propose an improved version of the estimator that practically eliminates

the bias.

For our analysis, we assume that we access the element at a regular interval I(= 1/f),

and we compute the bias of the frequency ratio r̂ = λ̂/f , where λ̂ is the estimator described

in Figure 6.11. This assumption makes our the analysis manageable and it also reveals the

the core problem of the estimator. While the analysis is based on regular access cases, we

emphasize that we can still use our final estimator when access is irregular.

The following lemma gives us the basic formula for the analysis of the bias.

Lemma 6.3 The bias of the estimator r̂ = λ̂/f (λ̂ is the estimator of Figure 6.11) is:

E[r̂]
r

=
n∑

k=0

[
Pr{X = k}

r

∫ nI

(n−k)I

(
k

ft

)
Pr{T = t | X = k} dt

]
(6.4)

Here, Pr{X = k} is the probability that the variable X takes a value k, and Pr{T = t | X =

k} is the probability that the variable T takes a value t when X = k. We assume we access

the element n times. ✷
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Figure 6.13: Bias of the estimator with the
new Estimate() function

Proof The proof is straightforward. We can compute the expected value by summing all

possible X
T values multiplied by their probabilities. In the proof of Theorem 6.1, we will

show how we can compute Pr{X = k} and Pr{T = t | X = k}. �

For our later discussion, it is important to understand that each term in the summation

of Equation 6.4 corresponds to the case when X = k. Since X may take 0, 1, . . . , n, we are

considering all possible X values by varying k from 0 to n.

In Figure 6.12, we show the bias of the estimator by plotting the graph of E[r̂]/r. We

computed this graph analytically3 and we verified its correctness by simulations. Remember

that E[r̂] = r (or E[r̂]/r = 1) when the estimator is unbiased (the dotted line). The solid

line shows the actual graphs of the estimator. From the graph, we can see that the estimator

has significant bias when n is small, while the bias decreases as n increases. For instance,

when n = 2, the estimated r is twice as large as the actual r (E[r̂]/r ≈ 2) for large r values.
To study the bias more carefully, we compute the closed form of the bias in the following

theorem. This theorem will give us an important idea on how we can eliminate the bias.

Theorem 6.1 When r → ∞, the only remaining term in the summation of Equation 6.4

is when k = n, and E[r̂]/r becomes n
n−1 .

lim
r→∞

E[r̂]
r

= lim
r→∞

Pr{X = n}
r

∫ nI

0

(
n

ft

)
Pr{T = t | X = n} dt = n

n− 1

Also, when r → 0, the only remaining term in the equation is when k = 1, and E[r̂]/r

3We used the analytical forms of Pr{X = k} and Pr{T = t | X = k}, which are computed in the proof
of Theorem 6.1.
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becomes n log( n
n−1).

lim
r→0

E[r̂]
r

= lim
r→0

Pr{X = 1}
r

∫ nI

(n−1)I

(
1
ft

)
Pr{T = t | X = 1} dt = n log

(
n

n− 1
)

✷

Proof We first show how we can compute Pr{X = k} and Pr{T = t | X = k}. The

variable X is equal to k when the element changed in k accesses. Since the element may

change at each access with probability 1− e−r (r = λ/f , r: frequency ratio),

Pr{X = k} =
(
n

k

)
(1− e−r)k(e−r)n−k

Now we compute the probability that T = t (0 ≤ t ≤ kI) when X = k. If we use ti to

represent the time added to T at the ith access, T can be expressed as

T =
n∑

i=1

ti

Since the element did not change in (n− k) accesses when X = k, we added (n− k) times
of I to T . Then

T = (n− k)I +
k∑

i=1

tci

where ci is the ith access in which the element changed. Without losing generality, we can

assume that the element changed only in the first k accesses. Then

T = (n− k)I +
k∑

i=1

ti (6.5)

In those changed accesses, the probability that ti = t is

Pr{ti = t} =



λe−λt

1− e−r
if 0 ≤ t ≤ I

0 otherwise
(6.6)

because the element follows a Poisson process. From Equations 6.5 and 6.6, we can compute

the Pr{T = t | X = k} by repeatedly applying the methods of transformations [WMS97].
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For example, when k = 3

Pr{T = (n− k)I + t | X = k} =




(λt)2λe−λt

2(1 − e−r)3
for 0 ≤ t < I

[6λt− 2(λt)2 − 3] λe−λt

2(1 − e−r)3
for I ≤ t < 2I

(λt− 3)2λe−λt

2(1 − e−r)3
for 2I ≤ t < 3I

0 otherwise

Now we study the limit values of Equation 6.4. When r →∞,

lim
r→∞

Pr{X = k}
r

=


0 if k = 0, 1, . . . , n− 1
1 if k = n

Also when r → 0,
lim
r→0

Pr{X = k}
r

=


n if k = 1

0 if k = 2, . . . , n

Then lim
r→∞

E[r̂]
r

= lim
r→∞

n∑
k=0

(
Pr{X = k}

r

∫ nI

(n−k)I

(
k

ft

)
Pr{T = t | X = k} dt

)

= lim
r→∞

∫ nI

0

(
n

ft

)
Pr{T = t | X = n} dt

= lim
r→∞

∫ nI

0

(
n

ft

)
(λt)n−1λe−λt

(n− 1)!(1 − e−r)n
dt

=
n

n− 1

lim
r→0

E[r̂]
r

= lim
r→0

n∑
k=0

(
Pr{X = k}

r

∫ nI

(n−k)I

(
k

ft

)
Pr{T = t | X = k} dt

)

= n lim
r→0

∫ nI

(n−1)I

(
1
ft

)
Pr{T = t | X = 1} dt

= n lim
r→0

∫ nI

(n−1)I

(
1
ft

)
e(n−1)Iλe−λt

1− e−r
dt

= n log
(

n

n− 1
)

�
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Estimate()
X’ = (X-1) - X/(N*log(1-X/N));
return X’/T;

Figure 6.14: New Estimate() function that reduces the bias

Informally, we may explain the meaning of the theorem as follows:

When r is very large (i.e., when the element changes much more often than we

access it), X will be n with high probability, and the bias of the estimator is
n

n−1 . When r is very small (i.e., when we access the element much more often

than it changes), X will be either 0 or 1 with high probability, and the bias is

n log(n/(n− 1)) when X = 1.

We can use this result to design an estimator that eliminates the bias. Assume that

X = n after n accesses. Then it strongly indicates that r is very large, in which case the

bias is n
n−1 . To avoid this bias, we may divide the original estimator X/T by n

n−1 and use
X
T /

n
n−1 =

n−1
T as our new estimator in this case. That is, when X = n we may want to use

(X − 1)/T as our estimator, instead of X/T . Also, assume that X = 1 after n accesses.

