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Abstract

In-degree, PageRank, number of visits and other
measures of Web page popularity significantly in-
fluence the ranking of search results by modern
search engines. The assumption is thapular-

ity is closely correlated witlguality, a more elu-
sive concept that is difficult to measure directly.
Unfortunately, the correlation between popularity
and quality is very weak for newly-created pages
that have yet to receive many visits and/or in-
links. Worse, since discovery of new content is
largely done by querying search engines, and be-
cause users usually focus their attention on the top
few results, newly-created but high-quality pages
are effectively “shut out,” and it can take a very
long time before they become popular.

We propose a simple and elegant solution to
this problem: the introduction of a controlled
amount of randomness into search result ranking
methods. Doing so offers new pages a chance
to prove their worth, although clearly using too
much randomness will degrade result quality and
annul any benefits achieved. Hence there is a
tradeoff betweemexplorationto estimate the qual-
ity of new pages andxploitationof pages already
known to be of high quality. We study this tradeoff
both analytically and via simulation, in the con-
text of an economic objective function based on
aggregate result quality amortized over time. We
show that a modest amount of randomness leads
to improved search results.

Introduction

terms, an estimategR5 million search queries are received
by major search engines each day [18].

Ideally, search engines should present query result pages
in order of some intrinsic measure gfiality. Quality can-
not be measured directly. However, various notiongay-
ularity, such as number of in-links, PageRank [17], number
of visits, etc., can be measured. Most Web search engines
assume that popularity is closely correlated with quality,
and rank results according to popularity.

1.1 The Entrenchment Problem

Unfortunately, the correlation between popularity and qual-
ity is very weak for newly-created pages that have few
visits and/or in-links. Worse, the process by which new,
high-quality pages accumulate popularity is actually in-
hibited by search engines. Since search engines dole out
a limited number of clicks per unit time among a large
number of pages, always listing highly popular pages at
the top, and because users usually focus their attention on
the top few results [11, 14], newly-created but high-quality
pages are “shut out.” This increasing “entrenchment effect”
has witnessed broad commentary across political scientists,
the popular press, and Web researchers [7-9, 15, 19, 21]
and even led to the teri@ooglearchy In a recent study,
Cho and Roy [5] show that heavy reliance on a search en-
gine that ranks results according to popularity can delay
widespread awareness of a high-quality page by a factor
of over 60, compared with a simulated world without a
search engine in which pages are accessed through brows-
ing alone.

Even if we ignore the (contentious) issue of fairness,
there are well-motivated economic objectives that are pe-
nalized by the entrenchment effect. Assuming a notion of
intrinsic page quality as perceived by users, a hypothetical

Search engines are becoming the predominant means igteal search engine would bias users toward visiting those
discovering and accessing content on the Web. Users afages of the highest quality at a given time, regardless of
cess Web content via a combination of following hyper-POPularity. Relying on popularity as a surrogate for qual-
links (browsing) and typing keyword queries into searchity sets up a vicious cycle of neglect for_ new pages, even
engines (searching). Yet as the Web overwhelms us wit@S entrenphed pages collect an increasing fractlpn of user
its size, users naturally turn to increased searching and r&licks. Given that some of these new pages will gener-
duced depth of browsing, in relative terms. In absolute@lly have higher quality than some entrenched pages, pure

* This work was performed while the author was visiting CMU.

popularity-based ranking clearly fails to maximize an ob-
jective based on average quality of search results seen by



0.40 sponses. Text at the top stated that the jokes and quotations

were presented in descending order of funniness, as rated
0.30 4 by users of the site.

A total of 962 volunteers participated in our study over a
period of45 days. Users were split at random into two user
0.20 groups: one group for which a simple form of rank pro-
motion was used, and one for which rank promotion was
not used. The method of rank promotion we used in this
experiment is to place new pages immediately below rank
position 20. For each user group we measured the ratio
0.00 | | of funny votes to total votes during this period. Figure 1

without rank ~ with rank shows the result. The ratio achieved using rank promo-
promotion  promotion tion was approximatel§0% larger than that obtained using
strict ranking by popularity.

Ratio of funny votes

0.10+

Figure 1. Improvement in overall quality due to rank pro-

motion in live study. 1.4 Design of Effective Rank Promotion Schemes

users. In the search engine context it is probably not appropriate
to insert promoted pages at a consistent rank position (lest
1.2 Entrenchment Problem in Other Contexts users learn over time to avoid them). Hence, we propose a

simplerandomized rank promotioacheme in which pro-

;/r\?eb entrenhchme_nt problem n;ay hot bel unlque_dto thenoted pages are assigned randomly-chosen rank positions.
eb search engine context. For example, COnsider rec- gy ' the question remains as to how aggressively one

ommendation systems [13], which are widely used in €-should promote new pages. Manv new bages on the Web
commerce [20]. Many users decide which items to view P Pages. y bag

based dati but th K are not of high quality. Therefore, the extent of rank pro-
ased on recommendations, but these systems make reCofainn has to be limited very carefully, lest we negate the

mendations based on user evaluations of items they Vie\%enefits of ; ; ; ;
e ) popularity-based ranking by displacing pages
This circularity leads to the well-knowoold-start prob- known to be of high quality too often. With rank promotion

lem, and is also likely to lead to entrenchment. there is an inherent tradeoff betweerplorationof new

Indeed, Web search engines can be thought of as regy, 465 anexploitationof pages already known to be of high
ommendation systems that recommend Web pages. T

. . . ality. We study how to balance these two aspects, in the
entrenchment problem is particularly acute in the case of jntext of an overarching objective of maximizing the av-

Web search, because the sheer size of the Web forces usgfs, e quality of search results viewed by users, amortized
to rely very heavily on search engines for locating contenty,er time. In particular we seek to answer the following
Therefore, in this paper, we specifically focus on d'm'n'Sh'questions:

ing the entrenchment bias in the Web search context.

