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a b s t r a c t 

Association rules, one of the most useful constructs in data mining, can be exerted to capture interest- 

ing dependencies between variables in large datasets. Herawan and Deris initiated the investigation of 

mining association rules from transactional datasets using soft set theory. Unfortunately, some existing 

concepts in the literature were unable to realize properly Herawan and Deris’s initial idea. This paper 

aims to offer further detailed insights into soft set based association rule mining. With regard to regu- 

lar association rule mining using soft sets, we refine several existing concepts to improve the generality 

and clarity of former definitions. Regarding maximal association rule mining based on soft sets, we point 

out the drawbacks of some existing definitions and offer some way to rectify the problem. A number 

of new notions, such as transactional data soft sets, parameter-taxonomic soft sets, parameter cosets, re- 

alizations and M -realizations of parameter sets are proposed to facilitate soft set based association rule 

mining. Several algorithms are designed to find M -realizations of parameter sets or extract σ - M -strong 

and γ - M -reliable maximal association rules in parameter-taxonomic soft sets. We also present an exam- 

ple to illustrate potential applications of our method in clinical diagnosis. Moreover, two case studies are 

conducted to highlight the essentials of soft set based association rule mining approach. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the development of computer science and information

technology, very huge amounts of data have been collected and

stored in the memory of computers. By analyzing the collected

data, it is possible to arrive at a sophisticated understanding of

the corresponding facts, behaviors, and natural phenomena in the

real world. In response to this need, data mining becomes an in-

creasingly important field which aims to extract useful informa-

tion from the collected data and transform it into an understand-

able form of knowledge for further use. Data mining tasks involve

a number of different methods at the intersection of artificial in-

telligence, database systems, mathematics, machine learning and

statistics. 

One of the most important issues in data mining is to discover

association rules, which was initially introduced by Agrawal et al.
∗ Corresponding author. 
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1] . In Agrawal et al.’s seminal work [2] , three novel algorithms

amely Apriori, AprioriTid and AprioriHybrid were presented to ex-

ract association rules from large databases. Since then, association

ules have received considerable attention from researchers and

ractitioners around the world. As a powerful data mining tool,

ssociation rule mining has been successfully applied to various

omains such as bioinformatics, e-business, epidemiology, finance,

ealth science, marketing and so forth. In particular, association

ules are extremely useful for analyzing transactional data. A typi-

al scenario of direct application is to analyze consumers’ purchase

ecords, commonly known as the “market basket data”. Using as-

ociation rule mining, one can discover some unexpected patterns

f purchase behavior which may help to design effective marketing

trategies accordingly. 

Molodtsov’s soft set theory [22] was proposed in 1999 as a gen-

ral mathematical tool to deal with uncertainty. The rationale be-

ind soft sets is founded on the idea of parameterization, which

uggests that complicated objects should be perceived from various

oints of view. Each aspect provides an approximate description

f the whole entity with high complexity. Without the limitation

aused by inadequacy of parameterization tools, this theory comes
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ith an ability to represent and manipulate data in a convenient

nd meaningful way [8] . Maji et al. introduced several algebraic

perations in soft set theory and examined their basic properties

19] . Ali et al. [7] proposed several new operations in soft set the-

ry to further consolidate the algebraic basis of soft sets. Based on

hese new operations, Qin and Hong [24] introduced some congru-

nce relations on soft sets and discussed certain lattice structures.

iao et al. [26] proposed exclusive disjunctive soft sets and some

elated operations. Gong et al. [15] initiated the concept of bijec-

ive soft sets and explored decision rules in bijective soft decision

ystems [14] . Xu et al. [27] incorporated statistical logistic regres-

ion into soft set decision theory and proposed a novel parameter

eduction method to select financial ratios for business failure pre-

iction. Qin et al. [25] presented a soft set model of equivalence

lasses of information systems and applied it to the selection of

lustering attributes for categorical datasets. Mamat et al. [21] de-

igned a soft set based algorithm for clustering attribute selection.

n addition, soft sets and their extensions have been successfully

pplied to various algebraic structures [3–5,17,18] and decision-

aking problems [6,10,20] . 

Although association rules are very useful for discovering asso-

iations hidden in the collected data, sometimes they might fail to

dentify other, no less interesting data connections. For this rea-

on, Amir et al. [9] proposed maximal association rules to extract

ssociations that are frequently lost when using regular associa-

ion rules. In maximal association rule mining, the item domain is

artitioned into pairwise disjoint categories. Intuitively, a maximal

ssociation rule X 
M ⇒ Y says that whenever the itemset X is alone

n a transaction t (i.e., X is contained in t and meanwhile there is

o other item in t from the same category of X ), than the itemset

 also appears in the same transaction, with some confidence. As

ointed out by Amir et al. [9] , maximal association rules are not

esigned to replace regular association rules, but rather to com-

lement them. 

Inspired by interesting relationships among transactional

atasets, Boolean-valued information systems and soft sets, Her-

wan and Deris [16] came up with the innovative idea about min-

ng association rules from transactional datasets using soft set the-

ry. Their pioneering work established a new research direction of

pplying soft sets to data mining. Unfortunately, some basic no-

ions (particularly those developed for mining maximal association

ules) in [16] failed to fulfill Herawan and Deris’s initial idea, which

indered the further research in this new direction. Moreover, Her-

wan and Deris’s soft set based association rule mining method re-

ies on the prerequisite that the soft set must be transformed from

 transactional dataset, which makes it difficult to be understood

n terms of soft set theory and also restricts its potential applica-

ions to more diverse domains. 

In the present study, we revisit Herawan and Deris’s initial idea

nd manage to address the issues mentioned above. We first in-

roduce some new notions for mining association rules in trans-

ctional datasets, such as realizations of itemsets, realizations of

ssociation rules, M -realizations of itemsets and M -realizations of

aximal association rules. To improve the generality and clarity

f the theory for mining regular association rules using soft sets,

e refine some fundamental concepts and compare them with

he former ones. In addition, we also define notions like trans-

ctional data soft sets, σ -frequent sets of parameters, σ -strong

ssociation rules and γ -reliable association rules, which are use-

ul for mining regular association rules using soft sets. With re-

ard to maximal association rule mining based on soft sets, we

oint out some difficulties suffered by existing definitions. To rec-

ify some improper definitions in [16] , we introduce a new con-

ept called parameter-taxonomic soft sets, based on which correc-

ive notions are presented to fulfill Herawan and Deris’s initial idea

d

mply. We also propose some new notions, such as σ - M -frequent

ets of parameters, σ - M -strong maximal association rules and γ -

 -reliable maximal association rules, which are designed for min-

ng maximal association rules using soft sets. Algorithms for find-

ng M -realizations of parameter sets or mining σ - M -strong and

- M -reliable maximal association rules from a given parameter-

axonomic soft set are presented. We propose an illuminating ex-

mple to show potential applications of soft set based association

ule mining in clinical diagnosis. In addition, we conduct two case

tudies to highlight some essential points of the newly proposed

oncepts and algorithms. 

This paper is organized as follows. To facilitate our discussion,

ection 2 recalls some basic concepts regarding information sys-

ems and soft sets. Section 3 gives a brief introduction to some

ssential points concerning transactional datasets and association

ules. Section 4 is devoted to improving some existing definitions

or mining association rules based on soft sets. In Section 5 , we

ectify some improperly defined existing notions and design al-

orithms for mining maximal association rules with parameter-

axonomic soft sets. Section 6 covers an example to illustrate po-

ential applications of soft set based association rule mining in

linical diagnosis. In Section 7 , two case studies are carried out to

ighlight the essentials of association rule mining based on soft

ets. Finally, conclusions and some possible directions for future

ork are given in Section 8 . 

. Preliminaries 

In this section, we recall some basic notions regarding informa-

ion systems and soft sets. 

efinition 2.1 [23] . An information system is a pair I = (U, A ) of

on-empty finite sets U and A , where U is a set of objects and A

s a set of attributes; each attribute a ∈ A is a function a : U → V a 

nd V a is called the domain of the attribute a . 

If V a = { 0 , 1 } for all a ∈ A , then I = (U, A ) is called a Boolean-

alued information system . If the set A of attributes is partitioned

nto two disjoint subset of attributives, namely condition and deci-

ion attributes , then the information system I = (U, C, D ) is called

 decision system , where C and D are sets of condition and decision

ttributes, respectively. 

Molodtsov [22] initiated the theory of soft sets, which provides

 general framework for uncertainty modelling from a parameteri-

ation point of view. Let U be an initial universe of objects and E U 
or simply E ) be the set of all parameters associated with objects

n U , called a parameter space . In most cases parameters are con-

idered to be attributes, characteristics or properties of objects in

 . The pair ( U, E ) is also known as a soft universe . We denote the

ower sets of U by P(U) . 

efinition 2.2 [22] . A pair S = (F , A ) is called a soft set over U ,

here A ⊆ E and F : A → P(U) is a set-valued mapping, called the

pproximate function of the soft set S . 

It is clear that a soft set S = (F , A ) over U can be seen as a pa-

ameterized family of subsets of U . For any parameter e ∈ A , the

ubset F ( e ) ⊆ U could be interpreted as the set of e - approximate

lements . Note that F ( ε) may be arbitrary: some of them may be

mpty, and some may have nonempty intersections [22] . The ab-

ence of any restrictions on the approximate description in soft set

heory also facilitates its applications to problems arising from var-

ous domains. As suggested by Molodtsov [22] , one can use any

uitable parametrization–with the help of words and sentences,

eal numbers, functions, mappings, etc. In what follows, the col-

ection of all soft sets over U with parameter sets contained in E is

enoted by S S 

E (U) . 
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Fig. 1. Illustration of an itemset X supported by a transaction t . 
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Fig. 2. Illustration of an itemset X M-supported by a transaction t . 
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Definition 2.3 [13] . A soft set S = (F , A ) over U is said to be full

if 
⋃ 

a ∈ A F (a ) = U . A full soft set S = (F , A ) over U is a called cover-

ing soft set if F ( a ) � = ∅ for all a ∈ A . 

Definition 2.4 [13] . A soft set S = (F , A ) over U is call a partition

soft set if { F ( a ): a ∈ A } forms a partition of U . 

There exist some fundamental connections between informa-

tion systems and soft sets. Note first that a soft set S = (F , A ) over

U gives rise to an information system I S = (U, A ) in a natural way.