Then it strongly indicates that r is very small, in which case the bias is n log(n/(n − 1)).
To avoid this bias, we may use

(
X
T

)
/ n log(n/(n − 1)) = 1

T
X

n log(n/(n−X)) as our estimator

when X = 1. In general, if we use the estimator X′/T where

X ′ = (X − 1)− X

n log(1−X/n)

we can avoid the bias both when X = n and X = 1: X ′ = n − 1 when X = n, and

X ′ = 1
n log(n/(n−1)) when X = 1.4

In Figure 6.14, we show a new Estimate() function that incorporates this idea. The

new function first computes X ′ and uses this value to predict λ.

To show that our new estimator is practically unbiased, we plot the graph of E[r̂]/r for

the new Estimate() function in Figure 6.13. The axes in the graph are the same as in

Figure 6.12. Clearly, the estimator is practically unbiased. Even when n = 2, E[r̂]/r is very

close to 1 (the bias is less than 2% for any r value.). We show the graph only for n = 2,
4The function (X − 1) − X/(n log(1 − X/n)) is not defined when X = 0 and X = n. However, we can

use limX→0[(X − 1) − X/(n log(1 − X/n))] = 0 and limX→n[(X − 1) − X/(n log(1 − X/n))] = n − 1 as its
value when X = 0 and X = n, respectively. That is, we assume X′ = 0 when X = 0, and X′ = n − 1 when
X = n.
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Figure 6.15: Statistical variation of the new estimator over r

because the graphs for other n values essentially overlap with that of n = 2.

While we derived the new Estimate() based on the analysis of regular access cases,

note that the new Estimate() function does not require that access be regular. In fact,

through multiple simulations, we have experimentally verified that the new function still

gives negligible bias even when access is irregular. We illustrate the usage of this new

estimator through the following example.

Example 6.6 A crawler wants to estimate the change frequency of a page by visiting it 5

times. However, the crawler cannot access the page more than once every month, because

the site administrator does not allow more frequent crawls. Fortunately, the site provides

the last modified date whenever the crawler accesses the page.

To show the improvement, let us assume that the page changes, say, once every week

and we crawl the page once every month. Then, without the last modified date, the bias is

43% on average (E[r̂]/r ≈ 0.57), while we can practically eliminate the bias when we use

the last modified date. (The bias is less than 0.1%.) ✷

Finally in Figure 6.15, we show the statistical variation σ/r of the new estimator, for

various n. The horizontal axis in the graph is the frequency ratio r, and the vertical axis is

the statistical variation σ/r. We can see that as n increases, the variation (or the standard

deviation) gets smaller.

6.6 Categorization of frequency: Bayesian inference

We have studied how to estimate the change frequency given its change history. But for

certain applications, we may only want to categorize elements into several classes based on

their change frequencies.
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Example 6.7 A crawler completely recrawls the web once every month and partially up-

dates a small subset of the pages once every week. Therefore, the crawler does not par-

ticularly care whether an element changes every week or every 10 days, but it is mainly

interested in whether it needs to crawl a page either every week or every month. That is,

it only wants to classify pages into two categories based on their change history. ✷

For this example, we may still use the estimators of previous sections and classify pages

by some threshold frequency. For example, we may classify a page into the every month

category if its estimated frequency is lower than once every 15 days, and otherwise categorize

the page into the every week category. In this section, however, we will study an alternative

approach, which is based on the Bayesian decision theory. While the machinery that we

use in this section has been long used in the statistics community, it has not been applied

to the incomplete change history case. After a brief description of the estimator, we will

study the effectiveness of this method and the implications when the change histories are

incomplete.

To help our discussion, let us assume that we want to categorize a web page (p1) into

two classes, the pages that change every week (CW ) and the pages that change every month

(CM ). To trace which category p1 belongs to, we maintain two probabilities P{p1∈CW}
(the probability that p1 belongs to CW ) and P{p1∈CM} (the probability that p1 belongs to
CM ). As we access p1 and detect changes, we update these two probabilities based on the

detected changes. Then at each point of time, if P{p1∈CW} > P{p1∈CM}, we consider p1
belongs to CW , and otherwise we consider p1 belongs to CM . (While we use two categories

in our discussion, the technique can be generalized to more than two categories.)

Initially we do not have any information on how often p1 changes, so we start with fair

values P{p1∈CW} = 0.5 and P{p1∈CM} = 0.5. Now let us assume we first accessed p1 after

5 days and we learned that p1 had changed. Then how should we update P{p1∈CW} and
P{p1∈CM}? Intuitively, we need to increase P{p1∈CW} and decrease P{p1∈CM}, because
p1 had changed in less than a week. But how much should we increase P{p1∈CW}? We can
use the Bayesian theorem to answer this question. Mathematically, we want to reevaluate

P{p1∈CW} and P{p1∈CM} given the event E, where E represents the change of p1. That

is, we want to compute P{p1∈ CW |E} and P{p1∈ CM |E}. According to the Bayesian
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theorem,

P{p1∈CW |E} = P{(p1∈CW ) ∧E}
P{E} =

P{(p1∈CW ) ∧E}
P{E ∧ (p1∈CW )}+ P{E ∧ (p1∈CM )}

=
P{E | p1∈CW}P{p1∈CW}

P{E | p1∈CW }P{p1∈CW}+ P{E | p1∈CM}P{p1∈CM} (6.7)

In the equation, we can compute P{E | p1∈CW} (the probability that p1 changes in 5 days,
when its change frequency is a week) and P{E | p1∈CM} (the probability that p1 changes
in 5 days, when its change frequency is a month) based on the Poisson process assumption.

Also we previously assumed that P{p1∈CW} = P{p1∈CM} = 0.5. Then,

P{p1∈CW |E} = (1− e−5/7)0.5
(1− e−5/7)0.5 + (1− e−5/30)0.5

≈ 0.77

P{p1∈CM |E} = (1− e−5/30)0.5
(1− e−5/7)0.5 + (1− e−5/30)0.5

≈ 0.23

That is, p1 now belongs to CW with probability 0.77 and p1 belongs to CM with probability

0.23! Note that these new probabilities, 0.77 and 0.23, coincide with our intuition. P{p1∈
CW } has indeed increased and P{p1∈CM} has indeed decreased.

For the next access, we can repeat the above process. If we detect another change after

5 days, we can update P{p1∈CW |E} and P{p1∈CM |E} by using Equation 6.7, but now
with P{p1∈CW} = 0.77 and P{p1∈CM} = 0.23. After this step, P{p1∈CW} increases to
0.92 and P{p1∈CM} becomes 0.08.

