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Abstract

In-degree, PageRank, number of visits and other
measures of Web page popularity significantly in-
fluence the ranking of search results by modern
search engines. The assumption is thatpopular-
ity is closely correlated withquality, a more elu-
sive concept that is difficult to measure directly.
Unfortunately, the correlation between popularity
and quality is very weak for newly-created pages
that have yet to receive many visits and/or in-
links. Worse, since discovery of new content is
largely done by querying search engines, and be-
cause users usually focus their attention on the top
few results, newly-created but high-quality pages
are effectively “shut out,” and it can take a very
long time before they become popular.

We propose a simple and elegant solution to
this problem: the introduction of a controlled
amount of randomness into search result ranking
methods. Doing so offers new pages a chance
to prove their worth, although clearly using too
much randomness will degrade result quality and
annul any benefits achieved. Hence there is a
tradeoff betweenexplorationto estimate the qual-
ity of new pages andexploitationof pages already
known to be of high quality. We study this tradeoff
both analytically and via simulation, in the con-
text of an economic objective function based on
aggregate result quality amortized over time. We
show that a modest amount of randomness leads
to improved search results.

1 Introduction

Search engines are becoming the predominant means of
discovering and accessing content on the Web. Users ac-
cess Web content via a combination of following hyper-
links (browsing) and typing keyword queries into search
engines (searching). Yet as the Web overwhelms us with
its size, users naturally turn to increased searching and re-
duced depth of browsing, in relative terms. In absolute
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terms, an estimated625 million search queries are received
by major search engines each day [18].

Ideally, search engines should present query result pages
in order of some intrinsic measure ofquality. Quality can-
not be measured directly. However, various notions ofpop-
ularity, such as number of in-links, PageRank [17], number
of visits, etc., can be measured. Most Web search engines
assume that popularity is closely correlated with quality,
and rank results according to popularity.

1.1 The Entrenchment Problem

Unfortunately, the correlation between popularity and qual-
ity is very weak for newly-created pages that have few
visits and/or in-links. Worse, the process by which new,
high-quality pages accumulate popularity is actually in-
hibited by search engines. Since search engines dole out
a limited number of clicks per unit time among a large
number of pages, always listing highly popular pages at
the top, and because users usually focus their attention on
the top few results [11,14], newly-created but high-quality
pages are “shut out.” This increasing “entrenchment effect”
has witnessed broad commentary across political scientists,
the popular press, and Web researchers [7–9, 15, 19, 21]
and even led to the termGooglearchy. In a recent study,
Cho and Roy [5] show that heavy reliance on a search en-
gine that ranks results according to popularity can delay
widespread awareness of a high-quality page by a factor
of over 60, compared with a simulated world without a
search engine in which pages are accessed through brows-
ing alone.

Even if we ignore the (contentious) issue of fairness,
there are well-motivated economic objectives that are pe-
nalized by the entrenchment effect. Assuming a notion of
intrinsic page quality as perceived by users, a hypothetical
ideal search engine would bias users toward visiting those
pages of the highest quality at a given time, regardless of
popularity. Relying on popularity as a surrogate for qual-
ity sets up a vicious cycle of neglect for new pages, even
as entrenched pages collect an increasing fraction of user
clicks. Given that some of these new pages will gener-
ally have higher quality than some entrenched pages, pure
popularity-based ranking clearly fails to maximize an ob-
jective based on average quality of search results seen by
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Figure 1: Improvement in overall quality due to rank pro-
motion in live study.

users.

1.2 Entrenchment Problem in Other Contexts

The entrenchment problem may not be unique to the
Web search engine context. For example, consider rec-
ommendation systems [13], which are widely used in e-
commerce [20]. Many users decide which items to view
based on recommendations, but these systems make recom-
mendations based on user evaluations of items they view.
This circularity leads to the well-knowncold-start prob-
lem, and is also likely to lead to entrenchment.

Indeed, Web search engines can be thought of as rec-
ommendation systems that recommend Web pages. The
entrenchment problem is particularly acute in the case of
Web search, because the sheer size of the Web forces users
to rely very heavily on search engines for locating content.
Therefore, in this paper, we specifically focus on diminish-
ing the entrenchment bias in the Web search context.

1.3 Our Key Idea: Rank Promotion

We propose a very simple modification to the method of
ranking search results according to popularity: promote a
small fraction of unexplored pages up in the result list. A
new page now has some chance of attracting clicks and
attention even if the initial popularity of the page is very
small. If a page has high quality, the rank boost gives the
page a chance to prove itself. (Detailed definitions and al-
gorithms are given later in the paper.)

As an initial test for effectiveness, we conducted a real-
world study, which we now describe briefly (a complete
description is provided in Appendix A). We created our
own small Web community consisting of several thousand
Web pages, each containing a joke/quotation gathered from
online databases. We decided to use “funniness” as a surro-
gate for quality, since users are generally willing to provide
their opinion about how funny something is. Users had
the option to rate the funniness of the jokes/quotations they
visit. The main page of the Web site we set up consisted of
an ordered list of links to individual joke/quotation pages,
in groups of ten at a time, as is typical in search engine re-

sponses. Text at the top stated that the jokes and quotations
were presented in descending order of funniness, as rated
by users of the site.

A total of 962 volunteers participated in our study over a
period of45 days. Users were split at random into two user
groups: one group for which a simple form of rank pro-
motion was used, and one for which rank promotion was
not used. The method of rank promotion we used in this
experiment is to place new pages immediately below rank
position 20. For each user group we measured the ratio
of funny votes to total votes during this period. Figure 1
shows the result. The ratio achieved using rank promo-
tion was approximately60% larger than that obtained using
strict ranking by popularity.

1.4 Design of Effective Rank Promotion Schemes

In the search engine context it is probably not appropriate
to insert promoted pages at a consistent rank position (lest
users learn over time to avoid them). Hence, we propose a
simple randomized rank promotionscheme in which pro-
moted pages are assigned randomly-chosen rank positions.

