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Abstract natively, asresource descriptiond]), usually include the
frequencyof the words that appear in the database, plus per-
Large amounts of (often valuable) information are storechaps other simple statistics such as the number of documents
in web-accessible text databases. “Metasearchers” proin the database. These summaries, which provide sufficient
vide unified interfaces to query multiple such databases anformation to decide which databases are the most promis-
once. For efficiency, metasearchers rely on succinct statisting for evaluating a given query, are the focus of this paper.
cal summaries of the database contents to select the best da-So far, database selection research has largely assumed
tabases for each query. So far, database selection researtat databases are static. However, real-life databases are not
has largely assumed that databases are static, so the assoalways static and the statistical summaries that describe their
ated statistical summaries do not need to change over timeontents need to be updated periodically to reflect database
However, databases are rarely static and the statistical suneontent changes. Defining schedules for updating the data-
maries that describe their contents need to be updated pbase content summaries is a challenging task, because the
riodically to reflect content changes. In this paper, we firstrate of change of the database contents might vary drasti-
report the results of a study showing how the content suntally from database to database. Furthermore, finding appro-
maries of 152 real web databases evolved over a periopriate such schedules is important so that content summaries
of 52 weeks. Then, we show how to use “survival analyare kept up to date but without overloading databases un-
sis” techniques in general, and Cox’s proportional hazardsnecessarily to regenerate summaries that are already (at least
regression in particular, to model database changes oveclose to) up to date.
time and predict when we should update each content sum- In this paper, we start by presenting an extensive study
mary. Finally, we exploit our change model to devise updaten how the content of 152 real web databases evolved over
schedules that keep the summaries up to date by contaet-period of 52 weeks. Given that small changes in the da-
ing databases only when needed, and then we evaluate ttgbases might not necessarily be reflected in the (relatively
quality of our schedules experimentally over real web dataeoarse) content summaries, we examined how these sum-
bases. maries change over time. Our study shows that summaries
indeed change and that old summaries eventually become
obsolete, which then calls for a content summary update
strategy. To model content changes, we resort to the field of
statistics named “survival analysis.” Using the Cox propor-
ional hazards regression modg0[, we show that database
haracteristics can be used to predict the pattern of change of
tR8 summaries. Finally, we exploit our change model to de-
<'i'l'elop summary update strategies that work well even under
a resource-constrained environment. Our strategies attempt
to contact the databases only when needed, thus minimiz-

: X ... Ing the communication with the databases. To conclude the
the best databases to search for a given query are identifi

is critical for effici . A her tvoicall scussion, we report the results of an extensive experimen-
IS critical Tor elciency, since a metasearcner typically Pros o5 yation over our 152 real web databases, showing the
vides access to a large number of databases. The state-Qf

the-art database selection algorithms rely on aggregate sta ectiveness of our update strategies.
Lo . “In brief, the contributions of this paper are as follows:
tistics that characterize the database contents. These statis- pap

1. Introduction

A substantial amount of information on the web is store
in databases and is not indexed by search engines such
Google. One way to provide one-stop access to the inform
tion in text databases is throughetasearcherswhich can
be used to query multiple databases simultaneouslydéhe
tabase selectiostep of the metasearching process, in whic

tics, which are known asontent summariefl5] (or, alter- e In Sectiori3, we report the results of our extensive ex-
perimental study on how the content summaries of 152

+  New York University real web databases evolved over a period of 52 weeks.

T University of California, Los Angeles e In Sectiorid, we use survival analysis techniques to dis-

§ Columbia University cover database properties that help predict the rate of



only provide access to their documents via querying; further-

D1, with ‘Dl ‘=51,500 Do, with ‘D2|=5,730

w Flw, D7) w F(w, D2) more, no protocol is widely adopted for web-accessible data-
algorithm 7,210 algorithm 2 bases to export metadata about their contents. Hence, other
cassini 5 cassini 3,260 solutions have been proposed to automate the construction
saturn 2 saturn 3,730

of content summaries from hidden-web databases that do not
export such information.

Callan and Connell4] presented an algorithm for build-
ing (approximate) content summaries of hidden-web text da-
change of database content summaries. tabases via document sampling. This algorithm first extracts

i . _a document sample (of about 300 documents) from a given
¢ In Sectior, we show how to update content summaries S )
> . databaseD via single-word queries. The document sample
by exploiting our change model. The resulting strate-
. ictlS then treated as a small database whose content summary
gies attempt to contact the databases only when strlct¥ . ) .
L . IS used to approximate that @f's. (Alternative query-based
needed, thus avoiding wasting resources unnecessanlg. : : . . .
chniques17] use different querying strategies.) In this pa-
, . . ) per, we use the document sampling and content summary ap-

Finally, Sectiorifi discusses related work, while Sectiin  proximation strategy fron#], and we use the “hat” notation

provides further discussion and concludes the paper. to refer to an approximate content summary:

Table 1. A fragment of the content summaries
of two databases.

2. Background Definition 2: Theapproximate, sample-based content sum-
maryC (D) of a databaseD consists of:

This section introduces the notation and necessary back-, ap estimatdD| of the number of documents I, and

ground for this paper. We first define the notion of a “con- . ;
tent summary” for a text database and briefly summarize * For each wordw, an estimatef (w, D) of f(w, D).

how database selection algorithms exploit these summarid§eC (D) estimates are computed from a sample of the doc-
(seeLg for an expanded version of this discussion). Thenuments inD as described in4].
we review how to obtain database content summaries via Next, we present the results of our study that examined

querying. how content summaries of 152 text databases changed over
Definition 1: Thecontent summary'(D) of a databaseD @ period of 52 weeks.
consists of:
e The actual number of documents/in | D|, and 3. Studying Content Changes of Real Text Da-
e For each wordw, the number oD documents (w, D) tabases
that includew.