Note that we do not need to set an arbitrary threshold to categorize elements under

this estimator. If we want to use the previous estimators in Section 6.4, we need to set a

threshold to classify pages, which can be quite arbitrary. By using the Bayesian estimator,

we can avoid setting this arbitrary threshold, because the estimator itself naturally classifies

pages.

In Figure 6.16 we show how accurate the Bayesian estimator is. In the graph, we

show the probability that a page is classified into CM when its change frequency is λ (the

horizontal axis) for various n values. We obtained the graph analytically assuming that we

access the page every 10 days. From the graph we can see that the estimator classifies the

page quite accurately. For instance, when λ ≤ 1
month the estimator places the page in CM

with more than 80% probability for n = 3. Also, when λ ≥ 1
week it places the page in CW

with more than 80% probability for n = 3 (P{p1∈CM} < 0.2, so P{p1∈CW } > 0.8).
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Clearly the estimator categorizes the page more accurately as the sample size increases.

When n = 10, the estimator categorizes the page correctly with more than 95% probability.

While the Bayesian estimator is quite accurate and can handle the irregular access

case, we can get a more accurate result by carefully deciding on how often we access the

page. To illustrate this issue, we show in Figure 6.17 the accuracy graph for various access

frequencies. From the graph, we can see that the estimator is much more accurate when the

access frequency lies between categorization frequencies, 1
month and 1

week (f = 1/10 days),

than when it lies outside of this range (f = 1/day or f = 1/2 months). For example, when

f = 1/day, the estimator places the page in CM with high probability even when λ > 1
week .

Intuitively, we can explain this phenomenon as follows: When we access the page much

more often than it changes, we do not detect any change to the page at all in the first

several accesses. Then, since the page is less likely to change when p1∈ CM than when

p1∈CW , the Bayesian estimator increases P{p1∈CM} and decreases P{p1∈CW}, although
this increase/decrease is small. Therefore, the estimator tends to place the page in CM until

n becomes large. While this bias disappears after we access the page many times (more

specifically, when n ≈ f/λ or larger), we can avoid this bias in the first place by selecting
an appropriate revisit frequency if we can.

6.7 Dynamic estimation

So far, we have assumed that we pick an estimator before we start an experiment and use

the method throughout the experiment. But in certain cases, we may need to dynamically
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adjust our estimation method, depending on what we detect during the experiment. In this

section, we briefly discuss when we may need this dynamic estimation technique and what

we can do in that situation.

1. Adaptive scheme: Even if we initially decide on a certain access frequency, we may

want to adjust it during the experiment, when the estimated change frequency is very

different from our initial guess. Then exactly when and how much should we adjust

the access frequency?

Example 6.8 Initially, we guessed that a page changes once every week and started

visiting the page every 10 days. In the first 4 accesses, however, we detected 4

changes, which signals that the page may change much more frequently than we

initially guessed.

In this scenario, should we increase the access frequency immediately or should we

wait a bit longer until we collect more evidence? When we access the page less often

than it changes, we need a large sample size to get an unbiased result, so it might

be good to adjust the access frequency immediately. On the other hand, it is also

possible that the page indeed changes once every week on average, but it changed in

the first 4 accesses by pure luck. Then when should we adjust the change frequency

to get the optimal result?

Note that dynamic adjustment is not a big issue when the last modified date is avail-

able. In Section 6.5, we showed that the bias is practically negligible independent of

the access frequency (Figure 6.13) and that the statistical variation gets smaller as we

access the page less frequently (Figure 6.15). Therefore, it is always good to access

the page as slowly as we can. In this case, the only constraint will be how early we

need to estimate the change frequency. ✷

In signal processing, similar problems have been identified and carefully studied [OS75,

Mah89, TL98]. For example, when we want to reconstruct a signal, the signal should

be sampled at a certain frequency, while the optimal sampling frequency depends on

the frequency of the signal. Since the frequency of the signal is unknown before it is

sampled, we need to adjust the sampling frequency based on the previous sampling

result. We may use the mathematical tools and principles developed in this context

to address our problem.
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2. Changing λ: Throughout this chapter, we assumed that the change frequency λ of

an element is stationary (i.e., does not change). This assumption may not be valid in

certain cases, and we may need to test whether λ changes or not.

If λ changes very slowly, we may be able to detect the change of λ and use the

estimated λ to improve, say, Web crawling. For example, if λ changes once every

month, we may estimate λ in the first few days of every month and use the estimated

λ for the rest of the month. Then by comparing the λ’s for each month, we may also

compute how much λ increases/decreases every month. However, when λ changes

very rapidly, it will be difficult and impractical to estimate λ and use the estimated

λ to improve other applications.

There has been work on how we can verify whether a Poisson process is stationary

and, if not, how we can estimate the change rate of λ [YC96, Can72]. While this work

assumes that the complete change history of an element is available, we believe the

basic principles still can be used for our scenario.

6.8 Experiments

In this thesis, we have mainly assumed that an element changes by a Poisson process with

a change rate λ. In this section we present additional experiments confirming that our esti-

mator is better than the naive one even when page changes do not follow a Poisson process

(Section 6.8.1). Also, we show that our estimator works well on real Web data (Section 6.8.2)

and can improve the effectiveness of a Web crawler very significantly (Section 6.8.3).

6.8.1 Non-Poisson model

Although our results in Chapter 4 strongly suggest a Poisson change distribution (that we

have used so far), it is interesting to study what happens to our estimators if the distribution

were “not quite Poisson.” One simple way to model deviations from Poisson is to change

the exponential inter-arrival distribution to a more general gamma distribution.

A gamma distribution has two parameters, α and λ. When α = 1, the gamma distribu-

tion becomes an exponential distribution with change rate λ, and we have a Poisson change

process. If α < 1, small change intervals become more frequent. As α grows beyond 1,

small intervals become rare, and the distribution starts approximating a normal one. Thus,

we can capture a wide range of behaviors by varying the α around its initial value of 1.
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Figure 6.18: Bias of the naive and our estimators for a gamma distribution

Through simulations, we experimentally measured the biases of the naive estimator

(Section 6.4.1) and our proposed estimator (Section 6.4.2), and we show the result in Fig-

ure 6.18. This simulation was done on synthetic data, because the real Web data mostly

followed an exponential distribution. Also, we let the element change once every second

on average, and we accessed the element every second. This simulation was conducted for

various α values (the horizontal axis).

From the graph, we can see that the bias of our new estimator is consistently smaller

than that of the naive estimator. When α = 1, or when the element follows a Poisson

process, the bias of our estimator is 0, while the bias of the naive estimator is around 37%.