_ e Which pages should be treated as candidates for ex-
1.3 Our Key Idea: Rank Promotion ploration, i.e., included in the rank promotion process

. e i i ?
We propose a very simple modification to the method of S0 as to receive transient rank boosts®

ranking search results according to popularity: promote a ¢ \which pages, if any, should be exploited uncondition-

small fraction of unexplored pages up in the_result_ list. A ally, i.e., protected from any rank demotion caused by
new page now has some chance of attracting clicks and promotion of other pages?

attention even if the initial popularity of the page is very

small. If a page has high quality, the rank boost gives the ¢ What should be the overall ratio of exploration to ex-
page a chance to prove itself. (Detailed definitions and al-  ploitation?

gorithms are given later in the paper.)

As an initial test for effectiveness, we conducted a real- Before we can begin to address these questions, we must
world study, which we now describe briefly (a complete model the relationship between user queries and search en-
description is provided in Appendix A). We created our gine results. We categorize the pages on the Web into dis-
own small Web community consisting of several thousandoint groups bytopic, such that each page pertains to ex-
Web pages, each containing a joke/quotation gathered froractly one topic. LetP be the set of pages devoted to a
online databases. We decided to use “funniness” as a surrgarticular topicT" (e.g., “swimming” or “Linux”), and let
gate for quality, since users are generally willing to providel/ denote the set of users interested in tapidNVe say that
their opinion about how funny something is. Users hadthe useré/ and page® corresponding to topi€’, taken to-
the option to rate the funniness of the jokes/quotations thegether make up ¥eb community(Users may participate
visit. The main page of the Web site we set up consisted oin multiple communities.) For now we assume all users
an ordered list of links to individual joke/quotation pages,access the Web uniquely through a (single) search engine.
in groups of ten at a time, as is typical in search engine refWe relax this assumption later in Section 8.) We further



assume a one-to-one correspondence between queries andA few solutions to the entrenchment problem have been
topics, so that each query returns exactly the set of paggwoposed [3, 6,22]. They rely on variations of PageRank:
for the corresponding community. the solutions of [3,22] assign an additional weighting factor

Communities are likely to differ a great deal in terms of based on page age; that of [6] uses the derivative of PageR-
factors like the number of users, the number of pages, thank to forecast future PageRank values for young pages.
rate at which users visit pages, page lifetimes, etc. These Our approach, randomized rank promotion, is quite dif-
factors play a significant role in determining how a givenferent in spirit. The main strength of our approach is its
rank promotion scheme influences page popularity evolusimplicity—it does not rely on measurements of the age
tion. For example, communities with very active users areor PageRank evolution of individual Web pages, which are
likely to be less susceptible to the entrenchment effect thadifficult to obtain and error-prone at low sample rates. (UI-
those whose users do not visit very many pages. Conseaimately, it may make sense to use our approach in conjunc-
guently, a given rank promotion scheme is bound to creatéon with other techniques, in a complementary fashion.)
quite different outcomes in the two types of communities. The exploration/exploitation tradeoff that arises in our
In this paper we provide an analytical method for predict-context is akin to problems studied in the field of reinforce-
ing the effect of deploying a particular randomized rankment learning [12]. However, direct application of rein-
promotion scheme in a given community, as a function offorcement learning algorithms appears prohibitively expen-
the most important high-level community characteristics. sive at Web scales.

1.5 Experimental Study 3 Model and Metrics

We _seek to model avery Comp'ex dynamical system '™n this section we introduce the model of Web page popu-
volving search engines, evolving pages, and user action

and trace its traiectory in time. It is worth emphasizin ?arity, adopted from [5], that we use in the rest of this paper.
that even if we cj)wnedythe moét ooular searchpen inegirg':or convenience, a summary of the notation we use is pro-

B i OSt pop - 9IN€ Nided in Table 1.) Our model makes a number of simpli-
the world, “clean-room” experiments would be impossible.

We could not even study the effect of different choices Offying assumptions that are not perfect, but that we believe

i . reserve the essence of the dynamic process we seek to un-
a parameter, because an earlier choice would leave large-

) - . iy erstand.
scale and |n_deI|bIe artlfacts on the Web graph, visit rates, Recall from Section 1.4 that in our model the Web is
and popularity of certain pages. Therefore, analysis and

simulations are inescapable, and practical experiments (acsategonzed into_disjoint groups by topic, such that each

in Section 1.3) must be conducted in a sandbox page pertains to exactly one topic. [Z&be the set of pages
: S : L devoted to a particular topif, and let/ denote the set of
Through a combination of analysis and simulation, we

. ; X . users interested in topi€. Letn = |P| andu = |U]|
arrive at a particular recipe for randoml_zeq rank PromMO-4ohote the number of pages and users, respectively, in the
tion that balances exploration and exploitation effectively, ' '

and yields good results across a broad range of communi&ommumty'

types. Robustness is desirable because, in practice, com- )
munities are not disjoint and therefore their characteristic$-1 Page Popularity

cannot be measured reliably. In our model, time is divided into discrete intervals, and
) at the end of each interval the search engine measures the
1.6 Outline popularity of each Web page according to in-link count,

In Section 3 we present our model of Web page popularP@geRank, user traffic, or some other indicator of popu-
ity, describe the exploration/exploitation tradeoff as it ex-larity among users. Usually it is only possible to measure
ists in our context, and introduce two metrics for evaluat-POPularity among a minority of users. Indeed, for in-link
ing rank promotion schemes. We then propose a randonf:0unt or PageRank, only those users who have the abil-
ized method of rank promotion in Section 4, and supply arly {0 create links are counted. For metrics based on user
analytical model of page popularity evolution under ran-traffic, typically o_nly users who agree to install a special
domized rank promotion in Section 5. In Sections 6-8 weloolbar that monitors Web usage, as in [1], are counted.
present extensive analytical and simulation results, and re&-6tUm € U denote the set ahonitored usersover which
ommend and evaluate a robust recipe for randomized ranR29€ popularity is measured, and iet= [i/,,|. We as-

promotion. sumels,,, constitutes a representative sample of the overall
user populatior/.
2 Related Work Let the total number of user visits to pages per unit time

be fixed atv,,. Further, lety denote the number of visits per
The entrenchment effect has been attracting attention founit time by monitored users, with = v, - *. The way
several years [7-9, 15, 19, 21], but formal models for andhese visits are distributed among page®iis determined
analysis of the impact of search engines on the evolutiotargely by the search engine ranking method in use; we will
of the Web graph [4] or on the time taken by new pages tacome back to this aspect later. For now we simply provide
become popular [5] are recent. a definition of the visit rate of a pagec P.