For efficiency, a metasearcher should evaluate a query One of the goals of this paper is to study how text da-
only on a relatively small number of databases that are reléabase changes are reflected over time in the database con-
vant to the query. The database selection component of a niént summaries. First, we discuss our data set in detail (Sec-
tasearcher typically makes the selection decisions using th®nE.J). Then, we report our study of the effect of database

information in the content summaries, as the following exchanges on the content summaries (Sedd@. The con-
ample illustrates: clusions of this study will be critical later in the paper, when

i . we discuss how to model content summary change patterns.
Example 1 Consider the querfcassini saturnind two da-

tabased); and D,. Based on the content summaries of thes% 1. Data for our Stud
databases (Tab[#), a database selection algorithm may in- ="~ y
fer that D, is a promising database for the query, since each
query word appears in many, documents. In contrasi),
will probably be deemed not as relevant, since it contain
only up to a handful of documents with each query word.

Our study and experiments involved 152 searchable data-
bases, whose contents were downloaded weekly from Octo-
Ber 2002 through October 2003. These databases have previ-
ously been used in a study of the evolution of web pa@gls |
Database selection algorithms work best when the corFhe databases were —roughly- the five top-ranked web sites
tent summaries are accurate and up to date. The most desir-a subset of the topical categories of the Google Directory,
able scenario is when each database either (1) is crawlabighich, in turn, reuses the hierarchical classification of web
so that we can (periodically) download its contents and gersites from the Open Directory Project. (Please refel2g) [
erate content summaries, or (2) exports these content sufior more details on the rationale behind the choice of these
maries directly and reliably (e.g., using a protocol such aweb sites.) From these web sites, we picked only those sites
STARTS [14]). Unfortunately, the so-calledidden-welda- that provided a search interface over their contents, which
tabaseg16], which abound on the web, are not crawlable andare needed to generate sample-based content summaries.



Domain | com edu gov misc org 1.00
% 47.3% | 13.1% | 17.1% | 6.8% | 15.7%

Table 2. Domain distribution in our dataset. ' I\X\X\X\I\

Also, since we wanted to study content changes, we only sess =
lected databases with crawlable content, so that every week =
we can retrieve the databases’ full contents using a crawlere g

A complete list of the sites included in our experiments TEL

is available ahttp://webarchive.cs.ucla.edu/ . Ta- o7 " Weighted Recall e
ble@ shows the breakdown of web sites in the set by high- o5 Gonidence Inerval sl

70

level DNS domain, where thmisccategory represents a va- ~ 5 10 15 20 25 3 3 40 45 50
riety of relatively small domains (e.gnil, uk, dk, andjp). Figure 1. The recall of content summary
We downloaded the contents of the 152 web sites every o(p, ¢) with respect to the “current” content
week over one year, up to a maximum of 200,000 pages per symmary C(D), as a function of time ¢ and av-
site at a tim& Each weekly snapshot consisted of three to eraged over each database D in the dataset.
five million pages, or around 65 GB before compression, for
a total over one year of almost 3.3 TB of history data.
We treat each web site as a database, and created —each
week— the complete content summaryD) of each data- Recall: An important property of the content summary of
baseD by downloading and processing all of its documentsa database is its coverage of the current database vocabu-
This data allowed us to study how the complete content suntary. An up-to-date and complete content summary always
maries of the databases evolved over time. In addition, wieas perfect recall, but an old summary might not, since
also studied the evolution over time approximatecon- it might not include, for example, words that appear only
tent summaries. For this, we used query-based sampling (seenew database documents. Timeweighted recall (urpf
Sectior?) to create every week an approximate content sum@ (D, t) with respect toC(D) is the fraction of words in

maryC‘(D) of each databasB® the current summary that are also present in the old sum-
mary: ur = 'WWQM‘/' This metric gives equal weight to all
3.2. Measuring Content Summary Change words and takes values from 0 to 1, with a value of 1 meaning

that the old content summary contains all the words that ap-

We now turn to measuring how the database content surR€a" in the current content summary, and a value of 0 denot-

maries —both the complete and approximate versions— evol/ad no overlap between the summaries. An alternative recall

over time. For this, we resort to a number of metrics of conMeWic, which gives higher weight to more frequent terms,

tent summary similarity from the literature. We discuss thest thewsighted recall (wrpf O(D, t) with respect ta”(D):

. «(w,D . e
metrics and the results for the 152 web databases next. ~ wr = '”’EZOV;W;C{w%) . We will use analogous definitions

For our discussion, we refer to the “current” and completef unweighted and weighted recall for a sample-based con-
content summary of a databaseasC(D), while O(D,t)  tent summanyO(D, t) of databaseD obtained: weeks into
is the complete summary dP as oft weeks into the past. the past with respect to the current content sumndai)
TheO(D,t) summary can be considered as an (old) approXor the same database.
imation of the (currenti’(D) summary, simulaing the re-  rigyre ] focuses on complete content summaries and
alistic scenario where we extract a summary for a databaggoys the weighted and unweighted recalltafieek-old
D and keep it unchanged foweeks. In the following defi-  5;mmaries with respect to the “current” summary, as a func-
nitions, WV, is the set of words that appear@(D, t), while  ion of + and averaged over every possible choice of “cur-
We is the set of words that appeardf( D). Valuesfo(w, D) yent" summary. In Figur8ll (as well as in all subsequent fig-
and f.(w, D) denote the document frequency of wardn res), we report our results with a 95% confidence interval.
O(D,t) andC (D), respectively. Predictably, both the weighted and unweighted recall values
decrease asincreases. For example, on average, 1-week-old
5 Only four web sites were affected by this efficiency-motivated pageSummaries have unweighted recall of 91%, while older, 25-
download limitationhti.umich.edu___\leonline.com _}jpbs.org |,  week-old summaries have unweighted recall of about 80%.

andinielheaincom 1 . . The weighted recall figures are higher, as expected, but still
6 To reduce the effect of sampling randomness in our experiments, we,

create five approximate content summaries of each database each wealgnificantly less than 1: this ind_icates that th_e newly intro-
in turn derived from five document samples, and report the various meduced words have low frequencies, but constitute a substan-

rics in our study as averages over these five summaries. tial fraction of the database vocabulary as well.
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Figure 2. The weighted recall of “old” sample- Figure 4. The precision of content summary
based content summaries with respect to the O(D,t) with respect to the “current” content
“current” ones, as a function of the time T be- summary C(D), as a function of time ¢ and av-
tween updates and averaged over each data- eraged over each database D in the dataset.

base D in the dataset, for different scheduling
policies ( 7 = 0.5).