In fact, for all a ∈ A , one can define a corresponding function

a : U → V a = { 0 , 1 } by 

a (x ) = 

{
1 , if x ∈ F (a ) , 
0 , otherwise . 

This justifies the tabular (or matrix) representation of soft sets

widely used in the literature. 

On the other hand, soft sets also provide an efficient represen-

tation of information systems as follows. 

Proposition 2.5 [12] . Let I = (U, A ) be an information system and

a ∈ A. Define a soft set S a = (F a , B a ) such that B a = { a } × V a and 

F a (a, t) = { x ∈ U : a (x ) = t} , 
for all ( a, t ) ∈ B a . Then S a = (F a , B a ) is a partition soft set over U. 

Proposition 2.6 [12] . Let I = (U, A ) be an information system. De-

fine a soft set S I 

= (F , B ) such that B = 

⋃ 

a ∈ A { a } × V a and 

F (a, v ) = { x ∈ U : a (x ) = v } , 
for all ( a, v ) ∈ B. Then S I 

= (F , B ) is a covering soft set over U. 

3. Transactional datasets and association rules 

In this section, we briefly introduce some essential points con-

cerning transactional datasets, association rules and maximal as-

sociation rules. Most of these notions come from the pioneering

work of Agrawal et al. [1] and Amir et al. [9] , with some minor

modifications. Nevertheless, it is worth noting that some new no-

tions such as realizations of itemsets, realizations of association

rules, M -realizations of itemsets and M -realizations of maximal as-

sociation rules are also initiated to facilitate our discussion here-

inafter. 

To recognize consumers’ behaviors, the association rules

method has been developed particularly for the analysis of trans-

actional datasets. Let I = { i 1 , · · · , i | I| } (where | · | denotes the cardi-

nality of a set) be the set of items, called the item domain . A trans-

action t is a nonempty set of items chosen from I . Each transaction

can be identified by a transaction identifier (TID). The collection

D = { t 1 , · · · , t | D | } consisting of all transactions under consideration

is called a transactional dataset . Any given nonempty subset X of

the item domain I is called an itemset . If the relation X ⊆ t holds,

we say that the itemset X appears in the transaction t , or simply t

supports X . An itemset with k items is called a k - itemset . For sim-

plicity, we identify a 1-itemset { i s } with the single item i s . 

Definition 3.1. Let D be a transactional dataset and X be an item-

set. Then 	 D (X ) = { t ∈ D : X ⊆ t} is called the realization of X in D .

The realization 	 D ( X ) is the set consisting of all the transactions

which support the itemset X in the transactional dataset D . The

cardinality of this set (i.e., the number of transactions supporting

X in D ) is called the support of X in D and denoted by S D ( X ). 

Given two disjoint nonempty itemsets X, Y ⊆ I , an association

rule is a formal expression of the form X ⇒ Y . The itemsets X, Y are

referred to as antecedent and consequent of the rule, respectively. 
efinition 3.2. Let D be a transactional dataset and X ⇒ Y be an

ssociation rule. The realization of X ⇒ Y in D is defined as 

 D (X ⇒ Y ) = { t ∈ D : (X ∪ Y ) ⊆ t} . 
Clearly, 	 D (X ⇒ Y ) = 	 D (X ∪ Y ) . The cardinality of this set is

alled the support of X ⇒ Y and denoted by S D ( X ⇒ Y ). An as-

ociation rule X ⇒ Y holds with some confidenceC D ( X ⇒ Y ), which

s defined as follows: 

 D (X ⇒ Y ) = 

S D (X ⇒ Y ) 

S D (X ) 
= 

S D (X ∪ Y ) 

S D (X ) 
. (1)

n particular, we define C D (X ⇒ Y ) = 0 if S D (X ) = 0 . 

Next, we discuss the recognition of maximal association rules in

ransactional datasets as initiated in Amir et al. [9] . To this end, we

hould first consider the partition of the item domain I . A partition

 of I is called a taxonomy of I . Each block in T is called a category .

or any given item i k ∈ I , there exists a unique category containing

 k , which is denoted by T ( i k ). If an itemset X is from some category

 i ∈ T (i.e., X ⊆ T i ), then this unique category is denoted by T ( X ) in

hat follows. 

efinition 3.3 [9] . Let t be a transaction in a transactional dataset

 and X be an itemset from a category. Then X is said to be alone

n t if t ∩ T (X ) = X . In this case, we say that the transaction t

 - supports the itemset X in D . 

It is worth noting that X is the largest subset of t contained

n the category T ( X ) if it is M -supported by the transaction t . In

ddition, the difference between the notions of supporting and

 -supporting is illustrated by Figs. 1 and 2 . 

efinition 3.4. Let D be a transactional dataset and X be an item-

et from a category. Then 	 

M 

D (X ) = { t ∈ D : t ∩ T (X ) = X} is called

he M - realization of X in D . 
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Table 1 

A transactional dataset U from [9] . 

TID Transaction 

t 0 A, B, x, y, 1 

t 1 A, B, D, u, z, 1, 2, 3 

t 2 A, B, C, z, 1 

t 3 A, B, x, y, z, 2, 3, 4 

t 4 C, z, 2, 3 

t 5 A, B, u, 1, 3 

t 6 C, D, z, 1, 2 

t 7 A, B, u, x, y, 4 

t 8 A, D, z, 2, 4 

t 9 A, B, x, y, z, 1 
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The M -realization 	 

M 

D 
(X ) comprises all the transactions that M -

upports X in D . The cardinality of 	 

M 

D (X ) is called the M - support

f X in D and denoted by S M 

D 
(X ) . 

efinition 3.5. Let D be a transactional dataset and X, Y be

onempty itemsets from two distinct categories. Then the for-

al expression X 
M ⇒ Y is called a maximal association rule . The

 - realization of X 
M ⇒ Y is defined as 

 

M 

D (X 

M ⇒ Y ) = { t ∈ D : (t ∩ T (X ) = X ) ∧ (Y ⊆ t) } . 
he cardinality of 	 

M 

D 
(X 

M ⇒ Y ) is called the M - support of X 
M ⇒ Y in

 and denoted by S M 

D 
(X 

M ⇒ Y ) . 

The intuitive meaning of the rule X 
M ⇒ Y is that whenever a

ransaction M -supports X , then Y also appears in the transaction,

ith some probability. To measure this probability, one only needs

o take those transactions with at least one item from the cate-

ory of T ( Y ) into consideration. Accordingly, we have the following

efinition. 

Let D (X, T (Y )) = { t ∈ D : (t ∩ T (X ) = X ) ∧ (t ∩ T (Y ) � = ∅ ) } . The

 - confidence of the maximal association rule X 
M ⇒ Y is defined as

 

M 

D (X 

M ⇒ Y ) = 

S M 

D (X 

M ⇒ Y ) 

card (D (X, T (Y ))) 
, (2)

here card( X ) denotes the cardinality of a set X . In addition, we

efine C M 

D 
(X 

M ⇒ Y ) = 0 if D (X, T (Y )) = ∅ . 

. Mining regular association rules using soft sets 

In this section, we focus on the investigation of mining associa-

ion rules using soft sets. To facilitate our discussion, we first recall

everal definitions directly quoted from [16] . 

efinition 4.1 [16] . Let ( F, E ) be a soft set over the universe U and

 ∈ U . An items co-occurrence set in a transaction u can be defined

s 

oo (u ) = { e ∈ E : f (u, e ) = 1 } . 
bviously, Coo (u ) = { e ∈ E : F (e ) = 1 } . 
efinition 4.2 [16] . Let ( F, E ) be a soft set over the universe U and

 ⊆ E . A set of attributes X is said to be supported by a transaction

 ∈ U if X ⊆ Coo( u ). 

efinition 4.3 [16] . Let ( F, E ) be a soft set over the universe U and

, Y ⊆ E , where X ∩ Y = ∅ . An association rule between X and Y is

n implication of the form X ⇒ Y . The itemsets X and Y are called

ntecedent and consequent, respectively. 

efinition 4.4 [16] . Let ( F, E ) be a soft set over the universe U and

, Y ⊆ E , where X ∩ Y = ∅ . The support of a association rule X ⇒ Y ,

enoted by sup( X ⇒ Y ) is defined by 

up (X ⇒ Y ) = sup (X ∪ Y ) = |{ u : X ∪ Y ⊆ Coo (u ) }| . 
efinition 4.5 [16] . Let ( F, E ) be a soft set over the universe U and

, Y ⊆ E , where X ∩ Y = ∅ . The confidence of a association rule X

 Y , denoted by conf( X ⇒ Y ) is defined by 

onf (X ⇒ Y ) = 

sup (X ∪ Y ) 

sup (X ) 
= 

|{ u : X ∪ Y ⊆ Coo (u ) }| 
|{ u : X ⊆ Coo (u ) }| . 

In order to make Herawan and Deris’s initial idea regarding soft

et based association rule mining clearly understood, we slightly

evise some concepts and notations in what follows. 

As pointed out by Herawan and Deris [16] , a transactional

ataset can be transformed into a Boolean-valued information sys-

em; hence it can be represented by a soft set in a natural way.
ore specifically, let I = { i 1 , · · · , i | I| } be the item domain and D =
 t 1 , · · · , t | D | } be a transactional dataset. Then D can be viewed as a

oolean-valued information system I D = (D, I) such that 

 k (t i ) = 

{
1 , if i k appears in t i , 
0 , otherwise, 

or all i k ∈ I and t i ∈ D . 

Furthermore, the information system I D = (D, I) can be rep-

esented by a soft set S D = (F , A ) over U with U = D, A = I and

 (i k ) = 	 D (i k ) for all i k ∈ A . That is, the set of i k -approximate el-

ments coincides with the realization of the item i k in D . In what

ollows, the soft set S D = (F , A ) is called the transactional data soft

et induced by the transactional dataset D . 

efinition 4.6 (See Definition 4.1 for comparison) . Let S = (F , A ) ∈
 S 

E (U) and u ∈ U . Then Co S 

(u ) = { a ∈ A : u ∈ F (a ) } is called the

arameter coset of the object u in S . 

efinition 4.7 (See Definition 4.2 for comparison) . Let S = (F , A ) ∈
 S 

E (U) and X be a nonempty subset of A . Then X is supported by

n object u ∈ U in S if X ⊆ Co S 

(u ) . The set of objects 

 S 

(X ) = { u ∈ U : X ⊆ Co S 

(u ) } 
s called the realization of X in S . 