Even when α is not equal to 1, our estimator still has smaller bias than that of the naive

estimator. This graph suggests that our estimator is significantly better than the naive one,

even if the change distribution is not quite a Poisson distribution.

6.8.2 Effectiveness of estimators for real Web data

In this subsection, we compare the effectiveness of our proposed estimator (Section 6.4.2)

and that of the naive estimator (Section 6.4.1), using the real Web data described in Chap-

ter 4.

To compare their effectiveness, we need the actual change frequency of a page, so that

we can see how far apart each estimator is from this actual value. Clearly, it is not possible

to obtain the actual change frequency, because we do not know exactly how many times

each page changed (i.e., we may have missed some changes). To address this problem, we
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used the following method: First, we identified the pages for which we monitored “most”

of the changes. That is, we selected only the pages that changed less than once in three

days, because we would probably have missed many changes, if a page changed more often.

Also, we filtered out the pages that changed less than 3 times during our monitoring period,

because we may have not monitored the page long enough, if it changed less often.5 Then

for the selected pages, we assumed that we did not miss any of their changes and thus we can

estimate their actual frequencies by X/T (X: number of changes detected, T : monitoring

period). We refer to this value as a projected change frequency. After this selection, we ran

a simulated crawler on those pages which visited each page only once every week. Therefore,

the crawler had less change information than our original dataset. Based on this limited

information, the crawler estimated change frequency and we compared the estimates to the

projected change frequency.

We emphasize that the simulated crawler did not actually crawl pages. Instead, the

simulated crawler was run on the change data collected for Chapter 4, so the projected

change frequency and the crawler’s estimated change frequency are based on the same

dataset (The crawler simply had less information than our dataset). Therefore, we believe

that an estimator is better when it is closer to the projected change frequency.

From this comparison, we could observe the following:

• For 83% of pages, our proposed estimator is closer to the projected change frequency

than the naive one. The naive estimator was “better” for less than 17% pages.

• Assuming that the projected change frequency is the actual change frequency, our
estimator showed about 15% bias on average over all pages, while the naive estimator

showed more than 35% bias. Clearly, this result shows that our proposed estimator is

significantly more effective than the naive one. We can decrease the bias by one half,

if we use our estimator!

In Figure 6.19, we show more detailed results from this experiment. The horizontal

axis in the graph shows the ratio of the estimated change frequency to the projected change

frequency (rλ) and the vertical axis shows the fraction of pages that had the given ratio.

Therefore, for the pages with rλ < 1, the estimate was smaller than the projected frequency,

and for the pages with rλ > 1, the estimate was larger than the projected frequency.

Assuming that the projected frequency is the actual frequency, a better estimator is the
5We also used less (and more) stringent range for the selection, and the results were similar.
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one centered around rλ = 1. From the graph, we can clearly see that our proposed estimator

is better than the naive one. The distribution of the naive estimator is skewed to the left

quite significantly, while the distribution of our estimator is more centered around 1.

6.8.3 Application to a Web crawler

Our results show that our proposed estimator gives a more accurate change frequency than

the naive one. Now we study how much improvement an application may achieve by using

our estimator. To illustrate this point, we consider a Web crawler as an example.

A typical Web crawler revisits all pages at the same frequency, regardless of how often

they change. Instead, a crawler may revisit pages at different frequencies depending on

their estimated change frequency. In this subsection, we compare the following three revisit

policies:

• Uniform policy: A crawler revisits all pages at the frequency of once every week.

The crawler does not try to estimate how often a page changes.

• Naive policy: In the first 5 visits, a crawler visits each page at the frequency of once
every week. After the 5 visits, the crawler estimates change frequencies of pages using

the naive estimator (Section 6.4.1). Based on these estimates, the crawler adjusts

revisit frequencies for the remaining visits.

• Our policy: The crawler uses our proposed estimator (Section 6.4.2) to estimate

change frequency. Other than this fact, the crawler uses the same policy as the naive
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policy Changes detected Percentage
Uniform 2, 147, 589 100%
Naive 4, 145, 581 193%
Ours 4, 892, 116 228%

Table 6.1: Total number of changes detected for each policy

policy.

Using each policy, we ran a simulated crawler on the change history data described in

Chapter 4. In the experiments, the crawler adjusted its revisit frequencies (for the naive

and our policies), so that the average revisit frequency over all pages was equal to once a

week under any policy. That is, the crawler used the same total download/revisit resources,

but allocated these resources differently under different policies. Since we have the change

history of 720,000 pages for about 3 months,6 and since the simulated crawler visited pages

once every week on average, the crawler visited pages 720, 000×13 weeks ≈ 9, 260, 000 times
in total.

Out of these 9.2M visits, we counted how many times the crawler detected changes, and

we report the results in Figure 6.1. The second column shows the total number of changes

detected under each policy, and the third column shows the percentage improvement over

the uniform policy. Note that the best policy is the one that detected the highest number

of changes, because the crawler visited pages the same number of times in total. That is,

we use the total number of changes detected as our quality metric. From these results, we

can observe the following:

• A crawler can significantly improve its effectiveness by adjusting its revisit frequency.

For example, the crawler detected 2 times more changes when it used the naive policy

than the uniform policy.

• Our proposed estimator makes the crawler much more effective than the naive one.
Compared to the naive policy, our policy detected 35% more changes!

6While we monitored pages for 4 months, some pages were deleted during our experiment, so each page
was monitored for 3 months on average
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6.9 Related work

The problem of estimating change frequency has long been studied in the statistics commu-

nity [TK98, Win72, MS75, Can72]. However, most of the existing work assumes that the

complete change history is known, which is not true in many practical scenarios.

Researchers have experimentally estimated the change frequency of pages [WVS+99,

DFK99, WM99]. Note that most of the work used a naive estimator, which is significantly

worse than the estimators that we propose in this chapter. We believe their work can

substantially benefit by using our estimators.

One notable exception is [BC00], which uses last-modified dates to estimate the dis-

tribution of change frequencies over a set of pages. However, since their analysis predicts

the distribution of change frequencies, not the change frequency of an individual page, the

method is not appropriate for the scenarios in this thesis.

Some of the tools that we used in this chapter (e.g., the maximum likelihood estima-

tor in Section 6.4.3 and the Bayesian inference method in Section 6.6) have already been

developed by the statistics community. However, in certain cases, straightforward appli-

cation of standard statistical techniques results in estimators with undesirable properties

(e.g., highly-biased estimators of Sections 6.4.1 and 6.5.1). By analyzing these estimators

carefully, we designed estimators with much less bias and with high consistency.