Still, the question remains as to how aggressively one
should promote new pages. Many new pages on the Web
are not of high quality. Therefore, the extent of rank pro-
motion has to be limited very carefully, lest we negate the
benefits of popularity-based ranking by displacing pages
known to be of high quality too often. With rank promotion
there is an inherent tradeoff betweenexplorationof new
pages andexploitationof pages already known to be of high
quality. We study how to balance these two aspects, in the
context of an overarching objective of maximizing the av-
erage quality of search results viewed by users, amortized
over time. In particular we seek to answer the following
questions:

• Which pages should be treated as candidates for ex-
ploration, i.e., included in the rank promotion process
so as to receive transient rank boosts?

• Which pages, if any, should be exploited uncondition-
ally, i.e., protected from any rank demotion caused by
promotion of other pages?

• What should be the overall ratio of exploration to ex-
ploitation?

Before we can begin to address these questions, we must
model the relationship between user queries and search en-
gine results. We categorize the pages on the Web into dis-
joint groups bytopic, such that each page pertains to ex-
actly one topic. LetP be the set of pages devoted to a
particular topicT (e.g., “swimming” or “Linux”), and let
U denote the set of users interested in topicT . We say that
the usersU and pagesP corresponding to topicT , taken to-
gether make up aWeb community. (Users may participate
in multiple communities.) For now we assume all users
access the Web uniquely through a (single) search engine.
(We relax this assumption later in Section 8.) We further



assume a one-to-one correspondence between queries and
topics, so that each query returns exactly the set of pages
for the corresponding community.

Communities are likely to differ a great deal in terms of
factors like the number of users, the number of pages, the
rate at which users visit pages, page lifetimes, etc. These
factors play a significant role in determining how a given
rank promotion scheme influences page popularity evolu-
tion. For example, communities with very active users are
likely to be less susceptible to the entrenchment effect than
those whose users do not visit very many pages. Conse-
quently, a given rank promotion scheme is bound to create
quite different outcomes in the two types of communities.
In this paper we provide an analytical method for predict-
ing the effect of deploying a particular randomized rank
promotion scheme in a given community, as a function of
the most important high-level community characteristics.

1.5 Experimental Study

We seek to model a very complex dynamical system in-
volving search engines, evolving pages, and user actions,
and trace its trajectory in time. It is worth emphasizing
that even if we owned the most popular search engine in
the world, “clean-room” experiments would be impossible.
We could not even study the effect of different choices of
a parameter, because an earlier choice would leave large-
scale and indelible artifacts on the Web graph, visit rates,
and popularity of certain pages. Therefore, analysis and
simulations are inescapable, and practical experiments (as
in Section 1.3) must be conducted in a sandbox.

Through a combination of analysis and simulation, we
arrive at a particular recipe for randomized rank promo-
tion that balances exploration and exploitation effectively,
and yields good results across a broad range of community
types. Robustness is desirable because, in practice, com-
munities are not disjoint and therefore their characteristics
cannot be measured reliably.

1.6 Outline

In Section 3 we present our model of Web page popular-
ity, describe the exploration/exploitation tradeoff as it ex-
ists in our context, and introduce two metrics for evaluat-
ing rank promotion schemes. We then propose a random-
ized method of rank promotion in Section 4, and supply an
analytical model of page popularity evolution under ran-
domized rank promotion in Section 5. In Sections 6–8 we
present extensive analytical and simulation results, and rec-
ommend and evaluate a robust recipe for randomized rank
promotion.

2 Related Work

The entrenchment effect has been attracting attention for
several years [7–9, 15, 19, 21], but formal models for and
analysis of the impact of search engines on the evolution
of the Web graph [4] or on the time taken by new pages to
become popular [5] are recent.

A few solutions to the entrenchment problem have been
proposed [3, 6, 22]. They rely on variations of PageRank:
the solutions of [3,22] assign an additional weighting factor
based on page age; that of [6] uses the derivative of PageR-
ank to forecast future PageRank values for young pages.

Our approach, randomized rank promotion, is quite dif-
ferent in spirit. The main strength of our approach is its
simplicity—it does not rely on measurements of the age
or PageRank evolution of individual Web pages, which are
difficult to obtain and error-prone at low sample rates. (Ul-
timately, it may make sense to use our approach in conjunc-
tion with other techniques, in a complementary fashion.)

The exploration/exploitation tradeoff that arises in our
context is akin to problems studied in the field of reinforce-
ment learning [12]. However, direct application of rein-
forcement learning algorithms appears prohibitively expen-
sive at Web scales.

3 Model and Metrics

In this section we introduce the model of Web page popu-
larity, adopted from [5], that we use in the rest of this paper.
(For convenience, a summary of the notation we use is pro-
vided in Table 1.) Our model makes a number of simpli-
fying assumptions that are not perfect, but that we believe
preserve the essence of the dynamic process we seek to un-
derstand.

Recall from Section 1.4 that in our model the Web is
categorized into disjoint groups by topic, such that each
page pertains to exactly one topic. LetP be the set of pages
devoted to a particular topicT , and letU denote the set of
users interested in topicT . Let n = |P| and u = |U|
denote the number of pages and users, respectively, in the
community.

3.1 Page Popularity

In our model, time is divided into discrete intervals, and
at the end of each interval the search engine measures the
popularity of each Web page according to in-link count,
PageRank, user traffic, or some other indicator of popu-
larity among users. Usually it is only possible to measure
popularity among a minority of users. Indeed, for in-link
count or PageRank, only those users who have the abil-
ity to create links are counted. For metrics based on user
traffic, typically only users who agree to install a special
toolbar that monitors Web usage, as in [1], are counted.
Let Um ⊆ U denote the set ofmonitored users, over which
page popularity is measured, and letm = |Um|. We as-
sumeUm constitutes a representative sample of the overall
user populationU .

Let the total number of user visits to pages per unit time
be fixed atvu. Further, letv denote the number of visits per
unit time by monitored users, withv = vu · m

u . The way
these visits are distributed among pages inP is determined
largely by the search engine ranking method in use; we will
come back to this aspect later. For now we simply provide
a definition of the visit rate of a pagep ∈ P.



Symbol Meaning
P Set of Web pages in community
n = |P|
U Set of users in community
u = |U|
Um Set of monitored users in community
m = |Um|
P (p, t) Popularity among monitored users of pagep

at timet
Vu(p, t) Number of user visits to pagep

during unit time interval att
V (p, t) Number of visits top by monitored users at

t
vu Total number of user visits per unit time
v Number of visits by monitored users per unit

time
A(p, t) Awareness among monitored users of pagep

at timet
Q(p) Intrinsic quality of pagep
l Expected page lifetime

Table 1: Notation used in this paper.