| Symbol | Meaning
P Set of Web pages in community exploitation loss
n =|P| PrTTTTmmmsmssopesmsssosssssssssossossoses
u Set of users in community :
u =1 s
U, Set of monitored users in community % : exploration | ***"" with rank promotion
m = ‘Um‘ ® : benefit —— without rank promotion
P(p,t) | Popularity among monitored users of page > :
at timet :
V.(p,t) | Number of user visits to page :
during unit time interval at :
V(p,t) | Number of visits top by monitored users at H
t 0 Time |
Uy Total number of user visits per unit time
v Number of visits by monitored users per unit Figure 2: Exploration/exploitation tradeoff.
time _ ) _ o
A(p,t) | Awareness among monitored users of page it takes'for a new hlgh-qual_|ty page to attain its eventual
at timet popularity, denoted BP for “time to become popular.” In
Q) Intrinsic quality of page this paper we measure TBP as the time it takes for a high-
7 Expected page lifetime qual!ty page to attain popularity that exceeld¥% of its
quality level.
Table 1: Notation used in this paper. Figure 2 shows popularity evolution curves for a partic-

ular page having very high quality created at tithaith
Definition 3.1 (Visit Rate) The visit rate of pageat time  lifetime [, both with and without rank promotion. (It has
t, V(p,t), is defined as the number of timess visited by  been shown [5] that popularity evolution curves are close
any monitored user within a unit time interval at tirhe to step-functions.) Time is plotted on the x-axis. The y-

axis plots the number of user visits per time unit. Note that
Similarly, let V,(p,t) denote the number of visits by while the page becomes popular earlier when rank promo-
any user in{ (monitored and unmonitored users alike) tion is applied, the number of visits it receives once popu-
within a unit time interval at timef. We require that |ar is somewhat lower than in the case without rank promo-
Vt, 3 pep Vulp 1) = vy @ndve, 3- . V(p,t) = v. Once tion. Thatis because systematic application of rank promo-
a user visits a page for the first time, she becomes “awarefion inevitably comes at the cost of fewer visits to already-
of that page. popular pages.

Definition 3.2 (Awareness) The awareness level of page 3.3 Exploration/Exploitation Tradeoff and
at timet, A(p,t), is defined as the fraction of monitored Quality-Per-Click Metric

users who have visiteglat least once by time
The two shaded regions of Figure 2 indicate the positive
We define the popularity of page at timet, P(p,t) €  and negative aspects of rank promotion. Exploration
[0, 1], as follows: benefitarea corresponds to the increase in the number of
additional visits to this particular high-quality page during
its lifetime made possible by promoting it early on. Tehe
P(p,t) = A(p,t) - Q(p) (1) ploitation lossarea corresponds to the decrease in visits due
to promotion of other pages, which may mostly be of low
guality compared to this one. Clearly there is a need to bal-
ance these two factors. The TBP metric is one-sided in this
of p. e . respect, so we introduce a second metric that takes into ac-
In our model page popularity is a monotonically nonde- ¢+ hoth exploitation and exploitatioguality-per-click
creasing function of time. Therefore if we assume nonzerq, QPC for short. QPC measures the average quality of
page viewing probabilities, for a page of infinite lifetime pages viewed by users, amortized over a long period of
limi—cc P(p,t) = Q(p)- time. We believe that maximizing QPC is a suitable ob-
jective for designing a rank promotion strategy.
We now derive a mathematical expression for QPC in
If pages are ranked strictly according to current popularity,our model. First, recall that the number of visits by any user
it can take a long time for the popularity of a new page toto pagep during time intervat is denoted’,, (p, t). We can
approach its quality. Artificially promoting the rank of new express the cumulative quality of all pagesArviewed at
pages can potentially accelerate this process. One impotimet aszpep Vu(p,t) - Q(p). Taking the average across
tant objective for rank promotion is to minimize the time time in the limit as the time duration tends to infinity, we

whereQ(p) € [0,1] (page quality denotes the extent to
which an average user would “like” pagéf she was aware

3.2 Rank Promotion



obtain: k = 2, which safeguards the top result of any search
query, thereby preserving the “feeling lucky” property

. that is of significant value in some situations.
im0 (Vulpt) - QW)
=0 pcP e Degree of randomization ¢): Whenk is small, this
By normalizing, we arrive at our expression for QPC: parameter governs the tradeoff between emphasiz-
ing exploration (large) and emphasizing exploitation
(smallr).

QPC = lim Z;:o 2pep (Vu(p,t) - Q(p))

t—oo Z;:o ( ZpE’P Vu(pv tl))

4 Randomized Rank Promotion

Our goal is to determine settings of the above parameters
that lead to good TBP and QPC values. The remainder of
this paper is dedicated to this task. Next we present our
analytical model of Web page popularity evolution, which
We now describe our simple randomized rank promotionwe use to estimate TBP and QPC under various ranking
scheme (this description is purely conceptual; more effimethods.
cient implementation techniques exist).