6.10 Conclusion

In this chapter, we studied the problem of estimating the change frequency of a Web page

when a crawler does not have the complete change history of the page. We proposed new

estimators that compute the change frequency reasonably well even with the incomplete

change history. Also, we analytically showed how effective the proposed estimators are, dis-

cussing the practical implications of the various choices. In most cases, our new estimators

are significantly better than existing ones and can estimate change frequency much more

accurately. Clearly, accurate estimates can lead to better decisions for many applications,

including Web crawlers.



Chapter 7

Crawler Architecture

7.1 Introduction

In the preceding chapters, we studied 1) how a crawler can discover and download important

pages early 2) how we can parallelize the crawling process and 3) how the crawler should

refresh downloaded pages. In this chapter, we study some of the remaining issues for a

crawler and propose a crawler architecture:

• In Section 7.2 we identify some of the remaining design choices for a crawler and we
quantify the impact of the choices using the experimental data of Chapter 4.

• In Section 7.3 we propose an architecture for a crawler, which maintains only “im-
portant” pages and adjusts revisit frequency for pages depending on how often they

change.

7.2 Crawler design issues

The results of Chapter 4 showed us how Web pages change over time. Based on these

results, we further discuss various design choices for a crawler and their possible trade-offs.

One of our central goals is to maintain the local collection up-to-date. To capture how

“fresh” a collection is, we will use the freshness metric described in Chapter 5. That is, we

use the fraction of “up-to-date” pages in the local collection as the metric for how up-to-date

the collection is. For example, if the crawler maintains 100 pages and if 70 out of 100 local

pages are the same as the actual pages on the Web, the freshness of the collection is 0.7.

147
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Figure 7.1: Freshness evolution of a batch-mode/steady crawler

(In Chapter 5, we also discussed a second metric, the “age” of crawled pages. This metric

can also be used to compare crawling strategies, but the conclusions are not significantly

different from the ones we reach here using the simpler metric of freshness.)

1. Is the collection updated in batch-mode? A crawler needs to revisit Web pages

in order to maintain the local collection up-to-date. Depending on how the crawler

updates its collection, the crawler can be classified as one of the following:

• Batch-mode crawler: A batch-mode crawler runs periodically (say, once a

month), updating all pages in the collection in each crawl. We illustrate how such

a crawler operates in Figure 7.1(a). In the figure, the horizontal axis represents

time and the gray region shows when the crawler operates. The vertical axis in

the graph represents the freshness of the collection, and the curve in the graph

shows how freshness changes over time. The dotted line shows freshness averaged

over time. The curves in this section are obtained analytically using a Poisson

model. (We do not show the derivation here. The derivation is similar to the one

in Chapter 5.) We use a high page change rate to obtain curves that more clearly

show the trends. Later on we compute freshness values based on the actual rate

of change we measured on the Web.

To plot the graph, we also assumed that the crawled pages are immediately

made available to users, as opposed to making them all available at the end of

the crawl. From the figure, we can see that the collection starts growing stale

when the crawler is idle (freshness decreases in white regions), and the collection

gets fresher when the crawler revisits pages (freshness increases in gray regions).

Note that the freshness is not equal to 1 even at the end of each crawl (the right

ends of gray regions), because some pages have already changed during the crawl.
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Also note that the freshness of the collection decreases exponentially in the white

region. This trend is consistent with the experimental result of Figure 4.5.

• Steady crawler: A steady crawler runs continuously without any pause (Fig-

ure 7.1(b)). In the figure, the entire area is gray, because the crawler runs

continuously. Contrary to the batch-mode crawler, the freshness of the steady

crawler is stable over time because the collection is continuously and incremen-

tally updated.

While freshness evolves differently for the batch-mode and the steady crawler, one

can prove (based on the Poisson model) that their freshness averaged over time is the

same, if they visit pages at the same average speed. That is, when the steady and

the batch-mode crawler revisit all pages every month (even though the batch-mode

crawler finishes a crawl in a week), the freshness averaged over time is the same for

both.

Even though both crawlers yield the same average freshness, the steady crawler has

an advantage over the batch-mode one, because it can collect pages at a lower peak

speed. To get the same average speed, the batch-mode crawler must visit pages at a

higher speed when it operates. This property increases the peak load on the crawler’s

local machine and on the network. From our crawling experience, we learned that

the peak crawling speed is a very sensitive issue for many entities on the Web. For

instance, when one of our early crawler prototypes ran at a very high speed, it once

crashed the central router for the Stanford network. After that incident, Stanford

network managers have closely monitored our crawling activity to ensure it runs at a

reasonable speed. Also, the Web masters of many Web sites carefully trace how often

a crawler accesses their sites. If they feel a crawler runs too fast, they sometimes block

the crawler completely from accessing their sites.

2. Is the collection updated in-place? When a crawler replaces an old version of

a page with a new one, it may update the page in-place, or it may perform shad-

owing [MJLF84]. With shadowing, a new set of pages is collected from the Web,

and stored in a separate space from the current collection. After all new pages are

collected and processed, the current collection is instantaneously replaced by this

new collection. To distinguish, we refer to the collection in the shadowing space as

the crawler’s collection, and the collection that is currently available to users as the
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Figure 7.2: Freshness of the crawler’s and the current collection

current collection.

Shadowing a collection may improve the availability of the current collection, because

the current collection is completely shielded from the crawling process. Also, if the

crawler’s collection has to be pre-processed before it is made available to users (e.g.,

an indexer may need to build an inverted-index), the current collection can still handle

users’ requests during this period. Furthermore, it is probably easier to implement

shadowing than in-place updates, again because the update/indexing and the access

processes are separate.

However, shadowing a collection may decrease freshness. To illustrate this issue, we

use Figure 7.2. In the figure, the graphs on the top show the freshness of the crawler’s

collection, while the graphs at the bottom show the freshness of the current collection.

To simplify our discussion, we assume that the current collection is instantaneously

replaced by the crawler’s collection right after all pages are collected.

When the crawler is steady, the freshness of the crawler’s collection will evolve as

in Figure 7.2(a), top. Because a new set of pages are collected from scratch say ev-

ery month, the freshness of the crawler’s collection increases from zero every month.

Then at the end of each month (dotted lines in Figure 7.2(a)), the current collection

is replaced by the crawler’s collection, making their freshness the same. From that

point on, the freshness of the current collection decreases, until the current collection

is replaced by a new set of pages. To compare how freshness is affected by shadowing,
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Steady Batch-mode
In-place 0.88 0.88
Shadowing 0.77 0.86

Table 7.1: Freshness of the collection for various choices

we show the freshness of the current collection without shadowing as a dashed line

in Figure 7.2(a), bottom. The dashed line is always higher than the solid curve, be-

cause when the collection is not shadowed, new pages are immediately made available.