Another interesting observation is that recall figures ini-
tially decrease (slightly) for approximately 20 weeks, then

0.345 : : : : : , , , , remain stable, and then, surprisingly, increase, so that a 50-
week old content summary has higher recall than a 20-week
0.340 old one, for example. This unexpected result is due to an in-
T j\ ﬂ teresting periodicity: some events (e.g., “Christmas,” “Hal-
€ 0335 N foNF AT A i loween”) appear at the same time every year, allowing sum-
2 N ' Nt \{ /i maries that are close to being one year old to have higher re-
) N . . . ..
2 0.330 e 17 call than their younger counterparts. This effect is only visi-
5 — K, tau \\I at ble in the sample-based summaries that cover only a fraction
-+ K, size, tau ~ o L/ . h
0.325 Size, tau Y B e | of the database vocabulary, and is not observed in the com-
o Naveo 1 _ﬂ_ 1 plete summaries, perhaps because they are larger and are not
0,320 L= %,95% Confdence Interval substantially affected by a relatively small number of words.
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Figure 3. The unweighted recall of “old”

sample-based content summaries with re-

spect to the “current” ones, as a function

of the time T between updates and averaged

over each database D in the dataset, for dif-

ferent scheduling policies ( 7 = 0.5).

Precision: Another important property of the content sum-

mary of a database is the precision of the summary vocabu-

lary. Up-to-date content summaries contain only words that

appear in the database, while older summaries might include

obsolete words that appeared only in deleted documents. The

unweighted precision (ugf O(D, t) with respect ta”' (D)

is the fraction of words in the old content summary that

still appear in the current summaéy(D): up = 'VVW;V‘”

This metric, likeunweighted recallgives equal weight to

) o i all words and takes values from O to 1, with a value of 1
The curves labeled “Naive” in Figur@and3 show the e aning that the old content summary only contains words

corresponding results for approximate, sample-based COff4t are still in the current content summary, and a value of

tent summaries. (Please ignore the other curves for Now; Wegenoting no overlap between the summaries. The alterna-
will explain their meaning in Sectidil) As expected, the re- e precision metric, which —just as in theeighted recall
call values for the sample-based summaries are substantialfyric— gives higher weight to more frequent terms, is the

smaller than the ones for the complete summaries. Also, trWeightgd precision (wpdf O(D, t) with respect toC'(D):
recall values of the sample-based summaries do not change woow, fo(w,D) -

much over time, because the sample-based summaries &% ~ W We use analogous definitions of
not too accurate to start with, and do not suffer a significarithweighted and weighted precision for a sample-based con-
drop in recall over time. This shows that the inherent incomtent summanO(D, ¢) of a database) with respect to the
pleteness of the sample-based summaries “prevails” over trrect content summagy(D).

incompleteness introduced by time. Figure[d focuses on complete content summaries and
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Figure 5. The weighted precision of “old” Figure 6. The unweighted precision of “old”
sample-based content summaries with re- sample-based content summaries with re-
spect to the “current” ones, as a function spect to the “current” ones, as a function
of the time T between updates and averaged of the time T between updates and averaged
over each database D in the dataset, for dif- over each database D in the dataset, for dif-
ferent scheduling policies (7 = 0.5). ferent scheduling policies (7 = 0.5).
shows the weighted and unweighted precision-efeek- 050
old summaries with respect to the “current” summary, as
a function oft and averaged over every possible choice of °* T
“current” summary. Predictably, both the weighted and un- oo T
weighted precision values decreasetascreases. For ex- . %
ample, on average, a 48-week-old summary has unweighted f
precision of 70%, showing that 30% of the words in the old® ** Z/Z
content summary do not appear in the database anymore. ozs
The curves labeled “Naive” in Figur@&and@ show the 020 T/Z
corresponding results for approximate, sample-based con- % —I * 95% Gonfidence Interval
tent summaries. (Again, please ignore the other curves for”" 7
now; we will explain their meaning in Sectid®) As ex- 0.10 . P P e ——

pected, the precision values decrease over time, and do so !

much faster than their corresponding recall values (Figeres Figure 7. The KL divergence of content sum-
andB). For example, almost 20% of the words in a 15-week- mary O(D,t) with respect to the “current”
old sample-based content summary are absent from the data-content summary  C(D), as a function of time
base. For the precision results, the periodicity that appeared t and averaged over each database D in the
in the recall figures is not visible: the sample-based content dataset.

summaries contain many more “obsolete” words that do not
appear in the database anymore. Hence, a small number of

words that appear periodically cannot improve the results. C(D): KL = }_ . ~w. Pe(w|D) - log Z:E;’jlg;, where
Kullback-Leibler Divergence: Precision and recall mea- ,, (,|p) = & fc(wI}) -y i the probability of ob-
sure the accuracy and completeness of the content sum- o wieWonWe JetTh fo(w.D)

maries, basednly on the presence of words in the sum-SeNVingw in C(D), andp,(w|D) = B——e o=y
maries. However, these metrics do not capture the accis the probability of observingy in O(D,t). The KL di-

racy of the frequency of each word as reported in the convergence metric takes values from 0 to infinity, with O indi-
tent summary. For this, theullback-Leibler divergencfl9]  cating that the two content summaries being compared are
of O(D,t) with respect toC (D) (KL for short) calculates equal. Intuitively, KL divergence measures how many bits
the “similarity” of the word frequencies in the old content are necessary to encode the difference between the two dis-
summaryO(D, t) against the “current” word frequencies in tributions.