Definition 3.1 (Visit Rate) The visit rate of pagep at time
t, V (p, t), is defined as the number of timesp is visited by
any monitored user within a unit time interval at timet.

Similarly, let Vu(p, t) denote the number of visits by
any user inU (monitored and unmonitored users alike)
within a unit time interval at timet. We require that
∀t,

∑
p∈P Vu(p, t) = vu and∀t,

∑
p∈P V (p, t) = v. Once

a user visits a page for the first time, she becomes “aware”
of that page.

Definition 3.2 (Awareness) The awareness level of pagep
at time t, A(p, t), is defined as the fraction of monitored
users who have visitedp at least once by timet.

We define the popularity of pagep at time t, P (p, t) ∈
[0, 1], as follows:

P (p, t) = A(p, t) ·Q(p) (1)

whereQ(p) ∈ [0, 1] (page quality) denotes the extent to
which an average user would “like” pagep if she was aware
of p.

In our model page popularity is a monotonically nonde-
creasing function of time. Therefore if we assume nonzero
page viewing probabilities, for a page of infinite lifetime
limt→∞ P (p, t) = Q(p).

3.2 Rank Promotion

If pages are ranked strictly according to current popularity,
it can take a long time for the popularity of a new page to
approach its quality. Artificially promoting the rank of new
pages can potentially accelerate this process. One impor-
tant objective for rank promotion is to minimize the time
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Figure 2: Exploration/exploitation tradeoff.

it takes for a new high-quality page to attain its eventual
popularity, denotedTBP for “time to become popular.” In
this paper we measure TBP as the time it takes for a high-
quality page to attain popularity that exceeds99% of its
quality level.

Figure 2 shows popularity evolution curves for a partic-
ular page having very high quality created at time0 with
lifetime l, both with and without rank promotion. (It has
been shown [5] that popularity evolution curves are close
to step-functions.) Time is plotted on the x-axis. The y-
axis plots the number of user visits per time unit. Note that
while the page becomes popular earlier when rank promo-
tion is applied, the number of visits it receives once popu-
lar is somewhat lower than in the case without rank promo-
tion. That is because systematic application of rank promo-
tion inevitably comes at the cost of fewer visits to already-
popular pages.

3.3 Exploration/Exploitation Tradeoff and
Quality-Per-Click Metric

The two shaded regions of Figure 2 indicate the positive
and negative aspects of rank promotion. Theexploration
benefitarea corresponds to the increase in the number of
additional visits to this particular high-quality page during
its lifetime made possible by promoting it early on. Theex-
ploitation lossarea corresponds to the decrease in visits due
to promotion of other pages, which may mostly be of low
quality compared to this one. Clearly there is a need to bal-
ance these two factors. The TBP metric is one-sided in this
respect, so we introduce a second metric that takes into ac-
count both exploitation and exploitation:quality-per-click,
or QPC for short. QPC measures the average quality of
pages viewed by users, amortized over a long period of
time. We believe that maximizing QPC is a suitable ob-
jective for designing a rank promotion strategy.

We now derive a mathematical expression for QPC in
our model. First, recall that the number of visits by any user
to pagep during time intervalt is denotedVu(p, t). We can
express the cumulative quality of all pages inP viewed at
time t as

∑
p∈P Vu(p, t) ·Q(p). Taking the average across

time in the limit as the time duration tends to infinity, we



obtain:

lim
t→∞

t∑
tl=0

∑
p∈P

(
Vu(p, tl) ·Q(p)

)
By normalizing, we arrive at our expression for QPC:

QPC = lim
t→∞

∑t
tl=0

∑
p∈P

(
Vu(p, tl) ·Q(p)

)∑t
tl=0

( ∑
p∈P Vu(p, tl)

)
4 Randomized Rank Promotion
We now describe our simple randomized rank promotion
scheme (this description is purely conceptual; more effi-
cient implementation techniques exist).

Let P denote the set ofn responses to a user query. A
subset of those pages,Pp ⊆ P is set aside as thepromotion
pool, which contains the set of pages selected for rank pro-
motion according to a predetermined rule. (The particular
rule for selectingPp, as well as two additional parameters,
k ≥ 1 and r ∈ [0, 1], are configuration options that we
discuss shortly.) Pages inPp are sorted randomly and the
result is stored in the ordered listLp. The remaining pages
(P − Pp) are ranked in the usual deterministic way, in de-
scending order of popularity; the result is an ordered list
Ld. The two lists are merged to create the final result listL
according to the following procedure:

1. The topk − 1 elements ofLd are removed fromLd

and inserted into the beginning ofL while preserving
their order.

2. The element to insert intoL at each remaining posi-
tion i = k, k + 1, . . . , n is determined one at a time,
in that order, by flipping a biased coin: with probabil-
ity r the next element is taken from the top of listLp;
otherwise it is taken from the top ofLd. If one ofLp

or Ld becomes empty, all remaining entries are taken
from the nonempty list. At the end bothLd andLp

will be empty, andL will contain one entry for each
of then pages inP.

The configuration parameters are:

• Promotion pool (Pp): In this paper we consider two
rules for determining which pages are promoted: (a)
theuniformpromotion rule, in which every page is in-
cluded inPp with equal probabilityr, and (b) these-
lectivepromotion rule, in which all pages whose cur-
rent awareness level among monitored users is zero
(i.e.,A(p, t) = 0) are included inPp, and no others.
(Other rules are of course possible; we chose to focus
on these two in particular because they roughly cor-
respond to the extrema of the spectrum of interesting
rules.)

• Starting point (k): All pages whose natural rank is
better thank are protected from the effects of pro-
moting other pages. A particularly interesting value is

k = 2, which safeguards the top result of any search
query, thereby preserving the “feeling lucky” property
that is of significant value in some situations.

• Degree of randomization (r): Whenk is small, this
parameter governs the tradeoff between emphasiz-
ing exploration (larger) and emphasizing exploitation
(smallr).