Freshness of the current collection is always higher without shadowing.

In Figure 7.2(b), we show the freshness of a batch-mode crawler when the collection

is shadowed. The solid line in Figure 7.2(b) top shows the freshness of the crawler’s

collection, and the solid line at the bottom shows the freshness of the current collection.

For comparison, we also show the freshness of the current collection without shadowing

as a dashed line at the bottom. (The dashed line is slightly shifted to the right, to

distinguish it from the solid line.) The gray regions in the figure represent the time

when the crawler operates.

At the beginning of each month, the crawler starts to collect a new set of pages from

scratch, and the crawl finishes in a week (the right ends of gray regions). At that point,

the current collection is replaced by the crawler’s collection, making their freshness

the same. Then the freshness of the current collection decreases exponentially until

the current collection is replaced by a new set of pages.

Note that the dashed line and the solid line in Figure 7.2(b) bottom, are the same

most of the time. For the batch-mode crawler, freshness is mostly the same, regardless

of whether the collection is shadowed or not. Only when the crawler is running

(gray regions), the freshness of the in-place update crawler is higher than that of the

shadowing crawler, because new pages are immediately available to users with the

in-place update crawler.

In Table 7.1 we contrast the four possible choices we have discussed (shadowing versus

in-place, and steady versus batch), using the change rates measured in our experiment.

To construct the table, we assumed that all pages change with an average 4 month

interval, based on the result of Chapter 4. Also, we assumed that the steady crawler

revisits pages steadily over a month, and that the batch-mode crawler recrawls pages
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only in the first week of every month. The entries in Table 7.1 give the expected

freshness of the current collection. From the table, we can see that the freshness

of the steady crawler significantly decreases with shadowing, while the freshness of

the batch-mode crawler is not much affected by shadowing. Thus, if one is building

a batch crawler, shadowing is a good option since it is simpler to implement, and

in-place updates are not a significant win in this case. In contrast, the gains are

significant for a steady crawler, so in-place updates may be a good option.

Note that, however, this conclusion is very sensitive to how often Web pages change

and how often a crawler runs. For instance, consider a scenario where Web pages

change every month (as opposed to every 4 months), and a batch crawler operates for

the first two weeks of every month. Under these parameters, the freshness of a batch

crawler with in-place updates is 0.63, while the freshness is 0.50 with a shadowing

crawler. Therefore, if a crawler focuses on a dynamic portion of the Web (e.g., com

domain), the crawler may need to adopt the in-place update policy, even when it runs

in batch mode.

3. Are pages refreshed at the same frequency? As the crawler updates pages

in the collection, it may visit the pages either at the same frequency or at different

frequencies.

• Uniform frequency: The crawler revisits Web pages at the same frequency,

regardless of how often they change. We believe this uniform-frequency policy

matches well with a batch-mode crawler, since a batch-mode crawler commonly

revisits all pages in the collection in every crawl.

• Variable frequency: In Chapter 4 we showed that Web pages change at widely
different frequencies, and in Chapter 5 we showed that a crawler may increase

the freshness of its collection by 10%–23% if it adjusts page revisit frequencies

based on how often pages change. Note that the variable-frequency policy is well

suited for a steady crawler with in-place updates. Since a steady crawler visits

pages continuously, it can adjust the revisit frequency with arbitrary granularity

and thus increase the freshness of the collection.

We summarize the discussion of this section in Figure 7.3. As we have argued, there exist

two “reasonable” combinations of options, which have different advantages. The crawler
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Figure 7.3: Two possible crawlers and their advantages

on the left gives us high freshness and results in low peak loads. The crawler on the right

may be easier to implement and interferes less with a highly utilized current collection. We

refer to a crawler with the properties of the left-side as an incremental crawler, because it

can continuously and incrementally update its collection of pages. In the next section, we

discuss how we can implement an effective incremental crawler.

7.3 Architecture for an incremental crawler

In this section, we study how to implement an effective incremental crawler. To that end, we

first identify two goals for the incremental crawler and explain how the incremental crawler

conceptually operates. From this operational model, we will identify two key decisions

that an incremental crawler constantly makes. Based on these observations, we propose an

architecture for the incremental crawler.

7.3.1 Two goals for an incremental crawler

The incremental crawler continuously crawls the Web, revisiting pages periodically. During

its continuous crawl, it may also purge some pages in the local collection, in order to make

room for newly crawled pages. During this process, the crawler should have two goals:

1. Keep the local collection fresh: Our results showed that freshness of a collection

can vary widely depending on the strategy used. Thus, the crawler should use the

best policies to keep pages fresh. This includes adjusting the revisit frequency for a

page based on its estimated change frequency.
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Algorithm 7.3.1 Operation of an incremental crawler
Input AllUrls: a set of all URLs known

CollUrls: a set of URLs in the local collection
(We assume CollUrls is full from the beginning.)

Procedure
[1] while (true)
[2] url ← selectToCrawl(AllUrls)
[3] page ← crawl(url)
[4] if (url ∈ CollUrls) then
[5] update(url, page)
[6] else
[7] tmpurl ← selectToDiscard(CollUrls)
[8] discard(tmpurl)
[9] save(url, page)
[10] CollUrls ← (CollUrls− {tmpurl}) ∪ {url}
[11] newurls ← extractUrls(page)
[12] AllUrls ← AllUrls ∪ newurls

Figure 7.4: Conceptual operational model of an incremental crawler

2. Improve quality of the local collection: The crawler should increase the “quality”

of the local collection by replacing “less important” pages with “more important” ones.

This refinement process is necessary for two reasons. First, our result in Section 4.4

showed that pages are constantly created and removed. Some of the new pages can be

“more important” than existing pages in the collection, so the crawler should replace

the old and “less important” pages with the new and “more important” pages. Second,

the importance of existing pages change over time. When some of the existing pages

become less important than previously ignored pages, the crawler should replace the

existing pages with the previously ignored pages.

7.3.2 Operational model of an incremental crawler

In Figure 7.4 we show pseudo-code that describes how an incremental crawler operates.

This code shows the conceptual operation of the crawler, not an efficient or complete im-

plementation. (In Section 7.3.3, we show how an actual incremental crawler operates.) In

the algorithm, AllUrls records the set of all URLs discovered, and CollUrls records the set

of URLs in the collection. To simplify our discussion, we assume that the local collection
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maintains a fixed number of pages1 and that the collection is at its maximum capacity from

the beginning. In Step [2] and [3], the crawler selects the next page to crawl and crawls

the page. If the page already exists in the collection (the condition of Step [4] is true), the

crawler updates its image in the collection (Steps [5]). If not, the crawler discards an exist-

ing page from the collection (Steps [7] and [8]), saves the new page (Step [9]) and updates

CollUrls (Step [10]). Finally, the crawler extracts links (or URLs) in the crawled page to

add them to the list of all URLs (Steps [11] and [12]).