Intuitively, the parameter coset Co S 

(u ) consists of all the pa-

ameters satisfied by the object u . On the contrary, the realization

 S 

(X ) points out those objects in U which satisfy all the parame-

ers given by X . The cardinality of 	 S 

(X ) is called the support of X

n S , which is denoted by supp S 

(X ) . 

As an illustration of the above notions, let us consider an ex-

mple initially proposed by Amir et al. [9] . 

xample 4.8. Consider the following transactional dataset U =
 t 0 , t 1 , · · · , t 9 } consisting of ten transactions given in Table 1 . Here

he item domain is 

 = { A, B, C, D, u, x, y, z, 1 , 2 , 3 , 4 } . 
et U be the universe and I be the set of parameters. Then the

ransactional data soft set induced by the dataset U is a soft set

 U = (F , I) over U with its tabular representation given in Table 2 .

or t 4 ∈ U , the parameter coset of the object t 4 in the transactional

ata soft set S U is a set of parameters as follows: 

o S U 
(t 4 ) = { a ∈ A : t 4 ∈ F (a ) } = { C, z, 2 , 3 } . 

aking a nonempty set of parameters X 0 = { C, 1 } , it is easy to verify

hat X 0 is supported by t 2 and t 6 . Thus the realization of X 0 in S U 

s the following set of objects: 

 S U 
(X 0 ) = { u ∈ U : X 0 ⊆ Co S U 

(u ) } = { t 2 , t 6 } . 
n addition, the support of X 0 in S U is supp S U 

(X 0 ) = 2 . 

efinition 4.9 (See Definition 4.3 for comparison) . Let S = (F , A ) ∈
 S 

E (U) and X, Y be nonempty subsets of A with X ∩ Y = ∅ . Then
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Table 2 

Tabular representation of the transactional data soft set S U . 

U A B C D u x y z 1 2 3 4 

t 0 1 1 0 0 0 1 1 0 1 0 0 0 

t 1 1 1 0 1 1 0 0 1 1 1 1 0 

t 2 1 1 1 0 0 0 0 1 1 0 0 0 

t 3 1 1 0 0 0 1 1 1 0 1 1 1 

t 4 0 0 1 0 0 0 0 1 0 1 1 0 

t 5 1 1 0 0 1 0 0 0 1 0 1 0 

t 6 0 0 1 1 0 0 0 1 1 1 0 0 

t 7 1 1 0 0 1 1 1 0 0 0 0 1 

t 8 1 0 0 1 0 0 0 1 0 1 0 1 

t 9 1 1 0 0 0 1 1 1 1 0 0 0 
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conf S U 
({ 1 } ⇒ { x } ) = 1 / 3 < γ1 = 0 . 55 . 
a formal expression X ⇒ Y is called an association rule between X

and Y in the soft set S . The sets of parameters X, Y are referred

to as the antecedent and consequent of the association rule, respec-

tively. The realization of X ⇒ Y in S is defined by 	 S 

(X ⇒ Y ) =
	 S 

(X ∪ Y ) . 

The support of an association rule X ⇒ Y is defined as the num-

ber of objects in U supporting both X and Y , which is denoted by

supp S 

(X ⇒ Y ) . In other words, we have 

supp S 

(X ⇒ Y ) = supp S 

(X ∪ Y ) = card (	 S 

(X ∪ Y )) . 

Definition 4.10 (See Definition 4.5 for comparison) . Let S =
(F , A ) ∈ S S 

E (U) and X ⇒ Y be an association rule in S . The con-

fidence of X ⇒ Y in S is defined by 

conf S 

(X ⇒ Y ) = 

supp S 

(X ∪ Y ) 

supp S 

(X ) 
. 

In addition, we define conf S 

(X ⇒ Y ) = 0 if supp S 

(X ) = 0 . 

To select potentially interesting association rules from a given

soft set S = (F , A ) , the users are requested to specify a mini-

mum support rate (denoted by σ ) and a minimum confidence

level (denoted by γ ) in advance. Accordingly, X ⊆ A is said to

be a σ - frequent set of parameters if supp S 

(X ) ≥ σ · | U| . We say

that an association rule X ⇒ Y is σ - strong in the soft set S if

supp S 

(X ⇒ Y ) ≥ σ · | U| . Moreover, X ⇒ Y is said to be γ - reliable

in S if conf S 

(X ⇒ Y ) ≥ γ . 

Remark 4.11. Here we compare the above notions with those de-

fined in [16] . Note first that the above notions are purely estab-

lished in the framework of soft sets, although they are strongly in-

spired by association rule mining in transactional datasets. More-

over, in our new definitions, the soft set S = (F , A ) is arbitrary,

needless to be a soft set transformed from a transactional dataset

as required in [16] . Hence, our new definitions not only guaran-

tee the utmost generality of these concepts, but make them more

clearly understood from a viewpoint of soft set theory. Last but not

least, the corresponding notions regarding association rule mining

in transactional datasets can easily be concretized from the above

definitions if the soft set is taken to be a transactional data soft set

S D = (F , A ) induced by a transactional dataset D . 

To further illustrate several notions mentioned above, let us

consider an example as follows. 

Example 4.12 (Continuation of Example 4.8) . Consider the trans-

actional dataset U = { t 0 , t 1 , · · · , t 9 } and the soft set S U = (F , I) in-

duced by the dataset U in Example 4.8 . Let X 1 = { A, B } , Y 1 = { x }
and Z 1 = { 1 } . Clearly, X 1 , Y 1 and Z 1 are pairwisely disjoint sets of

parameters. Thus by definition, X 1 ⇒ Y 1 , X 1 ⇒ Z 1 and Z 1 ⇒ Y 1 
are association rules in the soft set S U . The realizations of these

association rules are as follows: 

	 S U 
({ A, B } ⇒ { x } ) = { t 0 , t 3 , t 7 , t 9 } , 
 S U 
({ A, B } ⇒ { 1 } ) = { t 0 , t 1 , t 2 , t 5 , t 9 } 

nd 

 S U 
({ 1 } ⇒ { x } ) = { t 0 , t 9 } . 

t follows that 

upp S U 
({ A, B } ⇒ { x } ) = 4 , 

upp S U 
({ A, B } ⇒ { 1 } ) = 5 

nd 

upp S U 
({ 1 } ⇒ { x } ) = 2 . 

By calculation, the realizations of X 1 , Y 1 and Z 1 in S U are as

ollows: 

 S U 
({ A, B } ) = { t 0 , t 1 , t 2 , t 3 , t 5 , t 7 , t 9 } , 

 S U 
({ x } ) = { t 0 , t 3 , t 7 , t 9 } 

nd 

 S U 
({ 1 } ) = { t 0 , t 1 , t 2 , t 5 , t 6 , t 9 } . 

ence the supports of X 1 , Y 1 and Z 1 in S U are 

upp S U 
({ A, B } ) = 7 , 

upp S U 
({ x } ) = 4 

nd 

upp S U 
({ 1 } ) = 6 . 

hus we have 

onf S U 
({ A, B } ⇒ { x } ) = 4 / 7 , 

onf S U 
({ A, B } ⇒ { 1 } ) = 5 / 7 

nd 

onf S U 
({ 1 } ⇒ { x } ) = 1 / 3 . 

Now, suppose that the user has specified the minimum support

ate σ1 = 0 . 45 and the minimum confidence level γ1 = 0 . 55 . Then

 1 and Z 1 are σ 1 -frequent sets of parameters since 

upp S U 
({ A, B } ) = 7 > σ1 · | U| = 4 . 5 

nd 

upp S U 
({ 1 } ) = 6 > σ1 · | U| = 4 . 5 . 

owever, Y 1 is not σ 1 -frequent since 

upp S U 
({ x } ) = 4 < σ1 · | U| = 4 . 5 . 

It can be seen that X 1 ⇒ Y 1 is not σ 1 -strong but γ 1 -reliable in

 U since 

upp S U 
({ A, B } ⇒ { x } ) = 4 < σ1 · | U| = 4 . 5 

nd 

onf S U 
({ A, B } ⇒ { x } ) = 4 / 7 > γ1 = 0 . 55 . 

ote also that X 1 ⇒ Z 1 is both σ 1 -strong and γ 1 -reliable in S U 

ince 

upp S U 
({ A, B } ⇒ { 1 } ) = 5 > σ1 · | U| = 4 . 5 

nd 

onf S U 
({ A, B } ⇒ { 1 } ) = 5 / 7 > γ1 = 0 . 55 . 

n addition, the association rule Z 1 ⇒ Y 1 is neither σ 1 -strong nor

1 -reliable in S U since 

upp S U 
({ 1 } ⇒ { x } ) = 2 < σ1 · | U| = 4 . 5 

nd 
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. Mining maximal association rules using soft sets 

Herawan and Deris [16] also initiated the study on mining max-

mal association rules by virtue of soft sets. To make the present

tudy self-contained, we first recall the following definitions which

re directly quoted from [16] . 

efinition 5.1 [16] . Let ( F, E ) be a soft set over the universe U and

 ⊆ E i . A set of attributes X is said to be maximal supported by a

ransaction u if X = Coo (u ) ∩ E i . 

efinition 5.2 [16] . Let ( F, E ) be a soft set over the universe U and

 ⊆ E i . The maximal support of a set of parameters X , denoted

y Msup( X ) is defined by the number of transactions U maximal

upporting X , i.e. 

sup (X ) = |{ u : Coo (u ) ∩ E i }| , 
here | X | is the cardinality of X . 

efinition 5.3 [16] . Let ( F, E ) be a soft set over the universe U and

wo maximal itemsets X, Y ⊆ E i , where X ∩ Y = ∅ . A maximal asso-

iation rule between X and Y is an implication of the form X 
M ⇒ Y .

he itemsets X and Y are called maximal antecedent and maximal

onsequent, respectively. 

efinition 5.4 [16] . Let ( F, E ) be a soft set over the universe U

nd two maximal itemsets X, Y ⊆ E i , where X ∩ Y = ∅ . The max-

mal support of a maximal association rule X 
M ⇒ Y, denoted by

sup (X 
M ⇒ Y ) is defined by 

sup (X 

M ⇒ Y ) = Msup (X ∪ Y ) = |{ u : X ∪ Y = Coo (u ) ∩ E i }| . (3)

efinition 5.5 [16] . Let ( F, E ) be a soft set over the universe U and

wo maximal itemsets X, Y ⊆ E i , where X ∩ Y = ∅ . The confidence

f a maximal association rule X 
M ⇒ Y, denoted by Mconf (X 

M ⇒ Y )

nd is defined by 

conf (X 

M ⇒ Y ) = 

Msup (X ∪ Y ) 

Msup (X ) 
= 

|{ u : X ∪ Y = Coo (u ) ∩ E i }| 
|{ u : X = Coo (u ) ∩ E i }| . 