Our goal is to determine settings of the above parameters
that lead to good TBP and QPC values. The remainder of
this paper is dedicated to this task. Next we present our
analytical model of Web page popularity evolution, which
we use to estimate TBP and QPC under various ranking
methods.

5 Analytical Model
Our analytical model has these features:

• Pages have finite lifetime following an exponential
distribution (Section 5.1). The number of pages and
the number of users are fixed in steady state. The qual-
ity distribution of pages is stationary.

• The expected awareness, popularity, rank, and visit
rate of a page are coupled to each other through a com-
bination of the search engine ranking function and the
bias in user attention to search results (Sections 5.2
and 5.3).

Given that (a) modern search engines appear to be
strongly influenced by popularity-based measures while
ranking results, and (b) users tend to focus their attention
primarily on the top-ranked results [11,14], it is reasonable
to assume that the expected visit rate of a page is a function
of its current popularity (as done in [5]):

V (p, t) = F (P (p, t)) (2)

where the form of functionF (x) depends on the ranking
method in use and the bias in user attention. For example,
if ranking is completely random, thenV (p, t) is indepen-
dent ofP (p, t) and the same for all pages, soF (x) = v · 1

n .
(Recall thatv is the total number of monitored user visits
per unit time.) If ranking is done in such a way that user
traffic to a page is proportional to the popularity of that
page,F (x) = v · x

φ , whereφ is a normalization factor; at
steady-state,φ =

∑
p∈P P (p, t). If ranking is performed

the aforementioned way50% of the time, and performed
randomly50% of the time, thenF (x) = v·

(
0.5· xφ+0.5· 1n

)
.

For the randomized rank promotion we introduced in Sec-
tion 4 the situation is more complex. We defer discussion
of how to obtainF (x) to Section 5.3.

5.1 Page Birth and Death

The set of pages on the Web is not fixed. Likewise, we as-
sume that for a given community based around topicT , the
setP of pages in the community evolves over time due to



pages being created and retired. To keep our analysis man-
ageable we assume that the rate of retirement matches the
rate of creation, so that the total number of pages remains
fixed atn = |P|. We model retirement of pages as a Pois-
son process with rate parameterλ, so the expected lifetime
of a page isl = 1

λ (all pages have the same expected life-
time1). When a page is retired, a new page of equal quality
is created immediately, so the distribution of page quality
values is stationary. When a new page is created it has ini-
tial awareness and popularity values of zero.

5.2 Awareness Distribution

We derive an expression for the distribution of page aware-
ness values, which we then use to obtain an expression for
quality-per-click (QPC). We analyze the steady-state sce-
nario, in which the awareness and popularity distributions
have stabilized and remain steady over time. Our model
may not seem to indicate steady-state behavior, because
the set of pages is constantly in flux and the awareness and
popularity of an individual page changes over time. To un-
derstand the basis for assuming steady-state behavior, con-
sider the setCt of pages created at timet, and the setCt+1

of pages created at timet + 1. Since page creation is gov-
erned by a Poisson process the expected sizes of the two
sets are equal. Recall that we assume the distribution of
page quality values remains the same at all times. There-
fore, the popularity of all pages in bothCt andCt+1 will
increase from the starting value of0 according to the same
popularity evolution law. At timet + 1, when the pages
in Ct have evolved in popularity according to the law for
the first time unit, the new pages inCt+1 introduced at time
t + 1 will replace the old popularity values of theCt pages.
A symmetric effect occurs with pages that are retired, re-
sulting in steady-state behavior overall. In the steady-state,
both popularity and awareness distributions are stationary.

The steady-state awareness distribution is given as fol-
lows.

Theorem 1 Among all pages inP whose quality isq, the
fraction that have awarenessai = i

m (for i = 0, 1, . . . ,m)
is:

f(ai|q) =
λ

(λ + F (0)) · (1− ai)

i∏
j=1

F (aj−1 · q)
λ + F (aj · q)

(3)

whereF (x) is the function in Equation 2.

Proof: See Appendix B. �
Figure 3 plots the steady-state awareness distribution for

pages of highest quality, under both nonrandomized rank-
ing and selective randomized rank promotion withk = 1

1In reality, page lifetime might be positively correlated with popularity
and/or quality. Unfortunately we do not have access to data suitable for
measuring such correlations, so in this paper we treat lifetime as a fixed
quantity across all pages. Interestingly, a positive correlation between life-
time and popularity seems likely to make the entrenchment problem worse
than what our model predicts, whereas a positive correlation between life-
time and quality may make the problem less severe.
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Figure 3: Awareness distribution of pages of high quality
under randomized and nonrandomized ranking.

andr = 0.2, for our default Web community characteris-
tics (see Section 6.1). For this graph we used the procedure
described in Section 5.3 to obtain the functionF (x).

Observe that if randomized rank promotion is used, in
steady-state most high-quality pages have large awareness,
whereas if standard nonrandomized ranking is used most
pages have very small awareness. Hence, under random-
ized rank promotion most pages having high quality spend
most of their lifetimes with near-100% awareness, yet with
nonrandomized ranking they spend most of their lifetimes
with near-zero awareness. Under either ranking scheme
pages spend very little time in the middle of the aware-
ness scale, since the rise to high awareness is nearly a step
function.

Given an awareness distributionf(a|q), it is straightfor-
ward to determine expected time-to-become-popular (TBP)
corresponding to a given quality value (formula omitted for
brevity). Expected quality-per-click (QPC) is expressed as
follows:

QPC =

∑
p∈P

∑m
i=0 f(ai|Q(p)) · F (ai ·Q(p)) ·Q(p)∑

p∈P
∑m

i=0 f(ai|Q(p)) · F (ai ·Q(p))

whereai = i
m . (Recall our assumption that monitored

users are a representative sample of all users.)

5.3 Popularity to Visit Rate Relationship

In this section we derive the functionF (x) used in Equa-
tion 2, which governs the relationship betweenP (p, t) and
the expectation ofV (p, t). As done in [5] we split the rela-
tionship between the popularity of a page and the expected
number of visits into two components: (1) the relationship
between popularity and rank position, and (2) the relation-
ship between rank position and the number of visits. We
denote these two relationships as the functionsF1 andF2

respectively, and write:

F (x) = F2(F1(x))



where the output ofF1 is the rank position of a page of pop-
ularity x, andF2 is a function from that rank to a visit rate.
Our rationale for splittingF in this way is that, according
to empirical findings reported in [11], the likelihood of a
user visiting a page presented in a search result list depends
primarily on the rank position at which the page appears.