Note that the crawler makes decisions in Step [2] and [7]. In Step [2], the crawler

decides on what page to crawl, and in Step [7] the crawler decides on what page to discard.

However, note that the decisions in Step [2] and [7] are intertwined. That is, when the

crawler decides to crawl a new page, it has to discard a page from the collection to make

room for the new page. Therefore, when the crawler decides to crawl a new page, the

crawler should decide what page to discard. We refer to this selection and discard decision

as a refinement decision.

Note that this refinement decision should be based on the “importance” of pages. To

measure importance, the crawler may use various importance metrics listed in Chapter 2.

Clearly, the importance of the discarded page should be lower than the importance of the

new page. In fact, the discarded page should have the lowest importance in the collection,

to maintain the collection at the highest quality.

Together with the refinement decision, the crawler decides on what page to update in

Step [2]. That is, instead of visiting a new page, the crawler may decide to visit an existing

page to refresh its image. To maintain the collection “fresh,” the crawler has to select the

page that will increase the freshness most significantly, and we refer to this decision as an

update decision.

7.3.3 Architecture for an incremental crawler

To achieve the two goals for incremental crawlers, and to effectively implement the corre-

sponding decision process, we propose the architecture for an incremental crawler shown in

Figure 7.5. The architecture consists of three major modules (RankingModule, UpdateModule

and CrawlModule) and three data structures (AllUrls, CollUrls and Collection). The lines and

1It might be more realistic to assume that the size of the collection is fixed, but we believe the fixed-
number assumption is a good approximation to the fixed-size assumption, when the number of pages in the
collection is large.
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Figure 7.5: Architecture of the incremental crawler

arrows show data flow between modules, and the labels on the lines show the correspond-

ing commands. Two data structures, AllUrls and CollUrls, maintain information similar to

that shown in Figure 7.4. AllUrls records all URLs that the crawler has discovered, and

CollUrls records the URLs that are/will be in the Collection. CollUrls is implemented as a

priority-queue, where the URLs to be crawled early are placed in the front.

The URLs in CollUrls are chosen by the RankingModule. The RankingModule constantly

scans through AllUrls and the Collection to make the refinement decision. For instance, if the

crawler uses PageRank as its importance metric, the RankingModule constantly reevaluates

the PageRanks of all URLs, based on the link structure captured in the Collection.2 When

a page which is not in CollUrls turns out to be more important than a page within CollUrls,

the RankingModule schedules for replacement the least-important page with the more-

important page. The URL for this new page is placed on the top of CollUrls, so that the

UpdateModule can crawl the page immediately. Also, the RankingModule discards the

least-important page(s) from the Collection to make space for the new page.

While the RankingModule refines the Collection, the UpdateModulemaintains the Collec-

tion “fresh” (update decision). It constantly extracts the top entry from CollUrls, requests

the CrawlModule to crawl the page, and puts the crawled URL back into CollUrls. The

position of the crawled URL within CollUrls is determined by the page’s estimated change

2Note that even if a page p does not exist in the Collection, the RankingModule can estimate PageRank
of p, based on how many pages in the Collection have a link to p.
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frequency and its importance. (The closer a URL is to the head of the queue, the more

frequently it will be revisited.)

To estimate how often a particular page changes, the UpdateModule records the check-

sum of the page from the last crawl and compares that checksum with the one from the

current crawl. From this comparison, the UpdateModule can tell whether the page has

changed or not. In Chapter 6, we proposed two estimators that the UpdateModule can use

for frequency estimation.

The first estimator (described in Section 6.4) is based on the Poisson process model for

Web page change. To implement this estimator, the UpdateModule has to record how many

changes to a page it detected for, say, the last 6 months. Then it uses this number to get

the confidence interval for the page change frequency.

The second estimator (described in Section 6.6) is based on the Bayesian estimation

method. Informally, the goal of the second estimator is to categorize pages into different

frequency classes, say, pages that change every week (class CW ) and pages that change

every month (class CM ). To implement EB , the UpdateModule stores the probability that

page pi belongs to each frequency class (P{pi∈CW } and P{pi∈CM}) and updates these
probabilities based on detected changes. For instance, if the UpdateModule learns that page

p1 did not change for one month, the UpdateModule increases P{p1∈CM} and decreases
P{p1∈CW}. For details, see Chapter 6.

Note that it is also possible to keep update statistics on larger units than a page, such as

a Web site or a directory. If Web pages on a site change at similar frequencies, the crawler

may trace how many times the pages on that site changed for the last 6 months, and get

a confidence interval based on the site-level statistics. In this case, the crawler may get a

tighter confidence interval, because the frequency is estimated on a larger number of pages

(i.e., larger sample). However, if pages on a site change at highly different frequencies, this

average change frequency may not be sufficient to determine how often to revisit pages in

that site, leading to a less-than optimal revisit frequency.

Also note that the UpdateModule may need to consult the “importance” of a page in

deciding on revisit frequency. If a certain page is “highly important” and the page needs to

be always up-to-date, the UpdateModulemay revisit the page more often than other pages.3

To implement this policy, the UpdateModule also needs to record the “importance” of each

page.

3This topic was discussed in more detail in Section 5.6.
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Returning to our architecture, the CrawlModule crawls a page and saves/updates the

page in the Collection, based on the request from the UpdateModule. Also, the CrawlModule

extracts all links/URLs in the crawled page and forwards the URLs to AllUrls. The for-

warded URLs are included in AllUrls, if they are new.

Separating the update decision (UpdateModule) from the refinement decision (Ranking-

Module) is crucial for performance reasons. For example, to visit 100 million pages every

month,4 the crawler has to visit pages at about 40 pages/second. However, it may take

a while to select/deselect pages for Collection, because computing the importance of pages

is often expensive. For instance, when the crawler computes PageRank, it needs to scan

through the Collection multiple times, even if the link structure has changed little. Clearly,

the crawler cannot recompute the importance of pages for every page crawled, when it needs

to run at 40 pages/second. By separating the refinement decision from the update decision,

the UpdateModule can focus on updating pages at high speed, while the RankingModule

carefully refines the Collection.

7.4 Conclusion

In this chapter we studied the architecture for an effective Web crawler. Using the ex-

perimental results in Chapter 4, we compared various design choices for a crawler and

possible trade-offs. We then proposed an architecture for a crawler, which combines the

best strategies identified.