078 loading the databases unnecessarily, it is important to sched-
ule updates carefully. In this section, we present our “sur-

0.72

R B vival analysis” modeling approach for decidindiento up-
L Vit o date content summaries. First, Sectidngand [4.2 review
o | o 25 Gonfidence Intorval o the necessary background on survival analysis and the Cox
e regression model from the literatu2l]. Then, Sectioil.3
e T shows how we can use this material for our own scenario, to
2 0% S = model content summary changes.
0.62 L B S I SR A _— I I
oS0 T T 4.1. Survival Analysis
0.58 ——

Survival analysis is a collection of statistical techniques
e e B ®mos ®m e % % that help predict the time until an event occld][ These
methods were initially used to predict the time of survival
for patients under different treatments, hence the name “sur-
vival analysis.” For the same reason the “time until an event
occurs” is also calledsurvival time.For our purposes, the
survival time is the number of weekssuch that an old da-
tabase content summagy(D, t) is “sufficiently different”
from the current summarg' (D). (We define formally the
survival time of a database in Sectér8)
q Survival times can be modeled througtsarvival func-
fion S(t) that captures the probability that the survival time
of an object is greater than or equattdn the survival analy-

0.56

Figure 8. The KL divergence of “old” sample-
based content summaries with respect to the
“current” ones, as a function of the time T be-
tween updates and averaged over each data-
base D in the dataset, for different scheduling
policies ( 7 = 0.5).

Figure[d focuses on complete content summaries an
shows that the KL divergence of old content summarie

O(D,t) increases as increases. This confirms the previ- = < S . . .
(D.1) P is literature, the distribution of(¢) is also described in

ously observed results and shows that the word frequen f o df iorhy hich is the * f failure”
distribution changes substantially over time. The curve |glerms of ehazard functio (¢), which is the "rate 0 %Lg)re

beled “Naive” in Figure shows the KL divergence for attimet, conditional on survival until timeé: h(t) = —%
sample-based content summaries of increasing age. (Agam.common modeling choice faf(¢) is theexponential dis-
please ignore the other curves for now; we will explain theitribution, where S(t) = e~**, and so the hazard function
meaning in Sectio8l) The KL divergence of the old sum- is constant over timeh(t) = \). A generalization of the
maries increases with time, indicating that approximate corexponential distribution is th&Veibull distribution where
tent summaries become obsolete just as their complete cousitt) = e~**", and so the hazard function varies over time
terparts do. (h(t) = Myt?~1). We could use the exponential function to
Conclusion: We studied how content summaries of text damodel the database survival time. This choice is reinforced
tabases evolve over time. We observed that the quality &y recent findings that indicate that the exponential function
content summaries (both complete and sample-based) detégia good model to describe changes in wiebument§Z, 6].
orates as they become increasingly older. Therefore, it is imnHowever, we will see in Sectidh3that the exponential dis-
perative to have a policy for periodically updating the sum4ribution does not describe accurately changesifiabase
maries to reflect the current contents of the databases. V¥ammaries, and we will use the Weibull distribution instead.
turn now to this important issue and show how we can use As described so far, the survival functici{t) and the
“survival analysis” for this purpose. hazard functiorh(t) are used to describe a single database,
and are not “instantiated” since we do not know the values
4. Predicting Content Summary Change Fre- of their configuring parameters. Of course, it is important
quency to estimate the parameters of the survival functitin) for
each database, to have a concrete, database-specific change
In the previous section, we established the need for upnodel. Even more imperative is to discoyeedictor vari-
dating database content summaries as the underlying teadblesthat influence the survival times. For example, when
databases change. Unfortunately, updating a content summalyzing the survival times of patients with heart disease,
mary involves a non-trivial overhead: as discussed, the cotlhke weight of a patient is a predictor variable and influences
tent summaries of hidden-web text databases are constructibe survival time of the patient. Analogously, we want to pre-
by querying the databases, while the summaries of crawlabtict survival times individually for each database, according
databases are constructed by downloading and processingtalits characteristics. Next, we describe the Cox proportional
the database documents. Therefore, in order to avoid ovdrazards regression model that we use for this purpose.




4.2. Cox Proportional Hazards Regression Model An interesting variation of the Cox model that overcomes
the PH assumption is th&tratified Cox modeJ26], which

The Cox proportional hazards regression mod&(] is a s used to account for variables that do not satisfy the pro-
technique widely used in statistics for discovering importanportionality assumption. In this case, the variables that do
variables that influence survival times. It is a non-parametrigiot satisfy the proportionality assumption are used to split
model, because it makes no assumptions about the naturetpé dataset into different “strata.” Tkt Cox coefficients re-
shape of the hazard function. The only assumption is that th@iain the same across the different strata, but each stratum
logarithm of the underlying hazard rate is a liféamction  now has different baseline functiohg(t).
of the predictor variables. Next, we describe how we use the Cox regression model

Let = be a predictor variable, ane, andz s be the val- g represent changes in text database content summaries.
ues of that variable for two databasésnd B, respectively.

Under the Cox model, the hazard functidng(t) andh g (¢) . .
can be expressed for databaseand B as: 4.3. Using Cox Regression to Model Content Sum-

mary Changes

ha(t) = P4 ho(t) = Inha(t) = Inho(t) + Bra (1a)

hp(t) = e’*2hy(t) = Inhp(t) = Inho(t) + Bxp  (1b) Before using any survival analysis technique for our prob-
wherehy(t) is abaseline hazard functigrcommon for all I_em,_we need to define “change:” A straightforward defini-
the members of the population. The Cox model can be gefion iS that two content summarieS(D) and O(D, t) are
eralized forn predictor variableslog h(t) = log ho(t) + different” when they are not identical. However, even a
S B, where ther,'s are the predictor variables, and small change in a single QOgument in a database will prob-
the 5;'s are the model coefficients. The algorithm presente("]lbly resglt In a change in !ts content summary, but such
by Cox [10] shows how to compute thé values. c_hange is unlikely to be o_f |mp9r_tz_;mce for database selec-

The Cox model, as presented so far, seems to solve tfign. Therefore, we relax this definition and say that two con-

same problem addressed by multiple regression. Howevdfnt Summaries are different whénL > 7 (see Sectiol3.2

the dependent variable (survival time) in our case is not nofo" the definition of KL divergence), whereis a “change

mally distributed, but usually follows the exponential or thesensitivity” threshol& Higher values ofr result in longer