We begin withF2, the dependence of the expected num-
ber of user visits on the rank of a page in a result list. Anal-
ysis of AltaVista usage logs [5,14] reveal that the following
relationship holds quite closely2:

F2(x) = θ · x−3/2 (4)

whereθ is a normalization constant, which we set as:

θ =
v∑n

i=1 i−3/2

wherev is the total number of monitored user visits per unit
time.

Next we turn toF1, the dependence of rank on the pop-
ularity of a page. Note that since the awareness level of
a particular page cannot be pinpointed precisely (it is ex-
pressed as a probability distribution), we expressF1(x) as
theexpectedrank position of a page of popularityx. In do-
ing so we compromise accuracy to some extent, since we
will determine the expected number of visits by applying
F2 to the expected rank, as opposed to summing over the
full distribution of rank values. (We examine the accuracy
of our analysis in Sections 6.2 and 6.3.)

Under nonrandomized ranking, the expected rank of a
page of popularityx is one plus the expected number of
pages whose popularities surpassx. By Equation 1, pagep
hasP (p, t) > x if it has A(p, t) > x/Q(p). From Theo-
rem 1 the probability that a randomly-chosen pagep satis-
fies this condition is:

m∑
i=1+bm·x/Q(p)c

f

(
i

m

∣∣∣∣ Q(p)
)

By linearity of expectation, summing over allp ∈ P we
arrive at:

F1(x) ≈ 1 +
∑
p∈P

 m∑
i=1+bm·x/Q(p)c

f

(
i

m

∣∣∣∣ Q(p)
) (5)

(This is an approximate expression because we ignore the
effect of ties in popularity values, and because we neglect
to discount one page of popularityx from the outer sum-
mation.)

The formula forF1 under uniform randomized ranking
is rather complex, so we omit it. We focus instead on selec-
tive randomized ranking, which is a more effective strategy,

2User views were measured at the granularity of groups of ten results
in [14], and later extrapolated to individual pages in [5].

as we will demonstrate shortly. Under selective random-
ized ranking the expected rank of a page of popularityx,
whenx > 0, is given by:

F ′
1(x) ≈

{
F1(x) if F1(x) < k

F1(x) + min{ r·(F1(x)−k+1)
(1−r) , z} otherwise

whereF1 is as in Equation 5, andz denotes the expected
number of pages with zero awareness, an estimate for
which can be computed without difficulty under our steady-
state assumption. (The case ofx = 0 must be handled
separately; we omit the details due to lack of space.)

The above expressions forF1(x) or F ′
1(x) each contain

a circularity, because our formula forf(a|q) (Equation 3)
containsF (x). It appears that a closed-form solution for
F (x) is difficult to obtain. In the absence of a closed-form
expression one option is to determineF (x) via simulation.
The method we use is to solve forF (x) using an iterative
procedure, as follows.

We start with a simple function forF (x), sayF (x) = x,
as an initial guess at the solution. We then substitute this
function into the right-hand side of the appropriate equation
above to produce a newF (x) function in numerical form.
We then convert the numericalF (x) function into symbolic
form by fitting a curve, and repeat until convergence oc-
curs. (Upon each iteration we adjust the curve slightly so
as to fit the extreme points corresponding tox = 0 and
x = 1 especially carefully; details omitted for brevity.) In-
terestingly, we found that using a quadratic curve in log-log
space led to good convergence for all parameter settings we
tested, so that:

log F = α · (log x)2 + β · log x + γ

whereα, β, and γ are determined using a curve fitting
procedure. We later verified via simulation that across a
variety of scenariosF (x) can be fit quite accurately to a
quadratic curve in log-log space.

6 Effect of Randomized Rank Promotion
and Recommended Parameter Settings

In this section we report our measurements of the impact of
randomized rank promotion on search engine quality. We
begin by describing the default Web community scenario
we use in Section 6.1. Then we report the effect of ran-
domized rank promotion on TBP and QPC in Sections 6.2
and 6.3, respectively. Lastly, in Section 6.4 we investigate
how to balance exploration and exploitation, and give our
recommended recipe for randomized rank promotion.

6.1 Default Scenario

For the results we report in this paper, the default3 Web
community we use is one havingn = 10, 000 pages. The
remaining characteristics of our default Web community

3We supply results for other community types in Section 7.
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Figure 4: Popularity evolution of a page of qualityQ = 0.4
under nonrandomized, uniform randomized, and selective
randomized ranking.

are set so as to be in proportion to observed characteris-
tics of the entire Web, as follows. First, we set the expected
page lifetime tol = 1.5 years (based on data from [16]).
Our default Web community hasu = 1000 users making a
total of vu = 1000 visits per day (based on data reported
in [2], the number of Web users is roughly one-tenth the
number of pages, and an average user queries a search en-
gine about once per day). We assume that a search engine is
able to monitor10% of its users, som = 100 andv = 100.

As for page quality values, we had little basis for mea-
suring the intrinsic quality distribution of pages on the Web.
As the best available approximation, we used the power-
law distribution reported for PageRank in [5], with the
quality value of the highest-quality page set to0.4. (We
chose0.4 based on the fraction of Internet users who fre-
quent the most popular Web portal site, according to [18].)

6.2 Effect of Randomized Rank Promotion on TBP

Figure 4 shows popularity evolution curves derived from
the awareness distribution determined analytically for a
page of quality0.4 under three different ranking methods:
(1) nonrandomized ranking, (2) randomized ranking using
uniform promotion with the starting pointk = 1 and the
degree of randomizationr = 0.2, and (3) randomized rank-
ing using selective promotion withk = 1 and r = 0.2.
This graph shows that, not surprisingly, randomized rank
promotion can improve TBP by a large margin. More in-
terestingly it also indicates that selective rank promotion
achieves substantially better TBP than uniform promotion.
Because, for smallr, there is limited opportunity to pro-
mote pages, focusing on pages with zero awareness turns
out to be the most effective method.