Let P denote the set of responses to a user query. A 5 Analytical Model
subset of those pageB, C P is set aside as th@omotion .
pool, which contains the set of pages selected for rank pro@ur analytical model has these features:
motion according to a predetermined rule. (The particular
rule for selectingP,, as well as two additional parameters,
k > 1andr € [0, 1], are configuration options that we the number of users are fixed in steady state. The qual-
discuss shortly.) Pages #, are sorted randomly and the ity distribution of pages is stationary.
resultis stored in the ordered li§},. The remaining pages 3 o
(P — P,) are ranked in the usual deterministic way, in de- ® The expected awareness, popularity, rank, and visit
scending order of popularity; the result is an ordered list ~ rate of a page are coupled to each other through a com-

e Pages have finite lifetime following an exponential
distribution (Section 5.1). The number of pages and

L4. The two lists are merged to create the final resultdist bination of the search engine ranking function and the
according to the following procedure: bias in user attention to search results (Sections 5.2
and 5.3).
1. The topk — 1 elements ofC,; are removed fronL, ' _
and inserted into the beginning Gfwhile preserving Given that (a) modern search engines appear to be
their order. strongly influenced by popularity-based measures while

] ] o ~ranking results, and (b) users tend to focus their attention
2. The element to insert intg at each remaining posi- primarily on the top-ranked results [11,14], it is reasonable
tioni = k,k+1,...,nis determined one at a time, o assume that the expected visit rate of a page is a function
ity  the next element is taken from the top of I5;

otherwise it is taken from the top df,. If one of £, V(p,t) = F(P(p,t)) ()

or L4 becomes empty, all remaining entries are taken

from the nonempty list. At the end botfy; andZ,  where the form of function”'(x) depends on the ranking
will be empty, andC will contain one entry for each method in use and the bias in user attention. For example,
of then pages irP. if ranking is completely random, theW(p, t) is indepen-
dent of P(p, t) and the same for all pages, B¢z) = v- L.
(Recall thatv is the total number of monitored user visits

e Promotion pool (P,): In this paper we consider two P€r _unit time.) If _ranking is_done in such a way that user
rules for determining which pages are promoted: (a)trafflc to a page is proportlc_)nal to the _populanty of that
theuniformpromotion rule, in which every page is in- Pag9e.F'(z) = v - £, whereg is a normalization factor; at
cluded in, with equal probability-, and (b) these- ~ steady-statep = 3>~ ., P(p,t). If ranking is performed
lective promotion rule, in which all pages whose cur- the aforementioned wa§0% of the time, and performed
rent awareness level among monitored users is zercandomly50% of the time, therF'(z) = 11-(0.5%+0.5~%).
(i.e., A(p,t) = 0) are included irP,, and no others. For the randomized rank promotion we introduced in Sec-
(Other rules are of course possible; we chose to focusion 4 the situation is more complex. We defer discussion
on these two in particular because they roughly cor-of how to obtainF(z) to Section 5.3.
respond to the extrema of the spectrum of interesting
rules.) 5.1 Page Birth and Death

e Starting point (k): All pages whose natural rank is The set of pages on the Web is not fixed. Likewise, we as-
better thank are protected from the effects of pro- sume that for a given community based around tdpithe
moting other pages. A particularly interesting value issetP of pages in the community evolves over time due to

The configuration parameters are:



pages being created and retired. To keep our analysis man- 107

ageable we assume that the rate of retirement matches the > 08 o
rate of creation, so that the total number of pages remains 5 06 == Np randomization
fixed atn = |P|. We model retirement of pages as a Pois- S 0.4
son process with rate parameterso the expected lifetime & o2
of a page ig = 1 (all pages have the same expected life- 0.0 ‘ ‘ ‘ ‘ J
time!). When a page is retired, a new page of equal quality 00 02 04 06 08 10
is created immediately, so the distribution of page quality 1.0,
values is stationary. When a new page is created it has ini- > 081 __Selective randomization
tial awareness and popularity values of zero. % 06]  (r=02k=1)
g 0.4
5.2 Awareness Distribution T ool
We derive an expression for the distribution of page aware- o.o0 ST 0T 0 08 L0
ness values, which we then use to obtain an expression for ' “ Awareness ' '

quality-per-click (QPC). We analyze the steady-state sce-
nario, in which the awareness and popularity distributionsrigure 3: Awareness distribution of pages of high quality
have stabilized and remain steady over time. Our modelinder randomized and nonrandomized ranking.
may not seem to indicate steady-state behavior, because
the set of pages is constantly in flux and the awareness arghd» = 0.2, for our default Web community characteris-
popularity of an individual page changes over time. To un-tics (see Section 6.1). For this graph we used the procedure
derstand the basis for assuming steady-state behavior, coflescribed in Section 5.3 to obtain the functiB(z).
sider the se€; of pages created at tinteand the se€; Observe that if randomized rank promotion is used, in
of pages created at tinte- 1. Since page creation is gov- steady-state most high-quality pages have large awareness,
erned by a Poisson process the expected sizes of the tweghereas if standard nonrandomized ranking is used most
sets are equal. Recall that we assume the distribution gfages have very small awareness. Hence, under random-
page quality values remains the same at all times. Therdzed rank promotion most pages having high quality spend
fore, the popularity of all pages in both andC; 1 will  most of their lifetimes with near00% awareness, yet with
increase from the starting value @according to the same nonrandomized ranking they spend most of their lifetimes
popularity evolution law. At time + 1, when the pages with near-zero awareness. Under either ranking scheme
in C; have evolved in popularity according to the law for pages spend very little time in the middle of the aware-
the first time unit, the new pagesdy, ; introduced attime ness scale, since the rise to high awareness is nearly a step
t + 1 will replace the old popularity values of tlig pages.  function.
A symmetric effect occurs with pages that are retired, re-  Given an awareness distributigita|q), it is straightfor-
sulting in steady-state behavior overall. In the steady-stateyard to determine expected time-to-become-popular (TBP)
both popularity and awareness distributions are stationarycorresponding to a given quality value (formula omitted for
The steady-state awareness distribution is given as folprevity). Expected quality-per-click (QPC) is expressed as
lows. follows:

Theorem 1 Among all pages iP whose quality ig;, the

fraction that have awareness = - (fori = 0,1,...,m) QPC = Y opep 2o F(ailQ(p)) - Fai - Q(p)) - Q(p)
IS- Y opep 2o F(aiQ(p)) - F(ai - Q(p))
F(ailq) = A Flaj—1-q) (3) Wherea; = . (Recall our assumption that monitored
A+ F(0)) - (1 = ai) 5 A+ Flaj-q) users are a representative sample of all users.)
whereF'(z) is the function in Equation 2. 5.3 Popularity to Visit Rate Relationship