(4) 

It should be noted that the above definitions suffer from some

rawbacks, which might hinder further research following this line

f exploration. In what follows, we point out the shortcomings

temming from the above definitions and offer some modifications

o the original definitions. 

efinition 5.6. Let S = (F , A ) ∈ S S 

E (U) and T = { C 1 , · · · , C | T | } be

 partition of the parameter set A . Then the triple S = (F , A, T ) is

alled a parameter-taxonomic soft set over U . 

The partition T is also referred to as the taxonomy of the pa-

ameter set A . Each member of T is called a category . For every

arameter a ∈ A , the unique category containing a is denoted by

 a . If X is a nonempty set of parameters from a single category A i 

 T , then A i is also denoted by C X in what follows. 

efinition 5.7 (See Definitions 5.1 and 5.2 for comparison) . Let

 = (F , A, T ) be a parameter-taxonomic soft set over U, u ∈ U and

 be a nonempty set of parameters in the category C X . Then X is

aid to be M - supported by u ∈ U in S if Co S 

(u ) ∩ C X = X . The set

 

M 

S 

(X ) = { u ∈ U : Co S 

(u ) ∩ C X = X} is called the M - realization of X

n the soft set S . The cardinality of 	 

M 

S 

(X ) is called the M - support

f X in S and denoted by supp 

M 

S 

(X ) . 

roposition 5.8. Suppose that S = (F , A, T ) is a parameter-

axonomic soft set over U. Let X 1 , X 2 be two sets of parameters

n some category C ∈ T. If 	 

M (X 1 ) ∩ 	 

M (X 2 ) � = ∅ , then X 1 = X 2 . 
S S 
roof. Note first that C X 1 = C X 2 = C by the hypothesis. Assume that

 ∈ 	 

M 

S 

(X 1 ) ∩ 	 

M 

S 

(X 2 ) � = ∅ . Then we have 

o S 

(u ) ∩ C X 1 = Co S 

(u ) ∩ C = X 1 

nd 

o S 

(u ) ∩ C X 2 = Co S 

(u ) ∩ C = X 2 . 

t follows that X 1 = X 2 as required. �

The above result indicates that in a parameter-taxonomic soft

et, each object u could M -supports at most one set of parameters

rom any chosen category. In addition, for any object u and any

ategory C , we can find the unique set of parameters X which is

 -supported by u whenever it does exist. 

roposition 5.9. Let S = (F , A, T ) be a parameter-taxonomic soft set

ver U, C ∈ T and u ∈ U. If Co S 

(u ) ∩ C = X � = ∅ , then u ∈ 	 

M 

S 

(X ) . 

roof. Assume that Co S 

(u ) ∩ C = X � = ∅ . Then X is a nonempty set

f parameters from a single category C X = C. Moreover, we have

o S 

(u ) ∩ C X = Co S 

(u ) ∩ C = X, which implies u ∈ 	 

M 

S 

(X ) . �

To illustrate the above new notions, let us revisit the example

roposed in previous section. 

xample 5.10. Consider the transactional dataset U =
 t 0 , t 1 , · · · , t 9 } and the soft set S U = (F , I) induced by the

ataset U in Example 4.8 . Let T = { C 1 , C 2 , C 3 } be a partition of

he set I of parameters, where C 1 = { A, B, C, D } , C 2 = { u, x, y, z}
nd C 3 = { 1 , 2 , 3 , 4 } . Intuitively, C 1 , C 2 and C 3 represent for three

istinct categories, which are “Capitals”, “Lowercase” and “Digits”,

espectively. It can be seen that T = (F , I, T ) is a parameter-

axonomic soft set over U . Let t 0 ∈ U and X 1 = { A, B } ⊆ C 1 . Then

e have 

o T 

(t 0 ) = { A, B, x, y, 1 } . 
hus X 1 is M -supported by t 0 in T since Co T (t 0 ) ∩ C 1 = X 1 . In addi-

ion, the M -realization of X 1 in T is the set 

 

M 

T 

({ A, B } ) = { t 0 , t 3 , t 5 , t 7 , t 9 } , 
nd so the M -support of X 1 in T is supp 

M 

T 
(X 1 ) = 5 . 

Based on the above results, we present the following algorithms

o find all M -realizations of parameter sets in a given parameter-

axonomic soft set. 

emark 5.11. It is clear that the execution time of the above al-

orithms depends on the size of the input parameter-taxonomic

oft set S = (F , A, T ) over U . Theoretically, the time complexity of

lgorithm 1 is O (| U | · | T |) since it needs to search all the objects

lgorithm 1 Construct a set-valued matrix from a parameter-

axonomic soft set. 

Procedure: Construct-Matrix( S ) 

1 Input: a parameter-taxonomic soft set S = (F , A, T ) over U . 

2 foreach u i ∈ U do 

3 foreach C j ∈ T do 

4 X i j ← Co S 

(u i ) ∩ C j 
5 end foreach 

6 end foreach 

7 Output: a set-valued matrix of parameters M = (X i j ) | U|×| T | . 

n the universe of discourse U as well as all the categories in the

axonomy T . In a similar fashion, it can be seen that Algorithm 2

as a complexity of O (| U | 2 · | T |). 

The following example can help to illustrate some basic ideas

bout the above algorithms. 
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Algorithm 2 Calculate all M -realizations in a parameter-taxonomic 

soft set. 

Procedure: Calculate- M-Realization( S ) 

1 Input: a parameter-taxonomic soft set S = (F , A, T ) over U . 

2 Construct the matrix M from S using the procedure Construct- 

Matrix( S ). 

3 Initialize i ← 1 , j ← 1 , k ← 1 and 	 

M 

S 

(X ik ) ← ∅ . 
4 foreach 1 ≤ k ≤ | T | do 

5 foreach 1 ≤ i ≤ | U| do 

6 foreach 1 ≤ j ≤ | U| do 

7 if X ik = X jk and X ik � = ∅ then 

8 	 

M 

S 

(X ik ) ← 	 

M 

S 

(X ik ) ∪ { u i , u j } 
9 end foreach 

10 end foreach 

11 end foreach 

12 Output: all M-realizations 	 

M 

S 

(X ik ) of parameter sets in S . 

Table 3 

A set-valued matrix M . 

M C 1 C 2 C 3 

t 0 { A, B } { x, y } {1} 

t 1 { A, B, D } { u, z } {1, 2, 3} 

t 2 { A, B, C } { z } {1} 

t 3 { A, B } { x, y, z } {2, 3, 4} 

t 4 { C } { z } {2, 3} 

t 5 { A, B } { u } {1, 3} 

t 6 { C, D } { z } {1, 2} 

t 7 { A, B } { u, x, y } {4} 

t 8 { A, D } { z } {2, 4} 

t 9 { A, B } { x, y, z } {1} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Nonempty M -realizations of parame- 

ter sets in T . 

Parameter set M -realization 

{ A, B } { t 0 , t 3 , t 5 , t 7 , t 9 } 

{ A, B, C } { t 2 } 

{ A, B, D } { t 1 } 

{ A, D } { t 8 } 

{ C } { t 4 } 

{ C, D } { t 6 } 

{ u } { t 5 } 

{ u, x, y } { t 7 } 

{ u, z } { t 1 } 

{ x, y } { t 0 } 

{ x, y, z } { t 3 , t 9 } 

{ z } { t 2 , t 4 , t 6 , t 8 } 

{1} { t 0 , t 2 , t 9 } 

{1, 2} { t 6 } 

{1, 3} { t 5 } 

{1, 2, 3} { t 1 } 

{2, 3} { t 4 } 

{2, 4} { t 8 } 

{2, 3, 4} { t 3 } 

{4} { t 7 } 
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Example 5.12 (Continuation of Example 5.10) . Let us consider the

parameter-taxonomic soft set T = (F , I, T ) over U in Example 5.10 .

Using Algorithm 1 , we can construct a set-valued matrix M =
(X i j ) 10 ×3 of parameters from T , as shown in Table 3 . From the first

column of the matrix M , we have 

	 

M 

T 

({ A, B } ) = { t 0 , t 3 , t 5 , t 7 , t 9 } , 
since X 11 = X 41 = X 61 = X 81 = X 10 , 1 = { A, B } . Similarly, we can ob-

tain other M -realizations such as 

	 

M 

T 

({ A, B, C} ) = { t 2 } , 
	 

M 

T 

({ A, B, D } ) = { t 1 } , 
	 

M 

T 

({ A, D } ) = { t 8 } , 
	 

M 

T 

({ C} ) = { t 4 } 
and 

	 

M 

T 

({ C, D } ) = { t 6 } . 
Using Algorithm 2 , one can get all nonempty M -realizations of pa-

rameter sets in T as listed in Table 4 . 

Definition 5.13 (See Definition 5.3 for comparison) . Let S =
(F , A, T ) be a parameter-taxonomic soft set over U and X, Y be

nonempty parameter sets from two distinct categories (i.e., C X � =
C Y ). Then the formal expression X 

M ⇒ Y is called a maximal asso-

ciation rule between X and Y in the parameter-taxonomic soft set

S . The parameter sets X, Y are referred to as the antecedent and

consequent of X 
M ⇒ Y, respectively. 