Figure 5 shows TBP measurements for a page of qual-
ity 0.4 in our default Web community, for different values
of r (fixing k = 1). As expected, increased randomiza-
tion leads to lower TBP, especially if selective promotion
is employed.

To validate our analytical model, we created a simulator
that maintains an evolving ranked list of pages (the ranking
method used is configurable), and distributes user visits to
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Figure 5: Time to become popular (TBP) for a page of qual-
ity 0.4 in default Web community as degree of randomiza-
tion (r) is varied.

pages according to Equation 4. Our simulator keeps track
of awareness and popularity values of individual pages as
they evolve over time, and creates and retires pages as dic-
tated by our model. After a sufficient period of time has
passed to reach steady-state behavior, we take measure-
ments. These results are plotted in Figure 5, side-by-side
with our analytical results. We observe a close correspon-
dence between our analytical model and our simulation.4

6.3 Effect of Randomized Rank Promotion on QPC

We now turn to quality-per-click (QPC). Throughout this
paper (except in Section 8) we normalize all QPC measure-
ments such thatQPC = 1.0 corresponds to the theoretical
upper bound achieved by ranking pages in descending or-
der of quality. The graph in Figure 6 plots normalized QPC
as we vary the promotion rule and the degree of random-
izationr (holdingk fixed atk = 1), under our default Web
community characteristics of Section 6.1. For a community
with these characteristics, a moderate dose of randomized
rank promotion increases QPC substantially, especially un-
der selective promotion.

6.4 Balancing Exploration, Exploitation, and Reality

We have established a strong case that selective rank pro-
motion is superior to uniform promotion. In this section we
investigate how to set the other two randomized rank pro-
motion parameters,k andr, so as to balance exploration
and exploitation and achieve high QPC. For this purpose
we prefer to rely on simulation, as opposed to analysis, for
maximum accuracy.

The graph in Figure 7 plots normalized QPC as we vary
bothk andr, under our default scenario (Section 6.1). As
k grows larger, a higherr value is needed to achieve high
QPC. Intuitively, as the starting point for rank promotion
becomes lower in the ranked list (largerk), a denser con-

4Our analysis is only intended to be accurate for small values ofr,
which is why we only plot results forr < 0.2. From a practical standpoint
only small values ofr are of interest.
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Figure 6: Quality-per-click (QPC) for default Web commu-
nity as degree of randomization (r) is varied.

centration of promoted pages (largerr) is required to en-
sure that new high-quality pages are discovered by users.

For search engines, we take the view that it is undesir-
able to include a noticeable amount of randomization in
ranking, regardless of the starting pointk. Based on Fig-
ure 7, using only10% randomization (r = 0.1) appears
sufficient to achieve most of the benefit of rank promotion,
as long ask is kept small (e.g.,k = 1 or2). Under10% ran-
domization, roughly one page in every group of ten query
results is a new, untested page, as opposed to an established
page. We do not believe most users are likely to notice this
effect, given the amount of noise normally present in search
engine results.

A possible exception is for the topmost query result,
which users often expect to be consistent if they issue the
same query multiple times. Plus, for certain queries users
expect to see a single, “correct,” answer in the top rank po-
sition (e.g., most users would expect the query “Carnegie
Mellon” to return a link to the Carnegie Mellon Univer-
sity home page at position1), and quite a bit of effort goes
into ensuring that search engines return that result at the
topmost rank position. That is why we include thek = 2
parameter setting, which ensures that the top-ranked search
result is never perturbed.

Recommendation: Introduce 10% randomization start-
ing at rank position1 or 2, and exclusively target zero-
awareness pages for random rank promotion.

7 Robustness Across Different Community
Types

In this section we investigate the robustness of our recom-
mended ranking method (selective promotion rule,r = 0.1,
k ∈ {1, 2}) as we vary the characteristics of our testbed
Web community. Our objectives are to demonstrate: (1)
that if we consider a wide range of community types, amor-
tized search result quality is never harmed by our random-
ized rank promotion scheme, and (2) that our method im-
proves result quality substantially in most cases, compared
with traditional deterministic ranking. In this section we
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Figure 7: Qualitiy-per-click (QPC) for default Web com-
munity under selective randomized rank promotion, as de-
gree of randomization (r) and starting point (k) are varied.

rely on simulation rather than analysis to ensure maximum
accuracy.

7.1 Influence of Community Size

Here we vary the number of pages in the community,n,
while holding the ratio of users to pages fixed atu/n =
10%, fixing the fraction of monitored users asm/u = 10%,
and fixing the number of daily page visits per user at
vu/u = v/m = 1. Figure 8 shows the result, with com-
munity sizen plotted on the x-axis on a logarithmic scale.
The y-axis plots normalized QPC for three different rank-
ing methods: nonrandomized, selective randomized with
r = 0.1 andk = 1, and selective randomized withr = 0.1
andk = 2. With nonrandomized ranking, QPC declines as
community size increases, because it becomes more diffi-
cult for new high-quality pages to overcome the entrench-
ment effect. Under randomized rank promotion, on the
other hand, due to rank promotion QPC remains high and
fairly steady across a range of community sizes.

7.2 Influence of Page Lifetime

Figure 9 shows QPC as we vary the expected page lifetime
l while keeping all other community characteristics fixed.
(Recall that in our model the number of pages in the com-
munity remains constant across time, and when a page is
retired a new one of equal quality but zero awareness takes
its place.) The QPC curve for nonrandomized ranking con-
firms our intuition: when there is less churn in the set of
pages in the community (largel), QPC is penalized less by
the entrenchment effect. More interestingly, the margin of
improvement in QPC over nonrandomized ranking due to
introducing randomness is greater when pages tend to live
longer. The reason is that with a low page creation rate
the promotion pool can be kept small. Consequently new
pages benefit from larger and more frequent rank boosts,
on the whole, helping the high-quality ones get discovered
quickly.
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Figure 8: Influence of community size.
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7.3 Influence of Visit Rate

The influence of the aggregate user visit rate on QPC is
plotted in Figure 10. Visit rate is plotted on the x-axis on a
logarithmic scale, and QPC is plotted on the y-axis. Here,
we hold the number of pages fixed at our default value of
n = 10, 000 and use our default expected lifetime value of
l = 1.5 years. We vary the total number of user visits per
dayvu while holding the ratio of daily page visits to users
fixed at vu/u = 1 and, as always, fixing the fraction of
monitored users asm/u = 10%. From Figure 10 we see
first of all that, not surprisingly, popularity-based ranking
fundamentally fails if very few pages are visited by users.
Second, if the number of visits is very large (1000 visits per
day to an average page), then there is no need for random-
ization in ranking (although it does not hurt much). For
visit rates within an order of magnitude on either side of
0.1 · n = 1000, which matches the average visit rate of
search engines in general whenn is scaled to the size of
the entire Web,5 there is significant benefit to using ran-
domized rank promotion.