In this section we derive the functiafi(z) used in Equa-

Proof: See A dix B.
rool- See Appendix o tion 2, which governs the relationship betweR(p, t) and
Figure 3 plots the steady-state awareness distribution fotrhe expectation oF(p, t). As done in [5] we split the rela-

pages of highest quality, under both nonrandomized rankt-i : :
! ; : X : onship between the popularity of a page and the expected
ing and selective randomized rank promotion with= 1 number of visits into two components: (1) the relationship

1In reality, page lifetime might be positively correlated with popularity between popularity and rank position, and (2) the relation-
and/or quality. Unfortunately we do not have access to data suitable foship between rank position and the number of visits. We
measuring such correlations, so in this paper we treat I|f_et|me as a flxe@enote these two relationships as the functihsind F,
quantity across all pages. Interestingly, a positive correlation between life- . L
time and popularity seems likely to make the entrenchment problem Worséespecnvely' and write:
than what our model predicts, whereas a positive correlation between life-
time and quality may make the problem less severe. F(z) = Fy(Fi(x))




where the output of is the rank position of a page of pop- as we will demonstrate shortly. Under selective random-
ularity z, andF5 is a function from that rank to a visit rate. ized ranking the expected rank of a page of popularity
Our rationale for splitting?” in this way is that, according whenz > 0, is given by:

to empirical findings reported in [11], the likelihood of a

user visiting a page presented in a search result list depends

primarily on the rank position at which the page appears. _, . | Fi(z) if Fi(z) <k

We begin withF5, the dependence of the expected num- 1)~ Fi(z) + min{%, z} otherwise
ber of user visits on the rank of a page in a result list. Anal-
ysis of AltaVista usage logs [5,14] reveal that the following where F; is as in Equation 5, and denotes the expected
relationship holds quite closély number of pages with zero awareness, an estimate for

which can be computed without difficulty under our steady-
_3/2 state assumption. (The caseof= 0 must be handled
Fy(x) = 0-x (4) separately; we omit the details due to lack of space.)

The above expressions 6l («) or F}(x) each contain

a circularity, because our formula fgia|q) (Equation 3)
v containsF'(x). It appears that a closed-form solution for
0 = ST 372 F(z) is difficult to obtain. In the absence of a closed-form
=t expression one option is to determifiéx) via simulation.
wherev is the total number of monitored user visits per unit The method we use is to solve f6i(x) using an iterative
time. procedure, as follows.

Next we turn toF;, the dependence of rank on the pop- ~ We start with a simple function fdr'(x), sayF'(z) =z,
ularity of a page. Note that since the awareness level ofS an initial guess at the solution. We then substitute this
a particular page cannot be pinpointed precisely (it is exfunction into the right-hand side of the appropriate equation
pressed as a probability distribution), we exprésér) as ~ above to produce a neW(x) function in numerical form.
theexpectedank pOSition of a page of popu|ariﬁy In do- We then (?O.nvert the nUmerlCEl(iL’) fUnCtl(?n Into SymbO“C
ing so we compromise accuracy to some extent, since wirm by fitting a curve, and repeat until convergence oc-
will determine the expected number of visits by applyingcurs. (Upon each iteration we adjust the curve slightly so
F; to the expected rank, as opposed to summing over thas to fit the extreme points corresponding.to= 0 and
full distribution of rank values. (We examine the accuracy® = 1 especially carefully; details omitted for brevity.) In-
of our analysis in Sections 6.2 and 6.3.) terestingly, we found that using a quadratic curve in log-log

Under nonrandomized ranking, the expected rank of &Pace led to good convergence for all parameter settings we
page of popularityr is one plus the expected number of tested, so that:
pages whose popularities surpas8y Equation 1, page
hasP(p,t) > z if it has A(p,t) > x/Q(p). From Theo- log F = a-(logz)? + - logx + 7
rem 1 the probability that a randomly-chosen pagsatis-
fies this condition is:

> ik

i=14[m-z/Q(p)]

whereé is a normalization constant, which we set as:

where «, 3, and~ are determined using a curve fitting
procedure. We later verified via simulation that across a
variety of scenariod'(z) can be fit quite accurately to a
Q(p)> guadratic curve in log-log space.

6 Effect of Randomized Rank Promotion
and Recommended Parameter Settings

In this section we report our measurements of the impact of
randomized rank promotion on search engine quality. We
begin by describing the default Web community scenario

Q(p)) (5)  we use in Section 6.1. Then we report the effect of ran-
domized rank promotion on TBP and QPC in Sections 6.2

o ] ) ) and 6.3, respectively. Lastly, in Section 6.4 we investigate

(This is an approximate expression because we ignore thgoy to balance exploration and exploitation, and give our

effect of ties in popularity values, and because we neglectecommended recipe for randomized rank promotion.

to discount one page of popularityfrom the outer sum-

mation.) , , _ 6.1 Default Scenario

The formula forF; under uniform randomized ranking
is rather complex, so we omitit. We focus instead on selecFor the results we report in this paper, the defauieb

tive randomized ranking, which is a more effective strategycommunity we use is one having= 10,000 pages. The

remaining characteristics of our default Web community
2User views were measured at the granularity of groups of ten results

in [14], and later extrapolated to individual pages in [5]. 3We supply results for other community types in Section 7.

By linearity of expectation, summing over alle P we
arrive at:

Fiz)~1+ ) > f(jn
()]

pEP \i=14+|mz/Q
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Figure 4: Popularity evolution of a page of quality= 0.4 Figure 5: Time to become popular (TBP) for a page of qual-
under nonrandomized, uniform randomized, and selectivéty 0.4 in default Web community as degree of randomiza-
randomized ranking. tion (r) is varied.