Weibull distribution —a serious violation for ordinary multi- survival times and the exact value ofshould be selected

ple regression. Another important distinction is the fact thaP‘fed ;)nhth_e charact_e"rlstlcsh of the datab;se _sellectlon ﬁlgo-
the Cox model effectively exploits incomplete or “censored™thm of choice. We will see how we can effectively use the

data, from cases that “survived” the whole study period. ExCOX model to incorporate in our change model. Later, in

cluding these cases from the study would seriously affect th%gctlorﬂ r\:"e s;‘how thatlwe c,;can define update schedules that
result, introducing a strong bias in the resulting model. Thos@9a@Pt to the chosen value o

oblservat|_or|1§ ?re Ca_llecbﬂsdo_red_obser:\gtmns and copt_flzun Definition 3: Given a value of the change sensitivity thresh-
on ydpqrt|a ;]n °Tma“°f”* tI)n |cat|_ng th ere Waz To ﬁa' " old 7 > 0, the survival time of a database at a point in

ure during the time of observatioThe Cox model effec- time —with associated “current” content summagy( D )— is

tively uses the information provided from censored Case$ha smallest time for which the KL divergence (D, t)

(For more informatic_)n, sedl]) . with respect ta” (D) is greater thanr.
The Cox proportional hazards model is one of the most

general models for working with survival data, since it doesComputing Survival TimesUsing the study of Sectiof

not assume any specific baseline hazard function. This moda$ well as Definitiorf3, we computed the survival time of
allows the extraction of a “normalized” hazard functioneach content summary for different values of threshald
ho(t) that is not influenced by predictor variables. This al-For some databases, we did not detect a change within the
lows for easier generalization of the results, sihgét) is  period of the study. As explained in Sectl@r®, these ten-

not dependent on the distribution of the predictor variablesored cases are still useful since they provide evidence that
in the dataset used to extragf(¢). The only requirement for the content summary of a database with the given character-
the applicability of Cox's model is that the predictor vari-isticsdid not changawithin the allotted time period and for
ables follow the “proportional hazard” (PH, or linearity) as-the threshold- of choice. The result of our study is a set of
sumption, which means that for two individual groupgind  survival times, some marked as censored, that we use as in-

B the hazard rati 28 is constant over time. put to the Cox regression model.

7 The “linearity” or “proportionality” requirement is essentially a 8 We use KL divergence for our change definition (as opposed to preci-
“monotonicity” requirement (e.g., the higher the weight of a patient,  sion or recall) because KL depends on the whole word-frequency dis-
the higher the risk of heart attack). If a variable monotonically affects  tribution. As our later experiments show, an update policy derived from
the hazard rate, then an appropriate transformation (eg;)) can the KL-based change definition improves not only the KL divergence
make its effect linear. but also precision and recall.



Feature SelectionAfter extracting the survival times, we

Features Bs Br B
select the database features that we pass as parameters to size,r 0179 - 1313
the Cox model. We use two sets of features: a setcaf-* K1, T - 8.3 | -1.308
rent’ features and a set oEtolutior features. Thecurrent K1, Size,T | 0.094 | 6.762 | -1.305

features are characteristics of the database at a given point in -
time. For example, the topic of the database and its DNS do- Table 3._The coeff|_C|ents of the Cox model,
main arecurrentfeatures of a database. On the other hand, when trained for various sets of features.

we extract theevolutionfeatures by observing how the data-
base changes over a (training) time period. For the remain- , , ) ,
der of the discussion, we focus on the features for the impoRredictor variables, while from thevolutionfeatures preci-
tant case of approximate, sample-based content summarigi2n and recall are not good predictor variables; the KL fea-

Analogous features can be defined for crawlable databasdd/es are good predictors, and strongly and positively corre-

for which we can extract complete summaries. lated with each other. _
The initial set ofcurrentfeatures that we used was: Given these results, we decided to drop the number of

words and the topic variables from tloairrent set, keep-
e The threshold-. ing only the threshold, the database size, and the domain.
e The logarithm of the estimated size of the database;rom theevolutionset we dropped the recall and precision
where we estimate the size of the database using thieatures. Also, from the KL features we kept only thefea-
“sample-resample” method frori@g|. ture: given its presence, featuresthroughxg were largely
e The number of words in the current samgléD). redundant. Furthermore, we reduced the training time from

10 to three weeks. To examine whether any of the selected

e The topic of each database, defined as the top level cgls,y, a5 _other than threshelgwhich we always keep— are
egory under which the database is classified in the Op dundant, we trained Cox using (a) size andb) «, and

Directory. Th|f is a"c:attegonc"al variable with 16 d|st|nctT; and (c)r1, size, and-. We describe our findings next.
values (e.g., “Arts,” “Sports,” and so on). We encoded = o )
this variable as a set of dummy binary variables: eacifraining the Cox Model:After the initial feature selection,

der the corresponding category, and 0 otherwise. all the features that we had selected are good predictor vari-

. I . ableS9 and strongly influence the survival time of the ex-

e The domain of the database, which is a categorical vark . . . :

e - .\ tracted summaries. However, the domain variable did not sat-

able with five distinct values (com, org, edu, gov, misc). . : : o .

We encoded this variable as a set of 5 binary variablesISfy the proportlonallty assumption, which IS required by the

. . Cox model (see Sectidh.?): the hazard ratio between two

To extract the set okvolution features, we retrieved domains was not constant over time. Hence, we resorted to

sample-based content summaries from each database evgfystratified Cox modektratifying on domaifid

week over a period of 10 weeks. Then, for each database we The result of the training was a set of coefficiefits 3.,

compared every pair cipproximatesummaries that were and g, for features sizes;, andr, respectively. We show

extracted exactly weeks apart (i.e., on weekandi+k) Us-  the Cox coefficients that we obtained in TaBleThe pos-

ing the precision, recall, and KL divergence metrics. Specifitive values of3, and 3, indicate that larger databases are

ically, the features that we computed were: more likely to change than smaller ones and that databases
e The average KL divergence,, ..., xy between sum- that changed during training are more likely to change in the

maries extracted with time differencebf. . ., 9 weeks. future than those that did not change. In contrast, the nega-

. . . tive value fors3. shows that —not surprisingly— higher values

e The average welghted_anq unw_elghted Precision Okt - result in longer survival times for content summaries.
summaries extracted with time difference oof...,9 Given the results of the analysis, for two databaBes

weeks. and D, from the same domain, we have:
e The average weighted and unweighted recall of sum-

maries extracted with time differencef. .., 9weeks. InS;(t) = exp(BsIn(|Dy|) + Bek1, + Br71) - In Sp(t)

After selecting the initial set of features, we trained the!™ S2(t) = exp(Bs n(|D2]) + Burir, + Br72) - InSo(t)
Cox model using the variables indicated above. We validated . . . .
: : WhereSy(¢) is the baseline survival function for the respec-
the results using leave-one-out cross validddine results . ; . ; :
L 2 tive domain. The baseline survival function corresponds to a
of the initial run indicated that, from theurrentfeatures, the

number of words and the topic of the database are not good

10 For all models, the statistical significance is at the 0.001% level accord-
ing to the Wald statisti¢Z1].

9 Since each database generates multiple survival times, we leave out ohe This meant that we had to compute separate baseline hazard functions
databaseat a time for the cross-validation. for each domain.




