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ABSTRACT

Recently social collaboration projects such as Wikipedia and
Flickr have been gaining popularity, and more and more social tag
information is being accumulated. In this study, we demonstrate
how to effectively use social tags created by humans to find
similar items. We create a query-by-example interface for finding
similar items through offering examples as a query. Our work
aims to measure the similarity between a query, expressed as a
group of items, and another item through utilizing the tag
information. We show that using human-generated tags to find
similar items has at least two major challenges: popularity bias
and the missing tag effect. We propose several approaches to
overcome the challenges. We build a prototype website allowing
users to search over all entries in Wikipedia based on tag
information, and then collect 600 valid questionnaires from 69
students to create a benchmark for evaluating our algorithms
based on user satisfaction. Our results show that the presented
techniques are promising and surpass the leading commercial
product, Google Sets, in terms of user satisfaction.

Categories and Subject Descriptors

H.3.3 [INFORMATION STORAGE AND RETRIEVAL]J:
Information Search and Retrieval — clustering, information
filtering, retrieval models, selection process.

General Terms
Algorithms, Experimentation

Keywords
World Wide Web (WWW), Social tags, Information retrieval,
Entity resolution, Folksonomy

1. INTRODUCTION

The dominant interface of search engines today requires users to
pinpoint their information needs with a few keywords. However,
users sometimes find it difficult to identify the keywords that best
describe their needs. For example, a user who plans to apply for a
graduate school in California may issue the query “outstanding
universities in California”. Many outstanding schools, such as
Stanford University, are missing in the top results of all major
search engines, because the keywords “outstanding” and
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“California” are not presented in the web pages of those schools.

As a potential solution to this problem, we study methodologies
for providing a “query-by-example” interface. In this interface,
users provide a few representative examples of the ultimate
information they seek. The system then returns search results most
similar to the examples provided; for instance, to find outstanding
graduate schools, a user may issue a query like “Caltech, UC
Berkeley” and expects that the system will return similar
outstanding schools in California such as UCLA and Stanford
University.

The major challenge in building such a system is to identify
similar items based on the user-provided set of examples. In this
study, we leverage the tag clouds that are collaboratively created
by web users in defining and measuring the similarity between
multiple items. To verify the effectiveness of our solutions, we
conduct experiments on one of the largest social collaboration
projects, Wikipedia. In the Wikipedia dataset, we consider a wiki
page or entry as an entity and a category label of a page as a tag.
We aim to identify and rank entities that are similar to the user-
provided examples based on tag information.

As other researchers [9] have noted, the uncontrolled nature of
user-generated metadata, such as free-form tagging in Wikipedia,
often causes problems of imprecision and ambiguity when these
tags are used as a foundation of designing algorithms. In our
study, we identify and deal with two challenges associated with
free-form uncontrolled tag clouds: popularity bias and the missing
tag effect (Section 3.2).

We propose several approaches to overcome the challenges and
subsequently build a prototype website allowing users to issue a
query by examples. Our results show that our techniques are able
to return a sizable number of high-quality similar items even when
the user provides only a few examples in the query. The proposed
approaches are evaluated against a benchmark dataset that is built
based on 600 valid questionnaire responses from 69 students. In
terms of user satisfaction, the questionnaire responses show that
our techniques outperform Google Sets.

In summary, we highlight our contributions as follows:

o We investigate how to extract a set of similar items through
analyzing noisy social tags created by human beings, and
show that the tag information is effective in identifying
relevant similar items.

® We identify and solve two challenges in tag-based search
frameworks: popularity bias and the missing tag effect.

® We propose and compare several models based on tag
information. We build algorithms on top of these models,
and study their advantages and disadvantages.



® We perform an extensive evaluation based on user surveys
and show that in terms of user satisfaction, our tag-based

approaches outperform Google Sets in most testing cases.

2. PROBLEM OVERVIEW

The essential problem can be phrased as the following: users want
to retrieve relevant items sharing some characteristics, and their
queries are composed of representative examples with desired
characteristics. We consider the “query-by-example” task as a
process of finding similar items in a dataset, where the query is
composed of a number of items from the same dataset.

Assuming a user issues a query Xp: {Xq1, Xq2, - .- }, the input to the
framework is the query itself, where X, should be composed of
entities, like {Caltech, UC Berkeley}. Our goal is to create a
function R to measure the similarity between an entity x; in the
dataset and the query X,, where a higher score measured by
R(x;, Xo) implies a higher similarity between the entity x; and the
query X.

2.1 Tag generation

We start the discussion of our tag-entity model with an artificial
example, as shown in Fig. 1, to explain how tags are generated. In
this example, we say a user reads the content of a Wikipedia page
about Washington D.C.; then, the user labels the page with the
tags City, Capital, North America, etc. Note that a tag does not
have to be the same word used in the content; for example, the
concept of a metropolis is matched by the tag City. In most social
collaboration projects, a user can select any phrase as a tag, i.e.
free-form tagging. The phrase may be an existing tag, a modified
phrasing of an existing tag, or even a newly created tag.