4Many search engines report numbers similar to this.
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Conclusions and Future Work

As the Web grows larger and its contents become more diverse, the role of a Web crawler

becomes even more important. In this dissertation we studied how we can implement an

effective Web crawler that can discover and identify important pages early, retrieve the

pages promptly in parallel, and maintain the retrieved pages fresh.

In Chapter 2, we started by discussing various definitions for the importance of a page,

and we showed that a crawler can retrieve important pages significantly earlier by employing

simple selection algorithms. In short, the PageRank ordering metric is very effective when

the crawler considers highly-linked pages important. To find pages related to a particular

topic, it may use anchor text and the distance from relevant pages.

In Chapter 3, we addressed the problem of crawler parallelization. Our goal was to

minimize the overhead from the coordination of crawling processes while maximizing the

downloads of highly-important pages. Our results indicate that when we run 4 or fewer

crawling processes in parallel, a firewall-mode crawler is a good option, but for 5 or more

processes, an exchange-mode crawler is a good option. For an exchange-mode crawler, we

can minimize the coordination overhead by using the batch communication technique and

by replicating 10,000 to 100,000 popular URLs in each crawling process.

In Chapter 4 we studied how the Web changes over time through an experiment con-

ducted on 720,000 Web pages for 4 months. This experiment provided us with various

statistics on how often Web pages change and how long they stay on the Web. We also

observed that a Poisson process is a good model to describe Web page changes.

In Chapter 5 we compared various page refresh policies based on the Poisson model.

Our analysis showed that the proportional policy, which is intuitively appealing, does not

159
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necessarily result in high freshness and that we therefore need to be very careful in adjusting

a page revisit frequency based on page change frequency. We also showed that we can

improve freshness very significantly by adopting our optimal refresh policy.

In Chapter 6, we explained how a crawler can estimate the change frequency of a page

when it has a limited change history of the page. Depending on the availability of change

information, we proposed several estimators appropriate for each scenario. We also showed,

through theoretical analyses and experimental simulations, that our estimators can predict

the change frequency much more accurately than existing ones.

Finally, in Chapter 7 we described a crawler architecture which can employ the tech-

niques described in this dissertation. We also discussed some of the remaining issues for a

crawler design and implementation.

As is clear from our discussion, some of our techniques are not limited to a Web crawler

but can also be applied in other contexts. In particular, the algorithms that we described

in Chapters 5 and 6 can be applied to any other applications that need to maintain a local

copy of independently updated data sources.

The work in this dissertation resulted in the Stanford WebBase crawler, which currently

maintains 130 million pages downloaded from the Web. The WebBase crawler consists of

20,000 lines of C/C++ code, and it can download 100 million Web pages in less than two

weeks.1 The pages downloaded by the WebBase crawler are being actively used by various

researchers within and outside of Stanford.

8.1 Future work

We now briefly discuss potential areas for future work. In Chapter 2, we assumed that

all Web pages can be reached by following the link structure of the Web. As more and

more pages are dynamically generated, however, some pages are “hidden” behind a query

interface [Ber01, KSS97, RGM01, IGS01]. That is, some pages are reachable only when

the user issues keyword queries to a query interface. For these pages, the crawler cannot

simply follow links but has to figure out the keywords to be issued. While this task is

clearly challenging, the crawler may get some help from the “context” of the pages. For

example, the crawler may examine the pages “surrounding” a query interface and guess

that the pages are related to the US weather. Based on this guess, the crawler may issue
1We achieved this rate by running 4 crawling processes in parallel.
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(city, state) pairs to the query interface and retrieve pages. Initial steps have been taken

by Raghavan et al. [RGM01] and by Ipeirotis et al. [IGS01], but we believe a further study

is necessary to address this problem.

In Chapter 2, we studied how a crawler can download “important” pages early by using

an appropriate ordering metric. However, our study was based mainly on experiments

rather than theoretical proofs. One interesting research direction would be to identify

a link-structure model of the Web and design an optimal ordering metric based on that

model. While we assumed a hypothetical ideal crawler in Chapter 2 and evaluated various

ordering metrics against it, the ideal crawler is practically unfeasible in most cases. A Web

link model and its formal analysis could show us the optimal crawler in practice and how

well various ordering metrics perform compared to this optimal crawler.

In Chapter 5, we showed that it is very difficult to maintain a page up-to-date if the page

changes too often. As more and more pages are dynamically generated, frequent changes

may become a serious problem, and we may need to take one of the following approaches:

• Separation of dynamic content: In certain cases, the content of a page may change only
in a particular section. For example, a product-related page on Amazon.com may be

often updated in price, but not in the description of the product. When the changes of

a page are focused on a particular section, it might be useful to separate the dynamic

content from the static content and to refresh them separately. Incidentally, recent

HTML standard proposes to separate the style of a page from its actual content, but

more granular level of separation may be necessary.

• Server-side push: A major challenge of Chapter 5 was that the crawler does not know

how often a page changes. Therefore the crawler often refreshes a page even when

the page has not changed, wasting its limited resources. Clearly, if a Web server is

willing to push changes to the Web crawler, this challenge can be addressed. To realize

this “server-side push”, we need to study how much overhead it may impose on the

server and how we can minimize it. Also, we need to develop a mechanism by which a

crawler can subscribe to the changes that it is interested in. In reference [BCGM00],

we studied how much benefit a server and a crawler may get when the server publishes

the list of its Web pages and their modification dates, so that the crawler can make

a better crawling decision based on the information. In references [OW01, GL93,

DRD99, PL91], various researchers proposed similar ideas that the data source and
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its caches cooperate to limit the difference between the data source and the caches,

although the contexts are not exactly the same.

In Chapter 5, we assumed that Web pages are updated independently without any

correlation among them. A certain set of pages, however, may be highly correlated and

updated together. For example, consider a set of pages related to the “Clinton & Monica

Lewinsky” relationship. The updates to these pages may be highly correlated, because most

of the pages will be updated whenever there is new discovery on that topic. In this case, we

may improve the freshness of the downloaded pages by using a sampling technique: when

we want to refresh the pages, we first check only a couple of “sample” pages for change and

refresh the remainder only if the sample pages have changed.

In this dissertation, we simply defined any change to a page as a change. For certain

applications, however, we may need a different definition of change. For example, we may

define a change as the change in the stock price on a Web page, in case of a stock-price

monitoring system. We may also define the “freshness” of a price as how close the cached

price is to the the current price. Under this new definition of change and freshness, it will

be interesting to see how the optimal algorithm in Chapter 5 performs and how we should

modify the algorithm to accommodate the difference.
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