Features | Domain | Agom | Ydom S(t)
com 0.0211 | 0.844 1

edu 0.0392 | 0.578
size, T gov 0.0193 | 0.701
misc 0.0163 | 1.072

—————— com

org 0.0239 | 0.723 0.8

com 0.0320 | 0.886

edu 0.0774 | 0.576 0.6
K1, T gov 0.0245 | 0.795 ’

misc 0.0500 | 1.014

org 0.0542 | 0.715 04

com 0.0180 | 0.901
edu 0.0205 | 0.585
K1, Size,T gov 0.0393 | 0.780
misc | 0.0236 | 1.050 0.2
org 0.0274 | 0.724

Table 4. The parameters for the baseline sur- 9 10 _ 20 _ 30 40 _ >0
vival functions for the five domains. The base- Figure 9. The survival function  5(t) for differ-
line survival functions describe the survival ent domains ([D| = 1,000, 7 = 0.5, 1 = 0.1).

time of a database D in each domain with
|D| =1 (In(]D|) =0), k1 =0and T = 0.

Ai = Adom (|Di]P* - exp (Berri) -exp (B-7))  (2b)

) . o ] where|D;| is the size of the database;; is the KL diver-

baseline” databas® with size|D| = 1 (i.e.,In(|D[) = 0),  gence of the samples obtained during the training peritd,

k1 =0, andr = 0. . _ 3., and 3, are the Cox coefficients from Tatfe \y,,, and
Under the Cox model, the returned baseline survival funcs , - are the domain-specific constants from Tallend;

tions remain unspecified and are defined only by a set of vals the value of the change threshold 1 (Definition3).
uesSy(t1), So(ta), ..., So(ty). In our experiments, we had

five baseline survival functions, one for each domain (i.e., Definitiondprovides a concrete change model for a data-
com, edu, org, gov, misc). To fit the baseline survival funcbaseD that is specific to the database characteristics and to
tions, we assumed that they follow the Weibull distributionth® change sensitivity, as controlled by the thresholén

(see Sectiod.T), which has the general fori§i(¢) = ¢—>".  interesting result is that summaries of large databases change
We applied curve fitting using a least-squares method (if10re often than those of small databases, as indicated by the

particular the Levenberg-Marquardt meth@PJj to esti- positive value of3;, which corresponds to the database size.

mate the parameters of the Weibull distribution for each doEigure@shows the shape &f(¢) for different domains, for a

main. For all estimates, the statistical significance was at tHypothetical database with | D| = 1000, 1 = 0.1, and for

0.001% level. TablE summarizes the results. 7 = 0.5. This figure shows that content summaries tend to
An interesting result is that the survival functions do notvary substantially across domains (e.g., compare the “misc”

follow the exponential distributiom( = 1). Previous stud- Curve against the “gov” curve).

ies [6] indicated that individual weldocumentshave life-

times that follow the exponential distribution. Our results,5. Scheduling Updates

though, indicate that content summaries, with aggregate sta-

tistics abousets of documentshange more slowly. So far, we have described how to compute the survival

Modeling ConclusionsWe have presented a statisti- fu;gfﬂ;;\f@;%;g éixfoga;a?szihégjgsd;; (;[;)sr; cvtv)itgr?t-
cal analysis of the survival times of database content S ploi(t)

maries. We used Cox regression analysis to examine te nmary updates and contact each database only when nec-

effect of different variables in the survival time of con- €S- Specifically, we first describe the theory behind our

tent summaries and showed that the survival times of Cor?_chedulmg policy (SectidB.]). Then, we present the exper-

tent summaries follow the Weibull distribution, in most'mental evaluation of our policy (Sectidi.), which shows

cases withy < 1 (i.e., they tend to remain unchanged forthat sophisticated update scheduling can improve the quality

. - . . f the extracted content summaries in a resource-restricted
longer time periods as their age increases). We summ3:

rize our results in the following definition: environment.

Definition 4: The functionS;(t) that gives the survival func- 5.1, Deriving an Update Policy
tion for a databasé); is:
A metasearcher may provide access to hundreds or thou-
Si(t) = exp (—Ait7%™), with (2a) sands of databases and operate under limited network and



computational resources. To optimize the overall quality of 7 T T=i0 ] T=10
the content summaries, the metasearcher has to carefully de- tomsharaware.com 0.088 | 46 weeks| 5 weeks
cide when to update each of the summaries, so that they are | usps.com 0.023 | 34 weeks| 12 weeks
acceptably up to date during query processing.