(Washington, D.C)

Washington D.C ... is
a metropolitan... is
the capital of USA ... is
located in north
America ... (content

€T; .

: Clity
o = Capital
2+ North America

Fig. 1 The data model

Although we illustrate our tag-entity model by considering “wiki
pages” as entities and their titles as identifiers, the content of
entities are not limited to plain texts. Our proposed solutions
utilize only tag information, ignoring the content of entity. This
simplification allows our techniques to be broadly applicable to
non-textual dataset as well.

We use X to represent all entities in a dataset, that is, the
universe of entities. We use T; = {t;1, t;3, ... } to represent the tags
associated with x;. The universe of tags is denoted by Ty,
referring to all tags in a dataset.

We illustrate our notations with the following example:

Example 1 Consider a dataset that contains four entities:
x1: Beijing >T,: {City, Capital, Asia, Summer Olympic}
X,: Washington D.C. >T,: {City, Capital, North America}
x3: London >T5: {City, Capital, Europe, Summer Olympic}
x4: Los Angeles - T,:{City, North America}

In this example, the dataset contains a total of six tags:
t;: City, ty: Capital, t3: Asia, ty: Summer Olympic,
ts: North America, tg: Europe

645

We define the function £(t,) as an operation for acquiring all
entities associated with the tag t,,. For example, E(t,: Capital) =
{x1: Beijin, x,:Washington D.C., x3: London}. In addition,
we define E(ty, tn, ..) as E(t,) UE(t,) U .. Namely, in
Example 1, E(ts: Asia, tg: Europe) = E(t3) U E(Lg) =
{x1: Beijin, x3: London}.

Without referring to the content of an entity, we limit our
similarity measurement to tag information. One might argue that
tag-entity relations are unreliable and sometimes a reasonable
relation is missing from an entity. We will discuss these concerns
regarding the imperfect nature later in Section 3.2.

3. THE INTERSECTION-DRIVEN
APPROACH

The core challenge in providing a query-by-example service is to
figure out what types of entities a user is looking for based on the
input entities provided by the user. To convey how we approach
this problem, we start with an artificial scenario.

In Example 1, when the user-provided input is the query
{x1: Beijing, x,:Washington D.C.}, what will be a reasonable
interpretation of the user’s intention? Both entities are associated
with the tags t;: City and t,: Capital as we can see from T; N
T, = {t,: City, t,: Capital}. That is, both entities are cities and
capitals. Given this result, we may have two interpretations: the
user is looking for cities that are also capitals, or the user is simply
looking for cities, but the input examples happen to be capitals as
well. Since the second interpretation is possible, not only t;: City
but also t,: Capital should be weighed when we identify other
similar entities.

In the intersection-driven approach, if a tag is associated with only
a subset of input examples, we claim that the user is unlikely to
only look for entities associated with such a tag. For instance,
although the input entity Beijing is also associated with the tag
t3: Asia, it is unlikely that the user is only looking for cities in
Asia because this tag is not associated with x,: Washington D.C.

3.1 Similarity Measurement
Here, we define the degree of similarity between an entity x; and
the query X, as follows:

R(xi,Xo) =T N T (1

The symbol T(S‘ stands for tags associated with all entities in a
query, i.e.T§ =Ty NT, N ..NT,, Vx; € X,. In Example 1, if a
query consists of entities {X;: Beijing, x,:WashingtonD.C.},
the set Tg' = {t;: City, t,:Capital}.

According to our definition in Equation (1), the more tags in Té‘
an entity is associated with, the more similar (to the query X,) the
entity is. For instance, if an entity x; is a city but not a capital,
such as the entity x,: Los Angeles, it is associated with t;: City
but not with t,: Capital. According to the similarity definition in
Equation (1), the ranking score is R(x,: Los Angeles ,X,) = 1,
meaning that the entity x,:Los Angeles has only one tag in
common with TQn ; Likewise, the entity x3:London has the
ranking score of R(x:;: London, XQ) = |T3 n Té‘| = 2, meaning
that the entity x3: London has two tags in common with Té‘.



In the above example, our approach ranks x3: London higher than
the entity x,: Los Angeles. This result seems intuitive because no
matter whether the user’s intent is to find cities or to find cities
that are also capitals, the entity x3:London is always an
appropriate answer. The entity x,: Los Angeles is inferior to
x3: London because x,: Los Angeles is an inappropriate answer
if the user’s intent is to find cities that are also capitals. Since we
cannot deny such a possibility, ranking x5: London higher than
x4: Los Angeles is reasonable.