are set so as to be in proportion to observed characteripages according to Equation 4. Our simulator keeps track
tics of the entire Web, as follows. First, we set the expectedf awareness and popularity values of individual pages as
page lifetime tol = 1.5 years (based on data from [16]). they evolve over time, and creates and retires pages as dic-
Our default Web community has= 1000 users making a tated by our model. After a sufficient period of time has
total of v, = 1000 visits per day (based on data reported passed to reach steady-state behavior, we take measure-
in [2], the number of Web users is roughly one-tenth thements. These results are plotted in Figure 5, side-by-side
number of pages, and an average user queries a search &vith our analytical results. We observe a close correspon-
gine about once per day). We assume that a search enginedence between our analytical model and our simuldtion.
able to monitorl 0% of its users, sen = 100 andv = 100.
As for page quality values, we had little basis for mea-g 3 Effect of Randomized Rank Promotion on QPC
suring the intrinsic quality distribution of pages on the Web.
As the best available approximation, we used the powerWe now turn to quality-per-click (QPC). Throughout this
law distribution reported for PageRank in [5], with the paper (exceptin Section 8) we normalize all QPC measure-
quality value of the highest-quality page setdtd. (We  ments such tha) PC = 1.0 corresponds to the theoretical
chose0.4 based on the fraction of Internet users who fre-upper bound achieved by ranking pages in descending or-
guent the most popular Web portal site, according to [18].)der of quality. The graph in Figure 6 plots normalized QPC
as we vary the promotion rule and the degree of random-
6.2 Effect of Randomized Rank Promotion on TBP izationr (holdingk fixed atk = 1), under our default Web
community characteristics of Section 6.1. For a community

Figure 4 shows popularity evolution curves derived from o .
the awareness distribution determined analytically for aWIth these characteristics, a moderate dose of randomized

page of quality.4 under three different ranking methods: rank promotion increases QPC substantially, especially un-

(1) nonrandomized ranking, (2) randomized ranking usingder selective promotion.

uniform promotion with the starting poirit = 1 and the _ _ o .
degree of randomization= 0.2, and (3) randomized rank- 6.4 Balancing Exploration, Exploitation, and Reality

INg using selective promotion W't.h. = landr - 0.2. We have established a strong case that selective rank pro-
This graph shows that, not surprisingly, randomized rank

romotion can imorove TBP by a larae marain. More in- motion is superior to uniform promotion. In this section we
p : : prov Y ge gm. . investigate how to set the other two randomized rank pro-
terestingly it also indicates that selective rank promotion

achieves substantially better TBP than uniform promotion.mOtIon parameters; andr, so as to balance exploration

Because. for smalt. there is limited oppOItUNItY to Dro- and exploitation and achieve high QPC. For this purpose
' N d Opp ytop we prefer to rely on simulation, as opposed to analysis, for
mote pages, focusing on pages with zero awareness tur

out to be the most effective method. rﬁ?a#]mur:] aﬁcilrj]r??y'r 7 plots normalized OPC as we var
Figure 5 shows TBP measurements for a page of qual- €grap gure 7 plots normalized QPC as we vary

ity 0.4 in our default Web community, for different values ZOthk anldr, underrl'orlir def;lault §cenacrjiod(?ecticr)1n 6'131'. Ahs
of r (fixing £k = 1). As expected, increased randomiza- grows larger, a higher value 1S needed o achieve hig

tion leads to lower TBP, especially if selective promotionQPC' Intumvely,_ as the starting point for rank promotion
is employed. becomes lower in the ranked list (largey, a denser con-

To validate our analytlcal model, we created a simulator 40ur analysis is only intended to be accurate for small values, of

that maintains an evolving ranked list of pages (the rankingynicn is why we only plot results for < 0.2. From a practical standpoint
method used is configurable), and distributes user visits tenly small values of are of interest.
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Figure 6: Quality-per-click (QPC) for default Web commu- Figure 7: Qualitiy-per-click (QPC) for default Web com-
nity as degree of randomization)(s varied. munity under selective randomized rank promotion, as de-

gree of randomization-§ and starting pointX) are varied.

centration of promoted pages (larggris required to en-

sure that new high-quality pages are discovered by users.rely on simulation rather than analysis to ensure maximum
For search engines, we take the view that it is undesirdccuracy.

able to include a noticeable amount of randomization in

ranking, regardless of the starting point Based on Fig-

ure 7, using onlyl0% randomization{ = 0.1) appears

sufficient to achieve most of the benefit of rank promotion,l_| h b f in th .
as long a% is kept small (e.g% = 1 or2). Under10% ran- ere we vary the number of pages in the community,

B : hile holding the ratio of users to pages fixedudth =
domization, roughly one page in every group of ten quer))N - ; . -
results is a new, untested page, as opposed to an establis dO' ff_|x_|ng ttT]e fractlc;)n of r?o(;nt_?red “Sefs_ﬁ_f/“ = 10%, "
page. We do not believe most users are likely to notice thi§Nnd fIxing the number of daily page ViSItS per user a

effect, given the amount of noise normally presentin searcfju/u = v/m = 1. Figure 8 shows the result, with com-
engine results. munity sizen plotted on the x-axis on a logarithmic scale.

A possible exception is for the topmost query result,The y-axis plots normalized QPC for three different rank-

which users often expect to be consistent if they issue the'? methods: nonrandomized, selective randomized with

: . . . 7 = 0.1 andk = 1, and selective randomized with= 0.1
same query mult!ple times. Plus, for cer_taln QUENES USET3 4k — 2. With nonrandomized ranking, QPC declines as
expectto see a single, “correct,” answer in the tO,F,) rank pc.)'community size increases, because it becomes more diffi-
sition (e.g., most users would expect the query “Carnegi€

Mellon” to return a link to the Carnegie Mellon Univer- cult for new high-quality pages to overcome the entrench-

sity home page at positiot), and quite a bit of effort goes ment effect. Under randomized rank promotion, on the
Sity pag P -andq 9 other hand, due to rank promotion QPC remains high and
into ensuring that search engines return that result at th

topmost rank position. That is why we include the= 2 1ea|rly steady across a range of community sizes.
parameter setting, which ensures that the top-ranked search
result is never perturbed. 79

7.1 Influence of Community Size

Influence of Page Lifetime

Recommendation: Introduce 10% randomization start-
ing at rank positionl or 2, and exclusively target zero-
awareness pages for random rank promotion.