Definition 5.14 (See Definition 5.4 for comparison) . Let S =
(F , A, T ) be a parameter-taxonomic soft set over U and X 

M ⇒ Y be

a maximal association rule in S . The M - realization of X 
M ⇒ Y is de-

fined as 

	 

M 

S 

(X 

M ⇒ Y ) = { u ∈ U : ( Co S 

(u ) ∩ C X = X ) ∧ (Y ⊆ Co S 

(u )) } . 
he cardinality of 	 

M 

S 

(X 
M ⇒ Y ) is called the M - support of X 

M ⇒ Y and

enoted by supp 

M 

S 

(X 
M ⇒ Y ) . 

efinition 5.15 ((See Definition 5.5 for comparison) . Let S =
(F , A, T ) be a parameter-taxonomic soft set over U and X 

M ⇒ Y be

 maximal association rule in S . The M - confidence of X 
M ⇒ Y is de-

ned as 

onf 
M 

S 

(X 

M ⇒ Y ) = 

supp 

M 

S 

(X 

M ⇒ Y ) 

card (U(X, Y )) 
, 

here U(X, Y ) = { u ∈ U : ( Co S 

(u ) ∩ C X = X ) ∧ ( Co S 

(u ) ∩ C Y � = ∅ ) }
s called the relevant domain of X 

M ⇒ Y . Besides, we define

onf 
M 

S 

(X 
M ⇒ Y ) = 0 if U(X, Y ) = ∅ . 

emark 5.16. It is worth noting that the above Definitions 5.13 –

.15 revise Herawan and Deris’s Definitions 5.3 –5.5 in [16] , respec-

ively. These amendments are of vital importance for both theory

nd applications. Note first that the antecedent and consequent of

 maximal association rule X 
M ⇒ Y are required to be chosen from

he same category (i.e., C X = C Y , denoted by E i in [16] ). But ac-

ording to Amir et al.’s original ideas regarding maximal associ-

tions, X and Y should be subsets of two distinct categories (see

efinition 3.5 ). Hence it is required that C X � = C Y in Definition 5.13 .

The definitions of M -support and M -confidence, as given in [16] ,

an cause even more difficulties. According to Herawan and Deris’s

efinition 5.4 , the M -support is given by Eq. (3) , where E i = C X =
 Y is a category. In other words, the M -support of a maximal asso-

iation rule X 
M ⇒ Y is defined to be the number of objects in U that

 -supports X ∪ Y in S . However, Amir et al. [9] pointed out that a

aximal association rule X 
M ⇒ Y intuitively means that whenever X

s the only item of its type in a transaction, than Y also appears in

he transaction with some confidence. In other words, Eq. (3) fails

o express Amir et al.’s original ideas exactly. 

In addition, according to Herawan and Deris’s Definition 5.5 , the

 -confidence is given by Eq. (4) , where E i = C X = C Y is a category.

owever, it can be true that an object u ∈ U M -supports X ∪ Y but

t does not M -support X . In this case, the ratio in Eq. (4) has a zero

enominator but a nonzero numerator, which turns out to be a

erious problem. These important issues will be further illustrated

y a cased study in Section 7 . 
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Algorithm 3 Find all σ - M -strong and γ - M -reliable maximal asso- 

ciation rules in a parameter-taxonomic soft set 

Procedure: Find- σ - M-Strong- γ - M-Reliable-Maximal- 

Rule( S , σ, γ ) 

1 Input: a parameter-taxonomic soft set S = (F , A, T ) over U and 

the thresholds σ, γ ∈ [0 , 1] . 

2 Construct the matrix M from S using the procedure Construct- 

Matrix( S ). 

3 Calculate all M-realizations 	 

M 

S 

(X ik ) of sets of parameters in 

S using the procedure Calculate- M-realization( S ) and put X ik 
into the class C M 

σ,k 
if supp 

M 

S 

(X ik ) ≥ σ · | U| , where 1 ≤ k ≤ | T | and 

T = { C 1 , · · · , C | T | } . 
4 Calculate all realizations 	 S 

(Y s j ) for all Y s j ∈ P(C j ) and put Y s j 

into the class D σ, j if supp S 

(Y s j ) ≥ σ · | U| , where 1 ≤ j ≤ | T | and 

P(C j ) denotes the power set of the category C j . 

5 foreach 1 ≤ k ≤ | T | do 

6 foreach 1 ≤ j ≤ | T | do 

7 foreach X ik ∈ C M 

σ,k 
do 

8 foreach Y s j ∈ D σ, j do 

9 if k � = j, calculate supp 

M 

S 

(X ik 
M ⇒ Y s j ) = |	 

M 

S 

(X ik ) ∩ 

	 S 

(Y s j ) | . 
10 if supp 

M 

S 

(X ik 
M ⇒ Y s j ) ≥ σ · | U| , calculate | U(X ik , Y s j ) | . 

11 if supp 

M 

S 

(X ik 
M ⇒ Y s j ) ≥ γ · | U(X ik , Y s j ) | ,put X ik 

M ⇒ Y s j into 

SRR 

M 

σ,γ . 

12 end foreach 

13 end foreach 

14 end foreach 

15 end foreach 

16 Output: the class SRR 

M 

σ,γ of all σ - M-strong and γ - M-reliable 

maximal association rules. 
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Like mining regular association rules, minimum M -support rate

nd minimum M -confidence (which are denoted by σ and γ , re-

pectively) should be predetermined for finding useful maximal

ssociation rules from a given parameter-taxonomic soft set S =
(F , A, T ) . We say that a set X of parameters is σ - M - frequent in S

f supp 

M 

S 

(X ) ≥ σ · | U| . Noted that a subset of a σ - M -frequent set

f parameters might not be σ - M -frequent. A maximal association

ule X 
M ⇒ Y is σ - M - strong in the parameter-taxonomic soft set S

f supp 

M 

S 

(X 
M ⇒ Y ) ≥ σ · | U| . In addition, X 

M ⇒ Y is said to be γ - M -

eliable in S if conf M 

S 

(X 
M ⇒ Y ) ≥ γ . Then our main purpose is to

nd all maximal association rules which are σ - M -strong and γ -

 -reliable from the given parameter-taxonomic soft set. 

roposition 5.17. Let S = (F , A, T ) be a parameter-taxonomic soft

et over U. Let X 
M ⇒ Y be a maximal association rule in S and σ ∈

0, 1] . If X 
M ⇒ Y is σ - M-strong, then X is σ - M-frequent and Y is σ -

requent in S . 

roof. Assume that X 
M ⇒ Y is a σ - M -strong maximal association

ule in S . By definitions of realizations and M -realizations, we

ave 

 

M 

S 

(X 

M ⇒ Y ) = 	 

M 

S 

(X ) ∩ 	 S 

(Y ) . 

t follows that 

· | U| ≤ supp 

M 

S 

(X 

M ⇒ Y ) ≤ min { supp 

M 

S 

(X ) , supp S 

(Y ) } . 
his implies that X is σ - M -frequent and Y is σ -frequent in S . �

However, it should be noted that the converse of the above im-

lication does not hold in general as illustrated by the following

xample. 

xample 5.18. Consider the parameter-taxonomic soft set T =
(F , I, T ) over U in Example 5.10 . Let X 1 = { A, B } and Y 2 = { z} .

learly, X 1 and Y 2 are nonempty parameter sets from two dis-

inct categories. Thus X 1 
M ⇒ Y 2 is a maximal association rule. Now,

ssume that the user has specified the minimum M -support rate

2 = 0 . 4 . Note first that X 1 is σ 2 - M -frequent since 

upp 

M 

T 

(X 1 ) = |{ t 0 , t 3 , t 5 , t 7 , t 9 }| = 5 ≥ σ2 · | U| = 4 . 

lso we deduce that Y 2 is σ 2 -frequent since supp T (Y 2 ) = 7 ≥ σ2 ·
 U| = 4 . Nevertheless, we have 

upp 

M 

T 

(X 1 
M ⇒ Y 2 ) = |{ t 3 , t 9 }| = 2 < σ2 · | U| = 4 , 

hich indicates that X 1 
M ⇒ Y 2 is not a σ 2 - M -strong maximal asso-

iation rule. 

Based on the notions and results given above, we propose the

ollowing algorithm for mining all σ - M -strong and γ - M -reliable

aximal association rules from a parameter-taxonomic soft set. 

emark 5.19. The above algorithm has three parts. The first part

stablishes the matrix of parameter sets. The second part gener-

tes the classes C M 

σ,k 
and D σ, j . The last part produces σ - M -strong

nd γ - M -reliable maximal association rules. The execution time of

lgorithm 3 depends on the size of the input parameter-taxonomic

oft set S = (F , A, T ) over U . In fact, it can be seen that 

C M 

σ,k | = |{ X ik ∈ M | supp 

M 

S 

(X ik ) ≥ σ · | U|}| ≤ | U| 
or all 1 ≤ k ≤ | T |. Note also that 

D σ, j | = |{ Y s j ∈ P(C j ) | supp S 

(Y s j ) ≥ σ · | U|}| ≤ 2 

| C ∗| , 

here 1 ≤ j ≤ | T | and C ∗ is the largest category in the tax-

nomy T . Hence the maximal association rule extracting part of

lgorithm 3 has the complexity of O (2 | C ∗| · | U| · | T | 2 ) , which is still
nder O (2 | A | · | U | · | T | 2 ) even in the worst case since | C 1 | + | C 2 | +
· · + | C | T | | = | A | . It is worth noting that in some real-world appli-

ations one can restrict the classes C M 

σ,k 
and D σ, j to some proper

ubclasses so as to further reduce the number of maximal asso-

iation rules extracted by Algorithm 3 . This can help to signifi-

antly reduce the running time of Algorithm 3 as illustrated by

xample 6.1 in the next section. 

. An application to clinical diagnosis 

In this section, an illustrating example is presented to show po-

ential applications of the proposed method in clinical diagnosis. 

xample 6.1. Suppose that there are 10 0 0 patients p i 
 i = 1 , 2 , · · · , 10 0 0 ) suffering from several symptoms s j 
 j = 1 , 2 , · · · , 10 ), which stand for “high fever”, “cough”, “rash”,

diarrhea”, “sore throat”, “runny nose”, “fatigue”, “headache”,

vomiting” and “nasal congestion”, respectively. These symptoms 

re possibly associated with several diseases d j ( j = 1 , 2 , 3 ), which

tand for “influenza”, “dengue” and “common cold”, respectively.

et U = { p 1 , p 2 , · · · , p 10 0 0 } , S = { s 1 , s 2 , · · · , s 10 } , D = { d 1 , d 2 , d 3 }
nd A = S ∪ D . Clearly, S ∩ D = ∅ and T = { C 1 , C 2 } = { S, D } forms a

axonomy of the parameter set A . This taxonomy contains two

ategories S and D , namely “Symptoms” and “Diseases”. Clinical

iagnosis information regarding these patients is stored in a

arameter-taxonomic soft set S = (F , A, T ) over U with its tabular

epresentation given by Table 5 , where p i k represent a certain

ype of patients in exactly the same condition and “| p i k | ” gives the

umber of patients corresponding to the type p i k . 