3.2 Challenges

We create Example 2 based on our observations on the Wikipedia
dataset. The example illustrates and highlights the challenges we
expect to encounter in a real dataset. In Example 2, an underlined
notation signifies that a tag is very popular. Also, we strike-
through a tag, representing that a tag-entity relation should exist
but does not appear in a real dataset.

Example 2 Consider a dataset that contains six entities.
x;1: Beijing - T;:{City, Capital, Asia,
Summer Olympic, China, Objeet }
Xy: Washington D.C. - T,:{€ity, Capital,
North America, Object }
X3: London > T5:{City, €apitad, Europe,
Summer Olympic, Object }
x4: Los Angeles 2 T,:{City, North America, Object }
Xs: Michael Phelps 2 Ts:{Summer Olympic, Object }
Xg: Lyon - Tg:{City, Europe, Object }
In this example, the dataset contains a total of eight tags:
ty: City, ty: Capital, t5: Asia, ty: Summer Olympic,
ts: North America, tg: Europe, t;: China, tg: Object i

3.2.1 Missing Tag Effect

Not only in Example 2, but also in practice a tag-entity relation
can be missing. There are several possible reasons of why this
may happen. In any social collaboration project, a newly created
entity might not be well tagged until its editors finish revising all
the content of the entity. At the same time, the community may
not be aware of a newly created tag or may decide not to use the
newly created tag for other entities.

Missing tag-entity relations could cause the system to misinterpret
user intent. For example, suppose that a user’s query X, =
{x,: Washington D.C., x3:London } has been issued against
Example 2 dataset; since the tag t;:City is missing in
x,: Washington D.C. , and the tag t,: Capital is missing in
x3: London, the intersection—driven approach interprets the user
intention as finding entities associated with the tag {tg: Object }.
Given these two input entities, intuitively, we feel that such an
interpretation “Object” is problematic because the interpretation is
too general. The intersection—driven approach considers the entity
xq:Beijing as an  irrelevant one, and  suggests
that x,: Los Angeles , xs5:Michael Phelps, and x4:Lyon are
equally similar to the query Xj,.

The impact of the missing tag effect is more pronounced as more
entities are included in a query. Suppose that a user is looking for
a set of entities associated with a tag t;; ideally, the tag ¢t is
expected to be associated with all the entities in the query. If we
use the notation a to represent the probability of missing the tag
ty, the probability of t, being not associated with all input
examples becomes
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, where |XQ| is the number of entities in the query. If the value of
a is 20% and the number of input examples is 3, the probability of
missing the tag t; in Té‘ is close to a half (48.8%). When the
number of input examples increases to 10, the chance of missing
the desired tag increases to 89.26%.

P(missing t, inT§) =1~ (1 — a)¥el

3.2.2 Partial Weighting Generalization

To generalize the intersection-driven approach for addressing the
missing tag effect, one solution is to assign scores in real number,
instead of either zero or one, to tags that are associated with only
some entities in a query. In the previous example (X, =
{x,: Washington D.C., x3:London }), we now assign 0.5 to
these tags: ty:City , t,:Capital , t,:Summer Olympic ,
ts: North America, and tg: Europe , because we have two
entities in the query and each tag associates with only one entity.
These tags, although not in T(?({tg: Object}), are now assigned
partial weights in real numbers, and thus contribute to the
similarity function R(xi,XQ). As a result, R(x4:Los Angeles,
Xo ) = 2 because not only the tag tg: Object contributes 1 point,
but also t;:City and ts: North America contribute 0.5 points
separately. Similarly, R(xs:Michael Phelps, X, ) =15 and
R(xﬁ: Lyon, XQ) = 2. The system returns a better ranking result
{Ist position: “x,:Los Angeles and x4:Lyon”, 2nd position:
“x,: Beijing” and “x5: Michael Phelps” }.

The strategy weights tags that appear in Té‘ the most heavily, and
thus ensures that we follow the same intuition: the more tags in
Té‘ an entity is associated with, the more similar (to the query Xj)
the entity is. Moreover, in case the intent cannot be captured in
Té‘, the strategy helps the system return some related results as
long as some tags are associated with one or more entities in the
query.

Such a generalization brings more entities to results. For example,
in Example 2, assigning partial weight to the tag
ty: Summer Olympic brings x5: Michael Phelps to the result.
Nevertheless, introducing this suspicious result may not be a good
idea. Therefore, if the system already returns satisfied results, we
tend to not adopt generalization unless the user asks for more
results.

3.2.3 Popularity Bias

Both results in the previous research [5] and results in our
experiments show that the number of tags associated with an
entity follows a power law distribution. That is, only a few entities
are associated with a large number of tags, and most entities are
associated with a small number of tags.