To model the constraint on the workload that a meta- Table 5. Optimal content-summary update fre-
searcher might handle, we defide as the average num-  duencies for two databases.
ber of content summary updates that the metasearcher can
perform in a week. Then, underNaive strategy that allo-
cates updates to databases uniforriily= 7 represents the the content summaries of two databatesishardware.
average number of weeks between two updates of a da@wimn andusps.coimn . We can see that, whefi is small
base, where is the total number of databases. For exam{I' = 10), we updatetomshardware.com | more often
ple, T = 2 weeks means that the metasearcher can updaiganusps.corm , since); is larger fortomshardware.
the summary of each database every two weeks, on average!i. However, wher is large (" = 40) the optimal update

As we have seen in Secti®®3 the rate of change of frequencies are reversed. The scheduling algorithm decides
the database contents may vary drastically from databa$eattomshardware.com changes “too frequently” and is
to database, so thiaive strategy above is bound to allo- not beneficial to allocate more resources to try to keep it up
cate updates to databases suboptimally. Thus, the goal {fdate. Therefore, the algorithm decides to update the con-
our update scheduling is to determine the update frequenégnt summary frontomshardware.com | less frequently,
f; for each databas®; individually, in such a way that and instead focus on databases liigps.corm | that can be
the function> ", S;(t) is maximized, while at the same kept up to date. This trend holds across domains and across
time not exceeding the number of updates allowed. In thigalues ofy.
case, we maximize the average probability that the content
summaries are up to date. One complication is that the sup-2. Experimental Results
vival function S;(¢) changes its value over time, so differ-
ent update scheduling policies may be considered “optimal” In Sectiori4.3 we showed how to compute the form and
depending on whers;(¢) is measured. To address this is-Parameters of the survival functiofi(t), which measures
sue, we assume that the metasearcher wants to maximi#¥€ probability that the summary of a databdseis up to
the time-averagedzalue of the survival function, given as: datet weeks after it was computed. Based on Cox's model,
S = limy ot fot S, Si(t)dt. This formulation of the W€ derl'ved a variety of models that coplﬂgt) based on
scheduling problem is similar to that iid][for the problem three different sets of features (see Tallemdd). Now, we
of keeping the index of a search engine up to date. We foHS€ these models to devise three update policies, using the

mulate our goal as the following optimization problem. ~ a@Pproach from Sectidd.Jand the following feature sets:

_ _ . e x1, Size,7: We use all the available features.
Problem 1: Find the optimal update frequengy for each e size andr: We do not use the history of the database,
databaseD; such thatS is maximized under the constraint i.e., we ignore the evolution featurg and we use only
iy fi= % the database size and the change sensitivity threshold

e 11 andr: We use only the history of the database and
the thresholdr. We consider this policy to examine
whether we can work with databases without estimat-
ing their sizél2

We also consider thBlaive policy, discussed above, where

we uniformly update all summaries eveRweekd3

Quality of Content Summaries under Different Polici&¥e
1. When A; (which can be interpreted as denoting “howWeyamine the performance of each updating policy, by mea-
often the content summary changes”) is small relativgring the average (weighted and unweighted) precision and
to the constraint”, the optimal revisit frequency; be-  recall, and the average KL divergence of the generafed
comes larger as; grows larger. proximate summaries. We consider different values Tof
2. When ); is large compared to the resource constrainyvhereT is the average number of weeks between updates.

F, the optimal revisit frequency; becomes smaller as
i grows |arger. 12 The size estimation method that we U28|[relies on the database re-
turning the number of matches for each query. This method becomes

In our solution to the above generalized optimization problematic for databases that do not report such numbers with the
query results.

problem, we also observed S'm'le_‘r trends even WheA 1l 13 Theresults presented in this paper focus on sample-based content sum-
(i.e., when the rate of change varies over time). As an exam- maries. We also ran analogous experiments for the complete content

ple, in Tabld5 we show the optimal update frequencies for ~ summaries, and the results were similar.

Given the analytical forms of th&;(¢) functions in the pre-
vious sections, we can solve this optimization problem us-
ing the Lagrange-multiplier methogas shown for example
in [7,124]). Cho et al. [[f] investigated a special case of this
optimization problem wheny = 1 (i.e., when the rate of
change is constant over time), and observed the following:



tomshardware.com
tomshardware.com
usps.com
tomshardware.com
usps.com
tomshardware.com
tomshardware.com
tomshardware.com
tomshardware.com
usps.com

o fore they have changed sufficiently. A decrease in the value
of 7 cause the curves to “move” towards the left: the sum-
maries change more frequently and then the updates become
more precise. For example, for= 0.25 and7" = 10, preci-
sion is approximately 40%, while faf = 25 it is approxi-
mately 80%.

Interestingly, the update precision can be predicted ana-
lytically, using the target functio described in Sectids.1
The average probability of survival (our target function) cor-
responds in principle to the percentage of non-precise up-
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o dates. This result is intuitive, since our target function essen-
oo, - o s = w = w0 s = tially encodes the probability that the summary of the data-
T base has changed. Therefore, during scheduling, it is possi-
Figure 10. The precision of the updates ble to select a value df that achieves (approximately) the
performed by the different scheduling algo- desired update precision.

rithms, as a function of the average time be-

nclusion: A: neral conclusion, we hav rv
tween updates T and for 7 = 0.5 Conclusion: As a general conclusion, we have observed

that our scheduling policies allow for good quality of the
extracted content summaries, even under strict constraints
on the allowable update frequency. Also, our modeling ap-
Figures[2 and[3 show the average weighted and un-proach helps predict the precision of the update operations,
weighted precision of the approximate summaries, obtaingg tyrn allowing the metasearcher to tune the update fre-

under the scheduling policies that we consider. The resulgfuency to efficiently keep the content summaries up to date.
indicate that, by using any of our policies, we can keep the

recall metrics almost stable, independently of the resourcg Related Work
constraints. Figurd§ and@ show the average weighted and ~*

unweighted precision of the approximate summaries. Again, We are not aware of prior work to experimentally mea-

our three scheduling policies demonstrate similar perfor- } .
S . sure database content summary evolution over time or to
mance, and they are all significantly better than Neve

policy. The difference with thélaive policy is statistically schedule updates to the content summaries to maintain their

o : . freshness. However, several previous studies have focused
significant, even when the summaries are updated relative : .
. : : h various aspects of the evolution of the web and of the re-
frequently (i.e., even for small values'dj. Finally, Figurdg

shows that our updating policies keep the average KL dive#'—"Ited problem. Of.VYeb crawling. Ntoule_ls et 42 studied
. ) the changes ahdividualweb pages, using the same dataset

gence of the approximate summaries almost constant even T 0
for a large number of weekE between updates as we did in this paper. !\ltoulgs et al.'cqncluded thgt 5% of
i new content (measured in “shingles”) is introduced in an av-

Interestingly, the three policies that we propose demonérage week in all pages as a whole. Additiona®g[ob-

strate minimal d|ﬁ¢rgnces n pgrformancez 'and these dncfersﬁerved a strong correlation between the past and the future
ences are not statistically significant. Additionally, all tech