Now we endeavor to find all σ - M -strong and γ - M -reliable max-

mal association rules in S using Algorithm 3 . To do this, let us

ssume first that the user has chosen the thresholds σ = 0 . 15



276 F. Feng et al. / Knowledge-Based Systems 111 (2016) 268–282 

Table 5 

Tabular representation of the parameter-taxonomic soft set S . 

U s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s 10 d 1 d 2 d 3 | p i k | 
p i 0 0 1 0 0 1 1 0 0 0 1 0 0 1 70 

p i 1 1 0 1 1 0 1 1 1 0 0 0 1 0 35 

p i 2 1 1 0 0 1 0 0 1 0 0 1 0 0 100 

p i 3 1 1 0 0 0 0 1 1 0 1 0 0 1 50 

p i 4 1 1 0 1 1 0 0 0 1 0 1 0 0 45 

p i 5 1 0 1 0 0 0 0 1 1 0 0 1 0 200 

p i 6 0 1 0 0 1 0 1 1 0 1 0 0 1 30 

p i 7 1 1 0 0 0 0 1 1 0 1 1 0 0 210 

p i 8 0 1 0 0 1 0 0 0 0 1 0 0 1 220 

p i 9 0 1 0 0 1 1 0 0 0 1 1 0 0 40 

Table 6 

A set-valued matrix M 1 . 

M 1 Symptoms Diseases 

p i 0 { s 2 , s 5 , s 6 , s 10 } { d 3 } 

p i 1 { s 1 , s 3 , s 4 , s 6 , s 7 , s 8 } { d 2 } 

p i 2 { s 1 , s 2 , s 5 , s 8 } { d 1 } 

p i 3 { s 1 , s 2 , s 7 , s 8 , s 10 } { d 3 } 

p i 4 { s 1 , s 2 , s 4 , s 5 , s 9 } { d 1 } 

p i 5 { s 1 , s 3 , s 8 , s 9 } { d 2 } 

p i 6 { s 2 , s 5 , s 7 , s 8 , s 10 } { d 3 } 

p i 7 { s 1 , s 2 , s 7 , s 8 , s 10 } { d 1 } 

p i 8 { s 2 , s 5 , s 10 } { d 3 } 

p i 9 { s 2 , s 5 , s 6 , s 10 } { d 1 } 

Table 7 

Nonempty M -realizations of parameter sets in S . 

Parameter set M -realization M -support 

{ s 2 , s 5 , s 6 , s 10 } { p i 0 , p i 9 } 110 

{ s 1 , s 3 , s 4 , s 6 , s 7 , s 8 } { p i 1 } 35 

{ s 1 , s 2 , s 5 , s 8 } { p i 2 } 100 

{ s 1 , s 2 , s 7 , s 8 , s 10 } { p i 3 , p i 7 } 260 

{ s 1 , s 2 , s 4 , s 5 , s 9 } { p i 4 } 45 

{ s 1 , s 3 , s 8 , s 9 } { p i 5 } 200 

{ s 2 , s 5 , s 7 , s 8 , s 10 } { p i 6 } 30 

{ s 2 , s 5 , s 10 } { p i 8 } 220 

{ d 1 } { p i 2 , p i 4 , p i 7 , p i 9 } 395 

{ d 2 } { p i 1 , p i 5 } 235 

{ d 3 } { p i 0 , p i 3 , p i 6 , p i 8 } 370 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

A matrix of M -supports. 

M -support Y 1 Y 2 Y 3 

X 41 210 0 50 

X 61 0 200 0 

X 91 0 0 220 
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and γ = 0 . 85 . Then we can use the procedure Construct \ hbox{-

}Matrix( S ) to construct a set-valued matrix M 1 = (X i j ) 10 ×2 from

S , as shown in Table 6 . Using this matrix, we can calculate M -

realizations of parameter sets in S = (F , A, T ) and the obtained re-

sults are listed in Table 7 . 

Since σ = 0 . 15 and | U| = 10 0 0 , one can easily observe from

Table 9 that the parameter sets X 41 = { s 1 , s 2 , s 7 , s 8 , s 10 } , X 61 =
{ s 1 , s 3 , s 8 , s 9 } and X 91 = { s 2 , s 5 , s 10 } are σ − M-frequent in S . In

other words, we get the following class: 

C M 

σ, 1 = {{ s 1 , s 2 , s 7 , s 8 , s 10 } , { s 1 , s 3 , s 8 , s 9 } , { s 2 , s 5 , s 10 }} . 
In view of the background of our application, it is meaningful to

restrict our discussion to those maximal associations whose an-

tecedents are only from the category S . Hence the other class C M 

σ, 2 
will not be calculated and used in what follows. Due to the same

reason, we only need to consider the class D σ, 2 which consists of

the sets of parameters from the category D . Specifically, we have 

D σ, 2 = { Y 1 , Y 2 , Y 3 } = {{ d 1 } , { d 2 } , { d 3 }} , 
since Y 1 = { d 1 } , Y 2 = { d 2 } and Y 3 = { d 3 } are all the σ -frequent sets

of parameters in S . 

Next, we calculate the M -support of those maximal association

rules consisting of antecedents from C M 

σ, 1 
and consequents from
 

M 

σ, 2 
. The results are summarized in Table 8 , from which we de-

uce that X 41 
M ⇒ Y 1 , X 61 

M ⇒ Y 2 and X 91 
M ⇒ Y 3 are σ - M -strong maxi-

al association rules. By further calculation, we have | U(X 41 , Y 1 ) | =
60 , | U(X 61 , Y 2 ) | = 200 and | U(X 91 , Y 3 ) | = 220 . In addition, we

ave 

upp 

M 

S 

(X 41 
M ⇒ Y 1 ) = 210 < γ · | U(X 41 , Y 1 ) | = 221 , 

upp 

M 

S 

(X 61 
M ⇒ Y 2 ) = 200 > γ · | U(X 61 , Y 2 ) | = 170 

nd 

upp 

M 

S 

(X 91 
M ⇒ Y 3 ) = 220 > γ · | U(X 91 , Y 3 ) | = 187 . 

herefore, X 61 
M ⇒ Y 2 and X 91 

M ⇒ Y 3 are σ - M -strong and γ - M -reliable

aximal association rules in the parameter-taxonomic soft set S . 

. Case studies 

In this section, we conduct two case studies to highlight the

ssentials of the newly proposed concepts and algorithms. 

.1. Case study 1: a dataset derived from Reuters -21578 

In the first case study, we consider a real dataset derived from

euters -21578 which is widely used as a benchmark for text mining

11,16] . It is a corpus consisting of 30 articles, in which 10 articles

iscuss the product corn associated with the countries Canada and

SA, while other 20 articles are mainly about the product fish and

ountries Canada, France and USA. 

Specifically, we have a parameter set 

 = { Corn, Fish, Canada, France, USA } 
nd a dataset D = { t 1 , t 2 , · · · , t 30 } as shown in Table 9 . We divide

he parameter set into two categories 

 1 = “Products” = { Corn, Fish } 
nd 

 2 = “Countries” = { Canada, France, USA } , 
hich form a taxonomy T = { C 1 , C 2 } . Using this dataset and tax-

nomy, we can construct a parameter-taxonomic soft set S D =
(F , I, T ) over D . The approximate function of S D is defined as 

 ( Corn ) = { t 1 , t 2 , · · · , t 10 } , 
 ( Fish ) = F ( France ) = { t 11 , t 12 , · · · , t 30 } , 
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Table 9 

A dataset D from Reuters -21578. 

TID Transaction 

t 1 Canada, USA, Corn 

t 2 Canada, USA, Corn 

� � � �

t 10 Canada, USA, Corn 

t 11 Canada, France, USA, Fish 

t 12 Canada, France, USA, Fish 

� � � �

t 30 Canada, France, USA, Fish 

Table 10 

Tabular representation of the parameter-taxonomic soft set S D . 

D Corn Fish Canada France USA 

t 1 1 0 1 0 1 

t 2 1 0 1 0 1 

� � � � � �

t 10 1 0 1 0 1 

t 11 0 1 1 1 1 

t 12 0 1 1 1 1 

� � � � � �

t 30 0 1 1 1 1 

Table 11 

Nonempty M -realizations of parameter sets in S D . 

Parameter set M -realization M -support 

{Corn} { t 1 , t 2 , ���, t 10 } 10 

{Fish} { t 11 , t 12 , ���, t 30 } 20 

{Canada, USA} { t 1 , t 2 , ���, t 10 } 10 

{Canada, France, USA} { t 11 , t 12 , ���, t 30 } 20 
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Table 12 

The σ - M -strong and γ - M -reliable maximal association rules in S D . 

Maximal association rule M -support M -confidence 

{ Canada,USA } M ⇒ { Corn } 10 100% 

{ Canada,France,USA } M ⇒ { Fish } 20 100% 

{ Corn } M ⇒ { Canada,USA } 10 100% 

{ Fish } M ⇒ { Canada,France,USA } 20 100% 

{ Corn } M ⇒ { Canada } 10 100% 

{ Corn } M ⇒ { USA } 10 100% 

{ Fish } M ⇒ { Canada,France } 20 100% 

{ Fish } M ⇒ { Canada,USA } 20 100% 

{ Fish } M ⇒ { France,USA } 20 100% 

{ Fish } M ⇒ { Canada } 20 100% 

{ Fish } M ⇒ { France } 20 100% 

{ Fish } M ⇒ { USA } 20 100% 
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nd F ( Canada ) = F ( USA ) = D . Tabular representation of the

arameter-taxonomic soft set S D = (F , I, T ) is shown in Table 10 . 

By using Algorithm 3 , it is convenient to find all σ - M -strong

nd γ - M -reliable maximal association rules from the parameter-

axonomic soft set S D = (F , I, T ) . The following steps are per-

ormed to achieve this goal. 

Step 1: We first need to specify certain thresholds. For instance,

et σ = 0 . 3 and γ = 0 . 9 . 

Step 2: Then a set-valued matrix 

 2 = (X i j ) 30 ×2 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

X 11 = { Corn } X 12 = { Canada,USA } 
X 21 = { Corn } X 22 = { Canada,USA } 

. . . 
. . . 