We define the popularity of an entity x; based on the number of
tags associated with x;, denoted by |T;|. Then, an entity x; is more
popular than another entity x; if [T;| > |T;|. Similarly, we say that
a tag t;, is more popular than another tag t;,’ if |E(t,)| > |E(t)],
where E(t;) represents the set of all entities associated with ty.

We define the popularity entity-bias as follows: if we measure the
similarity between an entity and a query based on tag information
in the query, we tend to favor entities that are more popular. For
example, a query X, consists of {x:Beijing, xq:Lyon}. To
process the query, we firstly identify all cities. Then, to further
rank all cities, we assign full weight (1.0) to the tag City, and



partial weight (0.5) to these tags: Capital, Asia, Summer Olympic,
China, Europe and Object. Since most of the tags originate from
x,: Beijing, entities similar to x;: Beijing are more likely to be
returned in the result and ranked in higher positions.

The popularity bias happens in tags as well, and we name this
kind of bias as popularity tag-bias. We argue that although a
popular tag like Object in Example 2 is associated with some
input example(s), this popular tag is probably not the concept the
user intends to search for. That is, the tag tg: Object exists in T(S‘
probably only because it is popular, i.e. |E(tg: Object)| is a large
number. In Example 2, if we randomly select two entities to create
a query, tg: Object is the most likely tag shown in T,S‘.

4. BALANCED VOTING MODEL

We now further refine the intersection-driven approach to include
the following properties: (1) a popular entity in a query should not
unfairly influence the results such that the results are similar only
to the popular entity, but not to others, and (2) even a few tag-
entity relations are missing in input examples, the system should
be able to identify relevant entities based on tags associated with a
subset of input examples.

To achieve the above desired properties, in this model, we define
the similarity between an entity x; and the query X, as follows:

— ,if t, €T;
0o , otherwise
R(xi,XQ) = Z R(tn,XQ) (4)
thn ET; N Ty

Equation (3) can mitigate both the missing tag effect and the
popularity entity-bias. In a nutshell, we consider every entity in
the query as having a total score of one in Equation (3). Then,
each tag associated with the entity is assigned an equal portion of
the entity’s score. The non-zero assignment alleviates the missing
tag effect in that we now value significance of tags that are
missing in some input examples. Furthermore, the assigned score
of a tag is inversely proportional to |T;], i.e., the number of tags
associated with x;. As a result, a tag originating from a popular
entity will get a lower score than a tag originating from a less
popular entity, alleviating the popularity entity bias.

In Equation (4), we introduce the symbol TQU to represent tags
associated with one or more entities in a query Xy, where the
symbol U stands for the notion “union”. We calculate the
relevance score for every entity in the dataset with Equation (4)
by summing up the relevance scores of all tags associated with the
entity. Here, R(t,, Xo) represents the relevance score of the tag t,,
to the query X,. Note that in this equation we assign a non-zero
score to each tag in Téj; therefore, a tag associated with only a
subset of the input entities will still get a non-zero score. The
following example shows how the scores are computed under this
definition.

In Example 2, each tag associated with the entity x,: Beijing
gains 0.2 points because five tags are associated with it. Similarly,
cach tag associated with the entity x4: Lyon gets 0.33 points.
Namely, if a query X,consists of {x;: Beijing, xs: Lyon }, the
R(t;: City,Xy) = 0.2+ 0.33 = 0.53 . Although x,:Beijing is
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associated with more tags than x4: Lyon, each tag in x4: Lyon
contributes a higher ranking score than a tag in x,: Beijing.

We calculate the relevance score for every entity in the dataset
with Equation (4). For instance, the entity x3:London gets a
relevance score of 1.39 points by summing up the score of the
tags associated with x3:London , including t;:City (0.53),
ty: Summer Olympic (0.2), tg: Europe (0.33), and tg: Object
(0.33).

Tags belonging to the set Té‘, such as t;: City, still contribute the
highest ranking scores. Therefore, the balanced voting approach
clings to our belief that tags shared by all entities in a query likely
capture a user’s intention; meanwhile, it compensates biases
caused by a popular entity in a query. Compared to our
intersection-driven approach, each tag in a popular entity like
x1: Beijing contributes less influence in terms of ranking scores
now. This difference makes our balanced voting approach less
sensitive to the popularity entity-bias.

5. ONE-CLASS PROBABILISTIC MODEL

So far, we view the similarity measurement as determining a good
weighting scheme for tags associated with input examples.
Alternatively, we can consider the problem as computing the
probability that an entity is the target a user is looking for. Given
some entities as possible results, we can then rank the entities
based on the calculated probabilities.

We start by thinking about how people create a query for finding
similar items. We think that a user firstly has a desired property in
mind, and then the user tries to recall some entities with the
desired property based on his/her knowledge. If the intent can be
captured by a tag (or tags) in a dataset, entities associated with the
tag(s) in the dataset are considered as similar entities.