7.4 Influence of Size of User Population

Lastly we study the affect of varying the number of users in
the communityu, while holding all other parameters fixed:
n = 10, 000, l = 1.5 years,vu = 1000 visits per day, and

5According to our rough estimate based on data from [2].
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Figure 11: Influence of size of user population.

m/u = 10%. Note that we keep the total number of visits
per day fixed, but vary the number of users making those
visits. The idea is to compare communities in which most
page visits come from a core group of fairly active users to
ones receiving a large number of occasional visitors. Fig-
ure 11 shows the result, with the number of usersu plotted
on the x-axis on a logarithmic scale, and QPC plotted on
the y-axis. All three ranking methods perform somewhat
worse when the pool of users is large, although the perfor-
mance ratios remain about the same. The reason for this
trend is that with a larger user pool, a stray visit to a new
high-quality page provides less traction in terms of overall
awareness.

8 Mixed Surfing and Searching

The model we have explored thus far assumes that users
make visit to pages only by querying a search engine.
While a very large number of surf trails start from search
engines and are very short, nonnegligible surfing may still
be occurring without support from search engines. We use
the following model for mixed surfing and searching:

• While performingrandom surfing[17], users traverse
a link to some neighbor with probability(1 − c), and
jump to a random page with probabilityc. The con-
stantc is known as theteleportation probability, typi-
cally set to 0.15 [10].
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Figure 12: Influence of the extent of random surfing.

• While browsing the Web, users perform random surf-
ing with probabilityx. With probability(1− x) users
query a search engine and browse among results pre-
sented in the form of a ranked list.

We still assume that there is only one search engine
that every user uses for querying. However, this assump-
tion does not significantly restrict the applicability of our
model. For our purposes the effect of multiple search en-
gines that present the same ranked list for a query is equiva-
lent to a single search engine that presents the same ranked
list and gets a user traffic equal to the sum of the user traffic
of the multiple search engines.

Assuming that page popularity is measured using
PageRank, under our mixed browsing model the expected
visit rate of a pagep at timet is given by:

V (p, t) = (1− x) · F (P (p, t))

+ x ·
((

(1− c) · P (p, t)∑
p′∈P P (p′, t)

+ c · 1
n

))
Figure 12 shows absolute QPC values for different val-

ues ofx (based on simulation). Unlike with other graphs
in this paper, in this graph we plot the absolute value of
QPC, because the ideal QPC value varies with the extent of
random surfing (x). Recall thatx = 0 denotes pure search
engine based surfing, whilex = 1 denotes pure random
surfing. Observe that for all values ofx, randomized rank
promotion performs better than (or as well as) nonrandom-
ized ranking. It is interesting to observe that whenx is
small, random surfing helps nonrandomized ranking, since
random surfing increases the chances of exploring unpop-
ular pages (due to the teleportation probability). However,
beyond a certain extent, it does not help as much as it hurts
(due to the exploration/exploitation tradeoff as was the case
for randomized rank promotion).

9 Summary
The standard method of ranking search results determinis-
tically according to popularity has a significant flaw: high-
quality Web pages that happen to be new are drastically
undervalued. In this paper we demonstrated via a real-
world study that diminishing the bias against new pages

by transiently promoting them in rank can improve over-
all result quality substantially. We then introduced a new
rank promotion strategy based on partial randomization of
rank positions, and showed via extensive simulation that
using just10% randomization consistently leads to much
higher-quality search results compared with strict deter-
ministic ranking. Compared with previous rank promotion
methods, the randomized approach proposed here is sim-
pler and considerably more robust, since it does not rely
on fine-grain temporal measurements of the Web. Overall,
we conclude that partially randomized ranking is a promis-
ing approach that merits further study and evaluation. To
help pave the way for further work, we have developed
new analytical models of Web page popularity evolution
under deterministic and randomized search result ranking,
and introduced formal metrics by which to evaluate ranking
methods.
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A Real-World Effectiveness of Rank
Promotion

We provide details of the live experiment mentioned in Sec-
tion 1.3, which we conducted to study the effect of rank
promotion on the evolution of popularity of Web pages.

A.1 Experimental Procedure

We created our own small Web community consisting
of several thousand Web pages containing entertainment-
oriented content, and nearly one thousand volunteer users
who had no prior knowledge of this project.

Pages: We focused on entertainment because we felt it
would be relatively easy to attract a large number of users.
The material we started with consisted of a large number
of jokes gathered from online databases. We decided to
use “funniness” as a surrogate for quality, since users are
generally willing to provide their opinion about how funny
something is. We wanted the funniness distribution of our
jokes to mimic the quality distribution of pages on the Web.
As far as we know PageRank is the best available estimate
of the quality distribution of Web pages, so we downsam-
pled our initial collection of jokes and quotations to match
the PageRank distribution reported in [5]. To determine the
funniness of our jokes for this purpose we used numerical
user ratings provided by the source databases. Since most
Web pages have very low PageRank, we needed a large
number of nonfunny items to match the distribution, so we
chose to supplement jokes with quotations. We obtained
our quotations from sites offering insightful quotations not
intended to be humorous. Each joke and quotation was con-
verted into a single Web page on our site.

Overall site: The main page of the Web site we set up con-
sisted of an ordered list of links to individual joke/quotation

pages, in groups of ten at a time, as is typical in search en-
gine responses. Text at the top stated that the jokes and
quotations were presented in descending order of funni-
ness, as rated by users of the site. Users had the option to
rate the items: we equipped each joke/quotation page with
three buttons, labeled “funny,” “neutral,” and “not funny.”
To minimize the possibility of voter fraud, once a user had
rated an item the buttons were removed from that item, and
remained absent upon all subsequent visits by the same user
to the same page.