X 10 , 1 = { Corn } X 10 , 2 = { Canada,USA } 
X 11 , 1 = { Fish } X 11 , 2 = { Canada,France,USA } 
X 12 , 1 = { Fish } X 12 , 2 = { Canada,France,USA } 

. . . 
. . . 

X 30 , 1 = { Fish } X 30 , 2 = { Canada,France,USA } 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

s constructed from the parameter-taxonomic soft set S D by exe-

uting the procedure Construct-Matrix( S D ). 

Step 3: Based on the matrix M 2 , we can further calculate M -

ealizations of parameter sets in S D using the procedure Calculate-

 -realization( S D ) in Algorithm 2 . The obtained results are shown

n Table 11 . Moreover, we get the following two classes 

 

M 

σ, 1 = {{ Corn } , { Fish }} 
nd 

 

M 

σ, 2 = {{ Canada,USA } , { Canada,France,USA }} , 
hich consist of all σ - M -frequent parameter sets in S . 
D 
Step 4: Since σ = 0 . 3 and | D | = 30 , by calculation we obtain

he following two classes 

 

M 

σ, 1 = {{ Corn } , { Fish }} 
nd 

 

M 

σ, 2 = {{ Canada,France,USA } , { Canada,France } , { Canada,USA } , 
{ France,USA } , { Canada } , { France } , { USA }} , 

hich consist of all σ -frequent parameter sets in S D . 

Step 5: We construct potentially interesting maximal associa-

ion rules either by taking the parameter sets from C M 

σ, 1 
as the an-

ecedents and the parameter sets from D 

M 

σ, 2 
as the consequents, or

y taking the parameter sets from C M 

σ, 2 
as the antecedents and the

arameter sets from D 

M 

σ, 1 as the consequents. Since σ = 0 . 3 , γ =
 . 9 and | D | = 30 , by calculation we can identify all σ - M -strong

nd γ - M -reliable maximal association rules in S D , as shown in

able 12 . It is interesting to see that all these maximal association

ules have the same M -confidence of 100%. 

emark 7.1. The σ - M -strong and γ - M -reliable maximal associa-

ion rules captured by Algorithm 3 include all those rules discov-

red in [16] , namely the first four rules in Table 12 (see Fig. 16

n [16] for comparison). In addition, we also find eight rules with

 -confidence of 100%, which are not reported in [16] . However, it

hould be noted that all these obtained rules are not consistent

ith Herawan and Deris’s initial definition of maximal association

ules (i.e., Definition 5.3 ). For instance, we consider the first rule 

 Canada,USA } M ⇒ { Corn } 
n Table 12 . It is easy to see that 

 Canada,USA } ⊆ C { Canada,USA } = C 2 = { Canada,France,USA } 
nd 

 Corn } ⊆ C { Corn } = C 1 = { Corn, Fish } . 
hus { Canada,USA } M ⇒ { Corn } is not a maximal association rule ac-

ording to Definition 5.3 , since it is clear that C 1 � = C 2 . Neverthe-

ess, this rule is indeed a maximal association rule according to

efinition 5.13 . On the other hand, let us consider the formal ex-

ression { USA } M ⇒ { Canada,France } , which is not a maximal associ-

tion rule according to Definition 5.13 . But according to Herawan

nd Deris’s initial definition, { USA } M ⇒ { Canada,France } is a maxi-

al association rule due to the fact that 

 { USA } = C { Canada,France } = C 2 
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Fig. 3. Process of collecting data in the WoS Core Collection. 
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o  
and { USA } ∩ { Canada,France } = ∅ . Next, let us calculate the

maximal support and confidence of this rule. According to

Definition 5.4 , 

Msup ({ USA } M ⇒ { Canada,France } ) = 20 , 

while by Definition 5.2 , we have 

Msup ({ USA } ) = 0 . 

In this case, Herawan and Deris’s M -support (i.e., Definition 5.4 )

and M -confidence (i.e., Definition 5.5 ) can suffer a major difficulty

since the fraction in Eq. (4) has a zero denominator but a nonzero

numerator. 

7.2. Case study 2: a dataset derived from the Web of Science Core 

Collection 

The first case study serves as a running example and shows

that our newly proposed notions and algorithms do well in mining

maximal association rules from a widely used benchmark dataset.

In the following case study, we will focus on collecting and analyz-

ing a real dataset to figure out whether international collaboration

can help researchers enhance their research impact in the field of

soft sets. This case study also highlights the importance of joint

exertion of regular association rules, maximal association rules and

many other concepts proposed in Sections 4 and 5 . 

The dataset used in this case study is generated from the Web

of Science (WoS) Core Collection database. We choose WoS Core

Collection since it is thought to be the most influential citation in-

dex for scientific research worldwide. 

As shown in Fig. 3 , this real dataset can be collected by taking

the following steps in WoS Core Collection: 

1. Choose the search field “Topic” and search the term “soft set”

in WoS Core Collection. It returns 424 results. 

2. Use the search filter “Document Types” and specify it as “Arti-

cle” to refine the search results. The number of results reduces

to 322. 

3. Use the search filter “Countries/Territories” to refine the search

results by selecting the top 6 countries/territories with respect
to the descending order of record count. The number of results

reduces to 294. 

4. Use the search filter “Countries/Territories” to refine the search

results by excluding all countries/territories except for the top

6 countries/territories selected above. The number of results re-

duces to 260. 

To facilitate the mathematical modelling and analysis of this

ractical problem using soft set based association rule mining, we

eed to first establish a parameter-taxonomic soft set using the

ollected data from the above process. For this purpose, let us con-

ider the universe 

 = { p 1 , p 2 , · · · , p 260 } 
onsisting of the papers obtained after going through the above

rocedure in WoS Core Collection. All information retrieving items

ssociated with these papers constitute the parameter space E .

ince this case study focuses on investigating the dependency be-

ween international collaboration and research impact, it is natural

o consider two categories of parameters. The first one is 

 1 = “Countries” = { c 1 , c 2 , c 3 , c 4 , c 5 , c 6 } 
here c j ( j = 1 , 2 , · · · , 6 ) stand for China, India, Korea, Malaysia,

akistan and Turkey, respectively. As mentioned above, we choose

hese countries since they are top 6 countries according to the

umber of published articles indexed in WoS Core Collection. The

econd category under consideration is 

 2 = “ESI” = { T, F } . 
his category “ESI” contains two parameters T and F, indicating

hether a paper is an ESI (Essential Science Indicators) highly cited

aper. It is well known that ESI highly cited papers are regarded as

he most influential papers in a particular research field since they

re the top 1% most highly cited articles published in each disci-

line during a decade. Intuitively, we use ESI highly cited papers

o represent significant research impact in this case study. 

Now we construct the parameter-taxonomic soft set W =
(G, B, R ) over P with the parameter set B = C 1 ∪ C 2 ⊆ E and the tax-

nomy R = { C , C } . The approximate function G : B → P(U) of W
1 2 
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Table 13 

Simplified tabular representation of the parameter-taxonomic soft set W . 

P China India Korea Malaysia Pakistan Turkey T F Count 

p [1 −3] 1 0 0 0 0 0 1 0 3 

p [4 −109] 1 0 0 0 0 0 0 1 106 

p [110 −115] 0 0 0 0 0 1 1 0 6 

p [116 −165] 0 0 0 0 0 1 0 1 50 

p [166 −168] 0 0 1 0 0 0 1 0 3 

p [169 −185] 0 0 1 0 0 0 0 1 17 

p [186 −187] 0 1 0 0 0 0 1 0 2 

p [188 −215] 0 1 0 0 0 0 0 1 28 

p [216 −229] 0 0 0 0 1 0 0 1 14 

p [230 −239] 0 0 0 1 0 0 0 1 10 

p [240 −243] 1 0 1 0 0 0 1 0 4 

p [244 −250] 1 0 1 0 0 0 0 1 7 

p 251 1 0 1 0 1 0 1 0 1 

p [252 −253] 1 0 0 0 1 0 0 1 2 

p [254 −255] 1 0 0 1 0 0 0 1 2 

p 256 1 0 0 0 0 1 0 1 1 

p 257 1 1 0 0 0 0 0 1 1 

p 258 0 0 0 0 1 1 0 1 1 

p 259 0 0 1 0 1 0 1 0 1 

p 260 0 0 1 0 1 0 0 1 1 

Table 14 

Supports and M -supports of nontrivial parameter sets in W . 

Parameter set Support M -support 

{China} 127 109 

{India} 31 30 

{Korea} 34 20 

{Malaysia} 12 10 

{Pakistan} 20 14 

{Turkey} 58 56 

{China, India} 1 1 

{China, Korea} 12 11 

{China, Malaysia} 2 2 

{China, Pakistan} 3 2 

{China, Turkey} 1 1 

{Korea, Pakistan} 3 2 

{Pakistan, Turkey} 1 1 

{China, Korea, Pakistan} 1 1 
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Fig. 4. Comparison between supports and M -supports of parameter sets in C 1 . 
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s given by 

p ∈ G ( T ) ⇔ p is an ESI highly cited paper, 

p ∈ G ( F ) ⇔ p is not an ESI highly cited paper, 

p ∈ G (c j ) ⇔ at least one of the coauthors of p 

is from the country c j , 

here c j ∈ C 1 = { China, India, Korea, Malaysia, Pakistan, Turkey } . 
Table 13 gives a simplified tabular form of the parameter-

axonomic soft set W = (G, B, R ) , in which papers of the same type

ill be incorporated into a single row and the last column counts

he number of each type of papers. For instance, the first row in-

icates that there are three ESI highly cited papers p 1 , p 2 , p 3 au-

hored by researchers solely from China. 

Using parameter-taxonomic soft set W and its simplified tabular

orm, one can efficiently calculate both supports and M -supports

f parameter sets in the parameter-taxonomic soft set W . For in-

tance, by adding the numbers of the seventh and eighth row in

ast column, we obtain the M -support supp 

M 

W 

({ India } ) = 30 . Sim-

larly, if we sum the numbers of the tenth and fifteenth row in

ast column, we get the support supp W 

({ Malaysia } ) = 12 . Note also

hat M -realizations of parameter sets in W can be calculated by

unning the procedure in Algorithm 2 . All the supports and M -

upports of nontrivial parameter sets in W are listed in Table 14 . 