We propose the one-class probabilistic model based on the
following assumptions. At first, we assume that a user’s intent
corresponds to one tag t;, in a dataset. Since the intent is
unpredictable, we claim that the desired tag t, is randomly
selected from all tags. Then, once the desired tag is selected, the
user randomly selects |X,| entities from £(t;) to synthesize the
query, where £(t;,) are all entities that are associated with t.

5.1 Measuring Similarity Using Probability
In order to better understand how our one-class probabilistic
model works, in this section we discuss the model under the
premise that there is no missing tags in the dataset. We will
reconsider the problem of missing tags later in the next section.

When a query X; is given, based on our one-class probabilistic
model, the probability that x; is what a user is looking for can be
computed as

PCxilXg) 2 ) PCalt) * P(tilXo) )
[

In Equation (5), the P(t;|Xy) stands for the probability that a tag

ty is the desired tag when the system is given the user query Xj;

P(x;|ty) stands for the probability that the system should return

an entity x; if the desired tag is t;. Here, we assume that all tags



are independent from each other, so we can sum up all the
probability scores when more than one tag is considered.

Using Bayes’ theorem, we can find an equivalent form to
Equation (5), as shown in Proposition 1.

Proposition 1  Ranking entities based on P(xi|XQ) is

equivalent to ranking entities through the formula
Ztk € Ti P(XQltk) That l.S,
P(xi]Xq) o Z P(Xqlty) ©
ty €T

(Proof) Because of space constraints, we defer all derivations and
proofs in this section to the appendix .

Given a query Xy, |Xq| is the number of input examples. In this
model, if the tag t; is the desired tag, representing a user’s
intention, our premise says that the query is created by randomly
selecting |X,| entities from the set E(ty). |E(ty)| represents the

IS(tk)I>

Xql
distinct choices to create a query because the user can randomly

number of entities associated with a tag t;, so we have (

E(t
select |X| entities from E(ty), where <| |)(( k|)|> stands for the
Q

number of combinations in a set with | X | distinct elements. Since
€t

Xl
having X, being the query and t; being the desired tag is

the query Xj is one of the < > outcomes, the probability of

1
P(telXe) = Zie T

(IE (tk)|> ™)
Xl

In this model, entities in the query are selected from entities
associated with the desired tag tj,, representing the desired
property in the user’s mind. If all tag-entity relations in a dataset
are established, the desired tag must be one of the tags that are
shared by all entities in the query, i.e., t; € Té‘. In addition, we
know an entity x; can be a similar entity to the query only if the
desired tag tj, is associated with the entity, i.e., t; € T;. Thus, for
any entity x;, only tags in (T; N TQ”) are considered.

If an entity x; is associated with two or more tags in Tg, we sum
up all probability values to get the probability of the entity x;
being a similar entity. Then, we rank every entity in a dataset
based on this probability.

We summarize the above discussions as follows:

Proposition 2 I every tag is correctly associated with all
entities to which it is related (no missing tag), we show that

_ 1
D, Pl = ) €] (®)
tkETi tkE(TinT8)< |XQ| >

(Proof) See the appendix.

* The appendix can be downloaded from http://oak.cs.ucla.edu/
~chucheng/publication/SAC 2012 Appendix_Chucheng.pdf

Equation (8) has an advantage of alleviating the popularity tag-
bias because the system will assign a low value to P(Xj|ty) for a
popular tag. The equation conveys the notion: when a rarely seen
tag (|E(t;)|: a small number) is shared by all entities of the
query, the probability that the rarely seen tag is what the user
desires is high because it is unlikely that input examples are
associated with the tag by chance. As a result, Equation (8) places
more value on it than on a popular common tag (|E(t)|: a large
number).

In Example 2, suppose that we see a tag tg: Object in TQ”; we
could argue that tg: Object exists because a user is looking for
objects, or because tg: Object is associated with almost every
entity in the dataset. If |E(tg: Object)| is a large number, the
chance of the latter is high, and thus we could reason the tag
tg: Object might not be the desired tag. In other words, the model
alleviates popularity tag-bias through assigning a low value
P(Xq|tx) to a popular tag.

5.2 Refinement of the Approach

In this section, we deal with the missing tag effect. We start with
introducing some new notations for extending our one-class
probabilistic model.

The function £€(t;) returns entities that are relevant to the tag t;
but the tag-entity relation is missing, and |E€(t;)| is the number
of entities missing the tag t, . For instance, in Example 2,
EC(tg: Object)={x,: Beijing}.

The symbol m,, denotes the number of entities missing a tag t; in
a query. For example, in Example 2, a query {x;:Beijing,
x,: Washington D.C. , x3:London } has values |XQ| =3
because the query contains three input examples, and for the tag
t,: City, my = 1 because only one entity (x,: Washington D.C
) is missing the tag t;: City.