Users: We advertised our site daily over a period of45
days, and encouraged visitors to rate whichever jokes and
quotations they decided to view. Overall we had963 par-
ticipants. Each person who visited the site for the first time
was assigned at random into one of two user groups (we
used cookies to ensure consistent group membership across
multiple visits, assuming few people would visit our site
from multiple computers): one group for which rank pro-
motion was used, and one for which rank promotion was
not used. For the latter group, items were presented in de-
scending order of current popularity, measured as the num-
ber of funny votes submitted by members of the group.6

For the other group of users, items were also presented
in descending order of popularity among members of the
group, except that all items that had not yet been viewed
by any user were inserted in a random order starting at
rank position21 (This variant corresponds to selective pro-
motion with k = 21 andr = 1.). A new random order
for these zero-awareness items was chosen for each unique
user. Users were not informed that rank promotion was be-
ing employed.

Content rotation: For each user group we kept the number
of accessible joke/quotation items fixed at1000 throughout
the duration of our45-day experiment. However, each item
had a finite lifetime of less than45 days. Lifetimes for the
initial 1000 items were assigned uniformly at random from
[1, 30], to simulation a steady-state situation in which each
item had a real lifetime of30 days. When a particular item
expired we replaced it with another item of the same qual-
ity, and set its lifetime to30 days and its initial popularity
to zero. At all times we used the same joke/quotation items
for both user groups.

A.2 Results

First, to verify that the subjects of our experiment behaved
similarly to users of a search engine, we measured the re-
lationship between the rank of an item and the number of
user visits it received. We discovered a power-law with
an exponent remarkably close to−3/2, which is precisely
the relationship between rank and number of visits that has
been measured from usage logs of the AltaVista search en-
gine (see Section 5.3 for details).

6Due to the relatively small scale of our experiment there were fre-
quent ties in popularity values. We chose to break ties based on age, with
older pages receiving better rank positions, to simulate a less discretized
situation.



We then proceeded to assess the impact of rank promo-
tion. For this purpose we wanted to analyze a steady-state
scenario, so we only measured the outcome of the final
15 days of our experiment (by then all the original items
had expired and been replaced). For each user group we
measured the ratio of funny votes to total votes during this
period. Figure 1 shows the result. The ratio achieved us-
ing rank promotion was approximately60% larger than that
obtained using strict ranking by popularity.

B Proof of Theorem 1

Because we consider only the pages of qualityq and we
focus on steady-state behavior, we will dropq andt from
our notation unless it causes confusion. For example, we
usef(a) and V (p) instead off(a|q) and V (p, t) in our
proof.

We consider a very short time intervaldt during which
every page is visited by at most one monitored user. That
is, V (p)dt < 1 for every pagep. Under this assumption
we can interpretV (p)dt as the probability that the pagep
is visited by one monitored user during the time intervaldt.

Now consider the pages of awarenessai = i
m . Since

these pages are visited by at most one monitored user dur-
ing dt, their awareness will either stay atai or increase to
ai+1. We usePS(ai) andPI(ai) to denote the probability
that that their awareness remains atai or increases fromai

to ai+1, respectively. The awareness of a page increases if
a monitored user who was previously unaware of the page
visits it. The probability that a monitored user visitsp is
V (p)dt. The probability that a random monitored user is
aware ofp is (1− ai). Therefore,

PI(ai) = V (p)dt(1− ai) = F (P (p))dt(1− ai)
= F (qai)dt(1− ai) (6)

Similarly,

PS(ai) = 1− PI(ai) = 1− F (qai)dt(1− ai) (7)

We now compute the fraction of pages whose aware-
ness isai after dt. We assume that beforedt, f(ai) and
f(ai−1) fraction of pages have awarenessai andai−1, re-
spectively. A page will have awarenessai afterdt if (1) its
awareness isai beforedt and the awareness stays the same
or (2) its awareness isai−1 beforedt, but it increases toai.
Therefore, the fraction of pages at awarenessai afterdt is
potentially

f(ai)PS(ai) + f(ai−1)PI(ai−1).

However, under our Poisson model, a page disappears with
probabilityλdt during the time intervaldt. Therefore, only
(1− λdt) fraction will survive and have awarenessai after
dt:

[f(ai)PS(ai) + f(ai−1)PI(ai−1)](1− λdt)

Given our steady-state assumption, the fraction of pages at
ai afterdt is the same as the fraction of pages atai before
dt. Therefore,

f(ai) = [f(ai)PS(ai)+f(ai−1)PI(ai−1)](1−λdt). (8)

From Equations 6, 7 and 8, we get

f(ai)
f(ai−1)

=
(1− λdt)F (qai−1)dt(1− ai−1)

(λ + F (qai))dt(1− ai)

Since we assumedt is very small, we can ignore the second
order terms ofdt in the above equation and simplify it to

f(ai)
f(ai−1)

=
F (qai−1)(1− ai−1)
(λ + F (qai))(1− ai)

(9)

From the multiplication of f(ai)
f(ai−1)

× f(ai−1)
f(ai−2)

×· · ·× f(a1)
f(a0)

,
we get

f(ai)
f(a0)

=
1− a0

1− ai

i∏
j=1

F (qaj−1)
λ + F (qaj)

(10)

We now computef(a0). Among the pages with aware-
nessa0, PS(a0) fraction will stay ata0 afterdt. Also, λdt
fraction new pages will appear, and their awareness isa0

(recall our assumption that new pages start with zero aware-
ness). Therefore,

f(a0) = f(a0)PS(a0)(1− λdt) + λdt (11)

After rearrangement and ignoring the second order terms
of dt, we get

f(a0) =
λ

F (qa0) + λ
=

λ

F (0) + λ
(12)

By combining Equations 10 and 12, we get

f(ai) = f(a0)
1− a0

1− ai

i∏
j=1

F (qaj−1)
λ + F (qaj)

=
λ

(λ + F (0))(1− ai)

i∏
j=1

F (qaj−1)
λ + F (qaj)