: o . : A “degrees of the changes of a web page and showed that this
niques are S|_gr_1|f|cantl_y better than ﬂ_\ieuvepohcy. This in- correlation might be used to predict the future changes of
dicates that it is possible to work with a smaller set of fea-a page. In this paper (Sectif), we investigated this high-
fvel idea more formally through survival analysis and mod-
eled the change behavior of web databases using the Cox
%roportional hazard model. This model was then used for de-
signing the optimal scheduling algorithm for summary up-
Precision of Update OperationsTo measure how “precise” dates. Lim et al.20] and Fetterly et al.[13] presented pi-
the updates scheduled by our policies are, we define an upreer measurements of the degree of change of web pages
date as “precise” if it contacts a database when the new suraver time, where change was measured using the edit dis-
mary of the database is different from the existing summartance [R0] or the number of changed “shinglesId over
according to the definition of change in Secffb We mea- successive versions of the web pages. Other studies of web
sured the precision of the update operations as the ratio of tiegolution include[1, 5, 27, (11, 2], and focus on issues that
precise updates over the total number of updates performeate largely orthogonal to our work, such as page modifica-
FiguresIldshows the precision results as a functiofadnd  tion rates and times, estimation of the change frequencies
for 7 = 0.5. For this value ofr and for the databases in our for the web pages, and so on.
dataset, very low values df (i.e., 7" < 10) are unneces- Web crawling has attracted a substantial amount of work
sary, since then the databases are contacted too often and beer the last few years. In particular, referen¢g9[[12, (8]

ignore the evolution feature, and avoid computing the his-
tory of a database, which involves frequent sampling of th
database for a (small) period of time.



study how a crawler should download pages to maintain its[6] J. Cho and H. Gafa-Molina. Estimating frequency of
local copy of the web up to date. Assuming that the crawler ~ change ACM TOIT, 3(3), 2003.
knows the exact change frequencies of pages, refererices [[7] J. Cho, H. Gar@a-Molina, and L. Page. Synchronizing a da-
9] present optimal page downloading algorithms, wHilg] [ tabase to improve freshness.3fGMOD, 2000.
proposes an algorithm based on linear programming. Chd8] J. Choand A. Ntoulas. Effective change detection using sam-
and Ntoulas[8] employ sampling to detect changed pages.  Pling. InVLDB, 2002.
All this work on web crawling mainly focuses on maintain- [°] E. G. Coffman, Jr., Z. Liu, and R. R. Weber. Optimal ro-
ing a local copy of the web as up-to-date as possible, which _bot scheduling for web search enginelurnal of Schedul-
requires maximizing the fraction of remote pages whose lo- ing, 1(1), 1998 ) _ .
cal copy is up to date. Our goal is different: we want to max/19] D: R. Cox. Regression models and life-tables (with discus-
imize the freshness of the content summaries that descridb: S'On)"]oymal of the Royal StaF'St'Cal Socie§(34), 1972.

. . 11] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C. Mogul.
the various web sites, so that we produce more accurate da-

b lection decisi Rate of change and other metrics: A live study of the world
tabase selection decisions. wide web. INUSITS 1997.

OlSton_ et .al' 1_341 pr'oposed a new algorithm for Cache [12] J. Edwards, K. S. McCurley, and J. A. Tomlin. An adap-
synchronization in which data sources notify caches of im- "~ yje model for optimizing performance of an incremental web
portant changes. The definition of “divergence” or “change” crawler. INWWW102001.
in [24] is quite general and can be applied to our context13] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A large-
However, the proposed push model is not applicable when  scale study of the evolution of web pages WwWwW122003.
data sources are “uncooperative” and do not inform othef34] L. Gravano, K. C.-C. Chang, H. G&eMolina, and

of their changes as is the case on the web. A. Paepcke. STARTSStanford proposal for Internet meta-
searching. I'5IGMOD 1997.
7. Conclusions [15] L. Gravano, H. Gaia-Molina, and A. TomasidsIOSS Text-

source discovery over the Interné&CM TODS 24(2), 1999.

We presented a study —over 152 real web databases—[$] L. Gravano, P. G. Ipeirotis, and M. Sahami. QProber: A
the effect of time on the database content summaries on  System for automatic classification of hidden-web databases.
. . ACM TOIS 21(12), 2003.
which metasearchers rely to select appropriate database% b G. Ipeirotis and L. G Distributed h h
where to evaluate keyword queries. Predictably, the qualifyf /] P G- Ipeirotis and L. Gravano. Distributed search over the
. - . hidden web: Hierarchical database sampling and selection. In
of the content summaries deteriorates over time as the under- VLDB. 2002
lying database§ change, WhIFh highlights the Importa}nce\xlis] P. G. Ipeirotis and L. Gravano. When one sample is not
update strategies for refreshing the content summaries. We

. . . X : enough: Improving text database selection using shrinkage.
described how to use survival analysis techniques, in par- |4 siGmMoD 2004.

ticular how to exploit the Cox proportional hazards regresyig) . jelinek. Statistical Methods for Speech Recognitiofhe
sion model, for this update problem. We showed that the — \m|T press, 1999.

change history of a database can be used to predict the ratg#d] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. C.
change of its content summary in the future, and that sum-  Agarwal. Characterizing web document change.WAIM,
maries of larger databases tend to change faster than sum- 2001.

maries of smaller databases. Finally, based on the results[@fi] J. P. Marques De & Applied Statistics Springer Verlag,
our analysis, we suggested update strategies that work well 2003.

in a resource-constrained environment. Our techniques addp®] J. J. Moé. The Levenberg-Marquardt algorithm: Implemen-
to the change sensitivity desired for each database, and con- tation and theory. IfNumerical Analysis, Lecture Notes in
tact databases selectively —as needed— to keep the summaries Mathematics 630, Springer Verlag977.

up to date while not exceeding the resource constraints. [23] A. Ntoulas, J. Cho, and C. Olston. What's new on the web?
The evolution of the web from a search engine perspective. In

WWW132004.
[24] C. Olston and J. Widom. Best-effort cache synchronization
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