The symbol u stands for the number of all entities in our dataset;
the symbol Té’ represent all tags associated with “at least one”
input example. Then, we generalize Proposition 2 as follows:

Proposition 3  When considering the missing tags effect , we
show  that Ztk €T, P(ty|Xg) in Proposition 1 can be

approximated by the following formula:

D, Plulx) =

[ m
ESEN™
u

tk ETi tkE(TLr‘ITé")
) ]l ©)
: <|s(tk)| + |eC(tk>|> J
|Xol

,where we claim that the dataset has the following properties: (1)
u > €| and u>> [EC(t)] and (2) (EE)] + IEC(ED) >
|Xo-

(Proof) Sece the appendix.

The two properties in Proposition 3 are easily satisfied in practice.
The first property, u > |E(t,)| and u > |EC(t,)|, is satisfied if



the number of all entities in a dataset is larger than the number of
entities associated with any individual tag. In most social
collaboration projects, the number of entities is a very large
number, for example, 3,459,565 entities in our experiment dataset
(Wikipedia), so the property is satisfied. The second property,
(E@OI + [EC D » |XQ|, is also satisfied because we believe
that in practice a user provides a small portion of desired results as
input examples and expects a sizable number of results [1].

The part of the equation (|E€(t,)|/u)™ can be interpreted as an
adjustment for missing a tag tj in some input examples. When a
tag is shared by all the input entities, the number m; is zero and
this part of the equation becomes one, meaning that no adjustment
are required. As the number of input entities missing a tag t;
increases (m;, increases), the value decreases exponentially. Thus,
this part adheres to the notion we learned in naive intersection
model that tags in TS are important.

When we consider the missing tag effect,

(|5(fk)| +[EC ()]
|Xol

addressing the popularity of a tag. The concept is identical to the

E(t
explanation of 1/ el
|Xol

the part 1/

) can be interpreted as a refinement for

) in Proposition 2, where we tend to

place more value on a rarely-seen tag in the query X, than a
popular tag, so that the model alleviates the popularity tag-bias.

In our experiments, since the ratio of missing tags is unknown, we
simply make the following assumption: 50% of tag-entity
relations being missing. Thus, if half tag-entity relations are
missing, we could conclude |E€(t;)|~|E(t,)|. In practical, to
make a reasonable approximation of tag-missing ratio requires the
understanding of target datasets and some heuristic trials.

6. EXPERIMENT

Evaluating effectiveness of different approaches is a challenging
task because the quality of results is subjective and no standard
corpus exists. Thus, we think the best way to evaluate a ranking
algorithm is to build a search engine and see how well users
perceive our new ranking results.

Some IR communities, such as TREC (Text retrieval conference;
http://trec.nist.gov), provide datasets for evaluating keyword
search. Unfortunately, those datasets are not collected for testing
query-by-example search. As a result, we download the dataset of
Wikipedia and create a search interface on top of the dataset for
collecting user surveys".

In this section, we are going to provide the overview of our
dataset, explain the design of the surveys, and then analyze the
users’ satisfaction scores for each proposed algorithm.

6.1 A study of Dataset — Wikipedia

We implement our system based on a Wikipedia snapshot dumped
on November 3rd, 2009. Wikipedia is the largest collaborative
encyclopedia, and it contains more than 3 million articles in
English. The collaborative nature means that all tags in Wikipedia

" The user surveys can be downloaded from http://oak.cs.ucla.edu/
~chucheng/publication/qbe_survey results public.zip
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are generated by human, and some tag-entity relations might be
missing.

We consider every wiki page as an entity, so the name (page title)
of the wiki page becomes a unique identifier of the entity. For tag
information, every wiki page contains “category” entries, and we
consider each category as a tag. When a category is labeled with
an article, we consider the category (the tag) is associated with the
article (the entity). The dataset contains 471,443 unique tags,
3,459,565 entities, and 13,196,971 associations.

. "# of entities associated with a tag" versus "# of tags"
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Fig. 2 Size of category distribution

In Fig. 2, the x-axis refers to |E(t;)|, the number of entities
associated with the tag t;, and the y-axis refers to the number of
tags with the size |E(t;)|. For example, the value of y-axis of
“x=1"is 79,870, which means that 79,870 tags (about 16% of all
tags) appear only once. These tags are possibly newly created, or
they have not yet been accepted by other users. On the other hand,
the right-most point of the line in Fig. 2 is the Living People, and
its y value, one, means that only this tag is associated with
413,981 entities (value of x-axis).