Figure 9 shows QPC as we vary the expected page lifetime
[ while keeping all other community characteristics fixed.
(Recall that in our model the number of pages in the com-
munity remains constant across time, and when a page is
7 Robustness Across Different Community retired a new one of equal quality but zero awareness takes

Types its place.) The QPC curve for nonrandomized ranking con-

firms our intuition: when there is less churn in the set of

In this section we investigate the robustness of our recompages in the community (lardg QPC is penalized less by
mended ranking method (selective promotion rule; 0.1, the entrenchment effect. More interestingly, the margin of
k € {1,2}) as we vary the characteristics of our testbedimprovement in QPC over nonrandomized ranking due to
Web community. Our objectives are to demonstrate: (1)ntroducing randomness is greater when pages tend to live
that if we consider a wide range of community types, amordonger. The reason is that with a low page creation rate
tized search result quality is never harmed by our randomthe promotion pool can be kept small. Consequently new
ized rank promotion scheme, and (2) that our method impages benefit from larger and more frequent rank boosts,
proves result quality substantially in most cases, comparedn the whole, helping the high-quality ones get discovered
with traditional deterministic ranking. In this section we quickly.
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7.3 Influence of Visit Rate m/u = 10%. Note that we keep the total number of visits

per day fixed, but vary the number of users making those
The influence of the aggregate user visit rate on QPC igjsits. The idea is to compare communities in which most
plotted in Figure 10. Visit rate is plotted on the X-axis on apage visits come from a core group of fairly active users to
logarithmic scale, and QPC is plotted on the y-axis. Heregnes receiving a large number of occasional visitors. Fig-
we hold the number of pages fixed at our default value ofyre 11 shows the result, with the number of usepdotted
n = 10,000 and use our default expected lifetime value of gn the x-axis on a logarithmic scale, and QPC plotted on
| = 1.5 years. We vary the total number of user visits perthe y-axis. All three ranking methods perform somewhat
day v, while holding the ratio of daily page visits to users worse when the pool of users is large, although the perfor-
fixed atv,/u = 1 and, as always, fixing the fraction of mance ratios remain about the same. The reason for this
monitored users as/u = 10%. From Figure 10 we see trend is that with a larger user pool, a stray visit to a new

first of all that, not surprisingly, popularity-based ranking high-quality page provides less traction in terms of overall
fundamentally fails if very few pages are visited by users.gwareness.

Second, if the number of visits is very lardé(0 visits per
day to an average page), then there is no need for random- . . .
ization in ranking (although it does not hurt much). Forr% Mixed Surfing and Searching

visit rates within an order of magnitude on either side OfThe model we have exp|ored thus far assumes that users
0.1 -n= 1000, Wthh matches the average visit .rate of make visit to pages 0n|y by querying a search engine_
search_englness in general whens scaled to the size of \hile a very large number of surf trails start from search
the entire Web? there is significant benefit to using ran- engines and are very short, nonnegligible surfing may still
domized rank promotion. be occurring without support from search engines. We use

the following model for mixed surfing and searching:
7.4 Influence of Size of User Population

Lastly we study the affect of varying the number of usersin ® While performingrandom surfind17], users traverse
the community:, while holding all other parameters fixed: a link to some neighbor with probabilityl — ¢), and
n = 10,000, [ = 1.5 years,v, = 1000 visits per day, and jump to a random page with probability The con-
stantc is known as théeleportation probability typi-
5According to our rough estimate based on data from [2]. cally setto 0.15 [10].




020 by transiently promoting them in rank can improve over-

all result quality substantially. We then introduced a new
rank promotion strategy based on partial randomization of
rank positions, and showed via extensive simulation that
using just10% randomization consistently leads to much
higher-quality search results compared with strict deter-
ministic ranking. Compared with previous rank promotion

0.154-~

0.10

005 & Norandomization methods, the randomized approach proposed here is sim-

-A Selective randomization (k=1)
-4- Selective randomization (k=2)

Absol ute quality-per-click (QPC)

pler and considerably more robust, since it does not rely
000) on fine-grain temporal measurements of the Web. Overall,
“00 02 04 06 08 10 we conclude that partially randomized ranking is a promis-
Fraction of random surfing (x) ing approach that merits further study and evaluation. To
help pave the way for further work, we have developed
Figure 12: Influence of the extent of random surfing. new analytical models of Web page popularity evolution
under deterministic and randomized search result ranking,
e While browsing the Web, users perform random surf-and introduced formal metrics by which to evaluate ranking
ing with probabilityz. With probability (1 — x) users ~ methods.
guery a search engine and browse among results pre-
sented in the form of a ranked list. References
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Real-World Effectiveness of Rank
Promotion

pages, in groups of ten at a time, as is typical in search en-
gine responses. Text at the top stated that the jokes and
guotations were presented in descending order of funni-
ness, as rated by users of the site. Users had the option to
rate the items: we equipped each joke/quotation page with
three buttons, labeled “funny,” “neutral,” and “not funny.”

To minimize the possibility of voter fraud, once a user had
rated an item the buttons were removed from that item, and
remained absent upon all subsequent visits by the same user
to the same page.

Users: We advertised our site daily over a period 4if
days, and encouraged visitors to rate whichever jokes and
quotations they decided to view. Overall we i par-
ticipants. Each person who visited the site for the first time
was assigned at random into one of two user groups (we
used cookies to ensure consistent group membership across
multiple visits, assuming few people would visit our site
from multiple computers): one group for which rank pro-
motion was used, and one for which rank promotion was
not used. For the latter group, items were presented in de-
scending order of current popularity, measured as the num-
ber of funny votes submitted by members of the gréup.
For the other group of users, items were also presented
in descending order of popularity among members of the

We provide details of the live experiment mentioned in Secgroup, except that all items that had not yet been viewed
tion 1.3, which we conducted to study the effect of rankby any user were inserted in a random order starting at
promotion on the evolution of popularity of Web pages.