In light of the context related to this case study, the intu-

tive meaning of the supports and M -supports of parameter sets
n Table 14 can be interpreted in a natural way. For instance,

upp 

M 

W 

({ Korea } ) = 20 means that there are 20 papers authored

olely by Korean researchers, while supp W 

({ Korea } ) = 34 shows

hat there are 34 papers authored by at least one researcher from

orea. The difference 

upp W 

({ Korea } ) − supp 

M 

W 

({ Korea } ) = 14 

ives that the number of papers involving international collabora-

ion between researchers from Korea and other countries. Fig. 4

llustrate the comparison between supports and M -supports of pa-

ameter sets corresponding to countries in the category C 1 . 

Moreover, using supports and M -supports of parameter sets in

 , a fuzzy set F : C 1 → [0, 1] can be defined as follows: 

 (c j ) = 

supp W 

({ c j } ) − supp 

M 

W 

({ c j } ) ∑ 6 
i =1 ( supp W 

( { c i } ) − supp 

M 

W 

({ c i } )) 
, 

here c j ∈ C 1 = { China, India, Korea, Malaysia, Pakistan, Turkey } . It
s easy to see that the fuzzy set F describes the willingness of re-

earchers from each country to participate in international research

ollaboration. By calculation, we have 

 = 

(
China India Korea Malaysia Pakistan Turkey 
0 . 857 0 . 048 0 . 667 0 . 095 0 . 286 0 . 095 

)
,

ith its plot shown by Fig. 5 . It is clear that researchers from

hina, Korea or Pakistan are more likely to collaborate with foreign

esearchers in the field of soft sets, while researchers from India,

alaysia or Turkey tend to work with colleagues from their own

ountry. 
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Fig. 5. Illustration of the fuzzy set F . 

Table 15 

Maximal association rules in the parameter-taxonomic soft set W . 

Rule No. Maximal association rule M -support M -confidence 

M 1 { China } M ⇒ { T } 3 2 .75% 

M 2 { India } M ⇒ { T } 2 6 .67% 

M 3 { Korea } M ⇒ { T } 3 15% 

M 4 { Malaysia } M ⇒ { T } 0 0% 

M 5 { Pakistan } M ⇒ { T } 0 0% 

M 6 { Turkey } M ⇒ { T } 6 10 .71% 

M 7 { China, Korea } M ⇒ { T } 4 36 .36% 

M 8 { Korea, Pakistan } M ⇒ { T } 1 50% 

M 9 { China, Korea, Pakistan } M ⇒ { T } 1 100% 

Table 16 

Regular association rules in the parameter-taxonomic soft set W . 

Rule No. Regular association rule Support Confidence 

R 1 {China} ⇒ {T} 8 6 .3% 

R 2 {India} ⇒ {T} 2 6 .45% 

R 3 {Korea} ⇒ {T} 9 26 .47% 

R 4 {Malaysia} ⇒ {T} 0 0% 

R 5 {Pakistan} ⇒ {T} 2 10% 

R 6 {Turkey} ⇒ {T} 6 10 .34% 

R 7 {China, Korea} ⇒ {T} 5 41 .67% 

R 8 {Korea, Pakistan} ⇒ {T} 2 66 .67% 

R 9 {China, Korea, Pakistan} ⇒ {T} 1 100% 
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c  . 
Inspired by the discovery mentioned above, an interesting ques-

tion comes into our mind: would different attitudes toward inter-

national collaboration lead to different results regarding research

impact? To answer this question, instead of mining all the σ -

M -strong and γ - M -reliable maximal association rules in W using

Algorithm 3 , we only need to comparatively analyse some max-

imal association rules and regular association rules of the type

“{ Country } M ⇒ { T } ” and “{Country} ⇒ {T}”. Some important maxi-

mal associations and regular associations of this type are listed in

Tables 15 and 16 , respectively. Each of them essentially discloses

some real connections between international collaboration and re-

search impact in the field of soft sets. 

For instance, the maximal association rule { China } M ⇒ { T } with

M -confidence 

conf 
M 

W 

({ China } M ⇒ { T } ) = 2 . 75% 

tells us that “If a paper is authored by researchers solely from

China, then in 2.75% of the cases this paper is an ESI highly cited

paper”. On the other hand, the regular association rule {China} ⇒
{T} with confidence 

conf W 

({ China } ⇒ { T } ) = 6 . 3% 
eveals that “If a paper is authored by at least one Chinese re-

earcher, then in 6.3% of the cases this paper is an ESI highly cited

aper”. It is worth noting that the confidence of the regular associ-

tion rule R 1 is much higher than the corresponding M -confidence

f the maximal association rule M 1 . This indicates that the greater

illingness to collaborate with foreign researchers definitely helps

hinese researchers to enhance their research impact. In fact, by

omparing the support 

upp W 

({ China } ⇒ { T } ) = 8 

f the rule R 1 with the M -support 

upp 

M 

W 

({ China } M ⇒ { T } ) = 3 

f the rule M 1 , it can be seen that Chinese researchers get five ex-

ra ESI highly cited papers published through international collab-

ration. 

As illustrated by Fig. 5 , researchers from Korea (or Pakistan) also

dopt a positive attitude toward international collaboration. Then it

s natural to ask whether Korean (or Pakistani) researchers can also

enefit from their greater willingness to collaborate with foreign

esearchers in the field of soft sets. One can get positive answers

o these questions since we have the following results by compar-

son: 

onf W 

({ Korea } ⇒ { T } ) = 26 . 47% > conf 
M 

W 

({ Korea } M ⇒ { T } ) = 15%

nd 

onf W 

({ Pakistan } ⇒ { T } ) = 10% > conf 
M 

W 

({ Pakistan } M ⇒ { T } ) 
= 0% . 

n particular, by comparing the support 

upp W 

({ Pakistan } ⇒ { T } ) = 2 

f the rule R 5 with the M -support 

upp 

M 

W 

({ Pakistan } M ⇒ { T } ) = 0 

f the rule M 5 , one can see that positive attitude toward interna-

ional collaboration helps Pakistan researchers to become authors

f two ESI highly cited papers. 

A deeper analysis by means of soft sets can reveal some more

aluable information hidden in the collected data. For instance,

ince in Table 14 

upp 

M 

W 

({ China, Korea } ) = 11 

s the largest one among all the M -supports of parameter sets con-

isting at least two countries, we find that the international collab-

ration between Chinese and Korean researchers is most active in

he field of soft sets. Furthermore, by comparison the M -confidence

f the rules M 1 , M 3 and M 7 in Table 15 , it is clear to see that

lose international collaboration between researchers from China

nd Korea enormously help to increase the research impact of both

ides. This fact is illustrated by Fig. 6 . 

Considering the contrary situation, one might wonder to know

hether conservative attitude toward international collaboration

ill have a different effect on enhancing research impact in the

eld of soft sets. Let us take India as an example since Indian re-

earchers are most reluctant to collaborate with foreign researchers

s illustrated by Fig. 5 . On one hand, from the comparison 

upp 

M 

W 

({ India } ) = 30 > supp 

M 

W 

({ Pakistan } ) = 14 , 

t can be seen that there are much more papers authored solely

y Indian researchers than by Pakistani researchers. Note also that

ithout taking into account international collaboration, Indian re-

earchers have greater research impact than Pakistani researchers

ince 

onf 
M 

W 

({ India } M ⇒ { T } ) = 6 . 67% > conf 
M 

W 

({ Pakistan } M ⇒ { T } ) = 0%
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Fig. 6. Histogram illustration of the M -confidence of M 1 , M 3 and M 7 . 

Fig. 7. Comparison between the confidence and M -confidence of rules. 
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n the other hand, it is interesting to see that compared with Pak-

stani researchers, less international collaboration seems to hinder

ndian researchers from increasing their research impact since 

upp 

M 

W 

({ India } M ⇒ { T } ) = supp W 

({ India } ⇒ { T } ) = 2 , 

nd 

onf W 

({ India } ⇒ { T } ) = 6 . 45% < conf W 

({ Pakistan } ⇒ { T } ) 
= 10% . 

ome other interesting results can be obtained by analysing both

aximal and regular association rules related to Malaysia and

urkey in Tables 15 and 16 . 

The comparison between the M -confidence of maximal associa-

ion rules M i and the confidence of regular association rules R i ( i =
 , 2 , · · · , 5 ) is illustrated by Fig. 7 . Taking all these into account,

he above discussion reveals that positive attitude toward interna-

ional collaboration definitely help Chinese, Korean and Pakistani

esearchers to enhance their research impact, while the opposite

ttitude seems to hinder Indian, Malay and Turkish researchers

rom further increasing their research impact in the field of soft

ets. 

. Conclusions 

The application range of soft set theory was further expanded

y Herawan and Deris’s pioneer work on soft set approach to asso-

iation rule mining. However, as shown above, some fundamental

oncepts for mining association rules using soft sets were defined

mproperly in the literature. 
This study has systematically investigated soft set based associ-

tion rule mining and proposed a number of new notions in order

o achieve Herawan and Deris’s initial aim more amply. We de-

igned several algorithms for calculating M -realizations of param-

ter sets or identifying σ - M -strong and γ - M -reliable maximal as-

ociation rules in parameter-taxonomic soft sets. An illustrative ex-

mple was presented to show applicability of the newly proposed

oncepts and algorithms in clinical diagnosis. In addition, we have

onducted two case studies to highlight some essential points re-

arding soft set based association rule mining. The first case study

uccessfully applied our new method to a benchmark dataset de-

ived from Reuters-21578. In the second case study, a real dataset

ollected from the WoS Core Collection database has been analyzed

y means of soft set based association rule mining. It put empha-

is on the importance of joint exertion of regular association rules

n soft sets, maximal association rules in parameter-taxonomic soft

ets and other related notions. With the help of soft set based as-

ociation rule mining, some interesting facts in the real world have

een discovered. For instance, we have found that researchers from

hina, Korea or Pakistan are more likely to collaborate with foreign

esearchers in the field of soft sets, while researchers from India,

alaysia or Turkey tend to work with colleagues from their own

ountry. It has been shown that the international collaboration be-

ween Chinese and Korean researchers is most active in the field

f soft sets. Moreover, it has been revealed that positive attitude

oward international collaboration can help researchers to enhance

heir research impact, while the opposite attitude has a somewhat

egative effect. 

As future work, it will be interesting to apply the proposed

ethod to other practical cases or formalize soft set based asso-

iation rule mining in terms of logical formulas over soft sets. 
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