The chart in Fig. 2 shows that some tags are extremely popular
and many tags are unpopular. Our statistics show that about 16%
of tags are singleton, 74% of tags are associated with 2 to 50
entities, and less than 10% of tags are associated with more than
fifty entities (|E(t;)|>50). Golder et al. [5] reported a similar
distribution on Del.icio.us data where a power law distribution
was also observed.

6.2 Effectiveness Evaluation

Evaluating the similarity between an entity and a query is difficult
because whether the entity is similar to another entity in the query
is subjective. For example, someone might argue that the entity
Nikon (a manufacturer of cameras) is not similar to the entity
Toyota (a manufacturer of cars), but another person may feel they
are similar because both of them are Japanese companies. Thus,
we decide to create a benchmark through conducting user surveys.

6.2.1 Experiment design

We collected 600 valid questionnaires from 69 students in UCLA
to create a benchmark for evaluating user satisfaction. In each
questionnaire, the system randomly selects one of 10 pre-set
scenarios (listed in the appendix), where every scenario contains
two to three entities to form a query.



Once the scenario is selected, the query is issued to our system
and we collect the top 200 results from each algorithm. We mix
all the top 200 results, and the questionnaire is then generated
through randomly selecting entities from the mixed set. Note that
we run a customized questionnaire generation process so that
high-rank results are reviewed by more persons. Entities in the
first few pages, high-ranked results, are often considered
important because users tend to read results according to the order
of entities. With limited resource (questionnaire takers), we are
more interested in knowing how each approach performs in these
high rank results. Therefore, in the process of questionnaire
generation, 30 questions are drawn from high-rank entities,
particularly the entity in the top 40 results of any model, and 10
questions are drawn from the other entities.

The input examples by a user are : Toyota, Honda

Likely a GOOD answer © Likely a BAD answer
9 Likely a GOOD answer © Likely a BAD answer
9 Likely a GOOD answer ( Likely a BAD answer
9 Likely a GOOD answer ’ Likely a BAD answer

Likely a GOOD answer © Likely a BAD answer

Likely a GOOD answer © Likely a BAD answer

Likely a GOOD answer ) Likely a BAD answer © Cannot Decide

Fig. 3 A screen clip of a questionnaire

john fitzgerald kennedy Cannot Decide
acura

Tata Motors
Scion
San_Lorenzo
Santa Rosa

Sony

Cannot Decide
Cannot Decide
Cannot Decide
Cannot Decide
Cannot Decide

To avoid bias, questionnaire takers are unaware of how their
questionnaires are generated. They are told that entities in a query
belong to a group where all entities share some properties (the
intent of the query). They are asked to examine whether an entity
in a questionnaire belongs to the intent of the query. The intent of
the query, such as Car Manufacturers, is not revealed to the
questionnaire taker. They are asked to read the Wikipedia pages
and make an evaluation of possible intentions to the query. Fig. 3
is a (partial) snapshot of a questionnaire.

Every questionnaire contains 50 entities; however, 10 of 50
entities are known to be clearly unrelated to the query for filtering
out invalid surveys. If any pre-set unrelated entity is marked as a
positive example, we rule out the entire questionnaire. Thus, only
600 of 714 questionnaires are considered valid after the screening
process, and a total of 24,000 feedbacks are collected.

6.2.2 Benchmarks and Results

We use Equation (10) to calculate the satisfaction score of an
entity to a query. Whenever a questionnaire taker reports a good
answer, the corresponding entity earns the full credit of one.
While he cannot make a clear judgment, we still assign 0.5 point
to the entity. After averaging scores of an entity, a high
satisfaction score implies that most users believe that the entity
and entities in the query are similar. And a score close to 0.5
could imply a situation that users hold their opinions. We then
consider the satisfaction scores as benchmarks for evaluating
different algorithms.

S(xi|XQ) _ #of Good + 0.5 * # of Cannot Decide (10)

# of total response
Fig. 4 contains the comparison results of all models based on the
ten scenarios we use in experiments. In addition to the four
algorithms proposed in the paper, we add Google Sets [6] and the
term frequency—inverse document frequency (TFIDF) algorithm
into the comparison. The x-axis represents for top N results, and
the y-axis indicates the running average of satisfaction scores for
top N results.
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Fig. 4 Comparison of different models (top 40)

In Fig. 4, our one class probabilistic model outperforms other
models in the top 10 results; our balanced voting model and our
one class probabilistic model have high user satisfactions while
comparing top 40 results. We notice that the intersection model
and Google Sets return approximately only 25 entities on average.
As a result, the average user satisfaction promptly drops in that a
user cannot find any results. The probabilistic model reports a
promising result: 5.26% more satisfaction than the Google Sets
based on 2400 questions in 600 questionnaires.

6.2.3 Discussion

Although the algorithms of Google Sets are not disclosed, we
compare our results against its result because Google is currently
the leading search engine and Google Sets aims to solve the same
problem: finding similar items through quires consisting of
examples.