Al

Experimental Procedure

rank positior21 (This variant corresponds to selective pro-
motion with £ = 21 andr = 1.). A new random order

for these zero-awareness items was chosen for each unique
user. Users were not informed that rank promotion was be-

We created our own small Web community consisting.
o ; ing employed.
of several thousand Web pages containing entertainment-

oriented content, and nearly one thousand volunteer usetSontent rotation: For each user group we kept the number
who had no prior knowledge of this project. of accessible joke/quotation items fixedl@00 throughout

P “We f d tertai b felt .the duration of out5-day experiment. However, each item
ages: We focused on entertainment because we Telt Ity 5 finjte lifetime of less thath days. Lifetimes for the

\_/rvrc])uld b? rgI?twelyteaES)é to_?ﬁtract a Itaré;e fnur?ber of usir%nitial 1000 items were assigned uniformly at random from
€ material we started with consisted ot a fargé humbe 1,30], to simulation a steady-state situation in which each

of jokes gathered from online databasgs. We decided t em had a real lifetime 030 days. When a particular item
use *funniness” as a surrogate for quality, since USers arg, e e replaced it with another item of the same qual-
general!y W.'”mg o provide their opinion apou_t hO.W funny ity, and set its lifetime t80 days and its initial popularity
something is. We wanted the funniness distribution of OUL ) Saro. At all times we used the same joke/quotation items

jokes to mimic the quality distribution of pages on the Web}or both user groups.

As far as we know PageRank is the best available estimate
of the quality distribution of Web pages, so we downsam-, 5 Results

pled our initial collection of jokes and quotations to match

the PageRank distribution reported in [5]. To determine the-irst, to verify that the subjects of our experiment behaved
funniness of our jokes for this purpose we used numericasimilarly to users of a search engine, we measured the re-
user ratings provided by the source databases. Since mdationship between the rank of an item and the number of
Web pages have very low PageRank, we needed a largéser Visits it received. We discovered a power-law with
number of nonfunny items to match the distribution, so wean exponent remarkably close /2, which is precisely
chose to supplement jokes with quotations. We obtainedhe relationship between rank and number of visits that has
our quotations from sites offering insightful quotations notbeen measured from usage logs of the AltaVista search en-
intended to be humorous. Each joke and quotation was corgine (see Section 5.3 for details).

verted into a single Web page on our site.

5Due to the relatively small scale of our experiment there were fre-

. . . quent ties in popularity values. We chose to break ties based on age, with
Overall site: The main page of the Web site we set up con-gger pages receiving better rank positions, to simulate a less discretized

sisted of an ordered list of links to individual joke/quotation situation.



We then proceeded to assess the impact of rank promdsiven our steady-state assumption, the fraction of pages at
tion. For this purpose we wanted to analyze a steady-state; afterdt is the same as the fraction of pages abefore
scenario, so we only measured the outcome of the finadt. Therefore,

15 days of our experiment (by then all the original items

had expired and been replaced). For each user group wef(a;) = [f(ai)Ps(a:)+ f(ai—1)Pr(ai—1)](1—Adt). (8)

measured the ratio of funny votes to total votes during this ]

period. Figure 1 shows the result. The ratio achieved usErom Equations 6, 7 and 8, we get

ing rank promotion was approximatel9g% larger than that

obtained using strict ranking by popularity. flai) _ (1= Adt)F(gai1)dt(1 — ai-1)
flai-1) (A + F(qai))dt(1 — a;)

B Proof of Theorem 1 Since we assum# is very small, we can ignore the second

Because we consider only the pages of quajind we order terms ofit in the above equation and simplify it to
focus on steady-state behavior, we will dr@pndt from
y iy flas) F(gqa;—1)(1 —a;—1)

our notation unless it causes confusion. For example, we = 9)
use f(a) and V(p) instead off(a|q) and V (p,t) in our flai-1) (A + Flgai))(1 — ai)
proof.

. . . . . inlicati ff("wi) flai—1) f(a1)
We consider a very short time intervéd during which ~ From the multiplication ofs™5 x Fa=3 x - -- X Fg,
every page is visited by at most one monitored user. Tha{/€ 9€t

is, V(p)dt < 1 for every pagep. Under this assumption fla;))  1—ap : F(ga;_1) 10
we can interprel/(p)dt as the probability that the page flao) ~ 1—a; 1A X+ F(qa ) (10)
is visited by one monitored user during the time interal =1

Now consider the pages of awarenass= --. Since We now computef(ag). Among the pages with aware-

these pages are visited by at most one monitored user dumessag, Pgs(ag) fraction will stay ata, afterdt. Also, \dt

ing dt, their awareness will either stay @t or increase to fraction new pages will appear, and their awareness is
a;+1. We usePg(a;) andP;(a;) to denote the probability (recall our assumption that new pages start with zero aware-
that that their awareness remainsabr increases from; ness). Therefore,

to a;11, respectively. The awareness of a page increases if

a monitored user who was previously unaware of the page flag) = f(ag)Ps(ao)(1l — Adt) + Adt 11
visits it. The probability that a monitored user visjtss ) _

V(p)dt. The probability that a random monitored user is After rearrangement and ignoring the second order terms

aware ofp is (1 — a;). Therefore, of dt, we get
[ p——— (12)
Pra;) = V(p)dt(l — a;) = F(P(p))dt(1 — a;) 7 Flgao) + X~ F(0)+ A
= Fqa:)dt(1 — a;) (6) By combining Equations 10 and 12, we get
Similarly, - 1 — ag i Flaa;_1)
Ps(a;) =1 —"Pr(a;) =1 - F(ga;)dt(1 —a;)  (7) — G AT (qa;)
We now compute the fraction of pages whose aware- _ A T Flgaj—1)
ness isa; afterdt. We assume that befor&, f(a;) and A+ F(0)(1—ay) e A+ F(qaj)

f(a;—1) fraction of pages have awarenessanda;_1, re-
spectively. A page will have awarenessafterdt if (1) its
awareness ig; beforedt and the awareness stays the same
or (2) its awareness is,_; beforedt, but it increases ta,.
Therefore, the fraction of pages at awarenessfter dt is
potentially

flai)Ps(a;) + f(ai-1)Pr(ai-1).

However, under our Poisson model, a page disappears with
probability Ad¢ during the time intervadt. Therefore, only

(1 — Xdt) fraction will survive and have awarenessafter

dt:

[f(ai)Ps(a;) + f(ai—1)Pr(a;—1)](1 — Adt)