»  One-class probabilistic model »  Google

1. Helsinki(0.00193236714976 1. beiiing

2. Atlanta(0.000966622495352 2. atlanta

3. Beijing(0.000966327826572) 3. chicago

4. St._Louis(0.000966197763941) 4. boston

5. Mexico_City(0.000966190611265) 5. los angeles
6. Los_Angeles(0.000966188853761) 6. san francisco
7. Tokyo(0.00096618772584) 7. new york
8. Seoul(0.00096618772584) 8. dallas

9. Athens(0.000966187516714 9. philadelphia
10. Moscow(0.000966186018665) 10. seattle

Fig. 5 One class probabilistic model vs. Google Sets

Fig. 5 demonstrates a query in which most survey responders feel
the results provided by Google Sets are inferior or questionable.
We create a query {Beijing, Atlanta}, where the intent behind the
query is to find cities that hosted the Olympic Games. Google Sets
seems to interpret our intent as finding cities in America. In
contrast, our one-class probabilistic model identifies cities that
hosted the Olympic Games.

Though which interpretation is better is controversial, during
interviews after the survey, many responders said that their first
impressions after seeing {Beijing, Atlanta} shown in the query
were about the event that Beijing hosted the 2008 Summer
Olympics, or about the notion that both of them are metropolises.
Even for responders preferring the notion “metropolises”, they
were still unhappy when seeing a result that is biased towards
Atlanta and neglects properties contributed by Beijing.

7. RELATED RESEARCH

The study of social collaboration tagging system has been
attracting attention from researchers. Mathes [9] investigated the



social tag data and pointed out that it was a fundamentally chaotic.
Shirkly [12] also argued that using tag information is difficult
because a user has the freedom of choosing any word he or she
wants as a tag. Later, Gloder et al. [5] analyzed the structure of
collaborative tagging systems on top of Del.icio.us data and
concluded that tag data follow a power law distribution. Their
studies back up our argument that some tags are extremely
popular while others are rarely used.

Despite the challenges in using tag-entity information, many
researchers continue to work in the field and have shown the
potential of social tag clouds. Tso-Sutter et al. [14] used
relationships among tags, users, and entities to recommend
possible interesting entities to users. Penev et al. [10] used
WordNet to acquire terms relating to a tag and applied TFIDF
[11] similarity on both the tags and their related terms for finding
similar entities (pages in their research). They used WordNet to
interpret the meaning of tags, trying to measure the similarity
between entities based on keywords through expanding tags with
WordNet. Although we aim to solve similar problems, our
approaches focus on using only tag information, because we
believe, as Strohmaier et al. [13] suggested, that users use social
tags for categorizing and describing resources.

We believe that our study can benefit many applications. For
example, Givon et al. [4] showed that social tags can be used in
dealing with recommendations in large-scale book datasets.
Moreover, the keyword generation task can be considered as a
similar problem, for example, Fuxman et al [3] draw an analogy
from a keyword to a url and an entity to a tag. Finding similar
entities based on shared tags is similar to finding related keywords
based on shared urls that users click on.

Many researchers also work on tag ranking or tag aggregation.
Recently, Wetzker et al. [15] focused on creating a mapping
between personal tags to aggregate tags with the same meaning,
Heymann et al. [7] used tag information to organize library data,
Wu et al. [16] explained how to avoid noise and compensate for
semantic loss, Liu et al. [8] studied how to rank tags based on
importance, and Dattolo et al. [2] studied how to identify similar
tags through detecting relationships between them.

8. CONCLUSION

In this paper, we investigated the problem of finding similar items
with query-by-example interface on top of social tag clouds. We
introduced three approaches, and built a search engine on top of
them, creating a benchmark for evaluating the users’ satisfaction
through collecting 600 questionnaires. The experiment results
suggest that social tag data, even though they are uncontrolled and
noisy, are sufficient for finding similar items. Finally, we show
that both the voting model and the one-class probabilistic model
reach high user satisfaction.

We explain two important challenges of utilizing tag information:
popularity bias and the missing tag effect, and explain how to
overcome these difficulties through partial weight strategies and
probability utilization. We show that, in terms of users’
satisfaction, our algorithms are superior or at least compatible to
Google Sets and TFIDF model. Our approaches return hundreds
of relevant entities without sacrificing the quality in the top
results. Moreover, our models rely on only social tag information.
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Our proposed framework not only provides an ability to find
similar items, but also shows the application potential of social tag
information. We demonstrate that the task can be accomplished
through providing a query consisting of entities and using only tag
information, even though the tag information is uncontrolled and
noisy. Through this study, queries for finding similar items, such
as “Honda or Toyota or similar”, are handled properly. Our
research also highlights the value of using social collaboration
data, tag clouds, to refine existing search technologies.
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