The Hybrid-Layer Index: A Synergic Approach to
Answering Topk Queries In Arbitrary Subspaces

Jun-Seok Heo, Junghoo Ché, and Kyu-Young Whang

fDepartment of Computer Science, KAIST, Korgisheo,kywhang }@mozart.kaist.ac.kr
fUniversity of California, Los Angeles, USAho@cs.ucla.edu

Abstract—In this paper, we propose the Hybrid-Layer Index SELECT * FROM Cameras

(simply, the HL-indey that is designed to answer topk queries ORDER BY 0.4*pixelCount+0.6*sensorSize DESC
efficiently when the queries are expressed on angrbitrary subset LIMIT Kk .

of attributes in the database. Compared to existing approaches, . . .
the HL-index significantly reduces the number of tuples accessed To handle scenarios like the above, we proposeHyierid-

during query processing by pruning unnecessary tuples based Layer Index(simply, theHL-inde) that is designed to answer
on two criteria, i.e., it filters out tuples both (1) globally based top-k queries on a@rbitrary subsebf the attributes efficiently.

on the combination of all attribute values of the tuples like There exist a number of approaches for efficient computation
in the layer-based approach (simply, layer-level filtering and = o 15,1 answers. For example, in their seminal work, Fagin

(2) based onindividual attribute values specifically used for . . -)
ranking the tuples like in the list-based approach (simply/ist-level et al.[10], [11] designed a series of algorithms that consider

filtering). Specifically, the HL-index exploits the synergic effect & tuple as a potential top-answer only if the tuple is ranked
of integrating the layer-level filtering method and the list-level high in at leastone of the attributes used for ranking. We
filtering me_thoq. Through an in-dep_th ane_\lysis of the interaction refer to this approach as thist-based approachbecause

of the two filtering methods, we derive a tight bound that reduces o 5gorithms require maintaining one sorted list per each
the number of tuples retrieved during query processing while . . - o .

guaranteeing the correct query results. We propose the HL- attribute. While thls approqch shows S|gn|f|cant |mproveme|?t
index construction and retrieval algorithms and formally prove compared to earlier work, it often considers an unnecessarily
their correctness. Finally, we present the experimental results large number of tuples. For instance, when a tuple is ranked
on synthetic and real datasets comparing the performance of high in one attribute but low in all others, the tuple is likely
the HL-index to other sta@e-of-the-art indexes. Our experiments to be ranked low in the final answer and can potentially be
demonstrate that the HL-index shows the best (or close to best)
performance in most scenarios regardless of the size of the |gnoreq, but th? list-based approach has to.conS|der it because
dataset’ the number of attributes in the tup|esl and the number Of Its h|gh rank n that one att“bute. As the Slze Of the da.tabase
of attributes used in the queries. grows, this becomes an acute problem because there are likely
to be more tuples that are ranked high in one attribute but low
overall.

Computing topk answers quickly is becoming ever more To avoid this pitfall, Chang et al.[7] proposed an algorithm
important as the size of databases grows and as more uskas constructs a global index based on the combination of
access data through interactive interfaces. When a databalseattribute values and uses this index for topanswer
is large, it may take minutes (if not hours) to compute theomputation. We refer to this approach as thger-based
complete answer to a query if the query matches millions approachbecause it builds an index that partitions the tuples
the tuples in the database. Most users, however, are interestéol multiple layers. The layer-based approach avoids the
in looking at just the top few results (ranked by a small set gitfall of the Fagin’s algorithms, but it also has the opposite
attribute values that the users are interested in) and they wardblem. Because the index is constructedaimattributes, it
to see the results immediately after they issue the query. does not perform well when the query ranks tuples by a small

As an example, consider a database of digital cameraspsetof the attributes. A tuple may be ranked high globally
which has many attributes such as price, manufacturer, modal many attributes, but it may be ranked low for a particular
number, weight, size, pixel count, sensor size, etc. Amosgbset of attributes used for a query.
these attributes, a particular user is likely to be interested inOne simple way to address the drawback of the layer-based
a small subset when they make a decision to purchase. Bpproach is to build one dedicated index metery subset
example, a user who wants to buy a cheap compact digitdl attributes and use the appropriate index for a query as
camera will be mainly interested in the price and the weight [9], [14]. We refer to these approaches as Hew-based

I. INTRODUCTION

and may issue a query like approach Clearly, view-based approaches lead to high query
SELECT * FROM Cameras performance, but they also incur significant space overhead.
ORDER BY 0.5*price+0.5*weight ASC LIMIT k . Our proposed HL-index tries to avoid all pitfalls of the ex-

Another user who primarily cares about the quality of thisting approaches in the following ways. By careful integration
pictures will be more interested in the pixel count and sensof the list-based and the layer-based approaches, it is able to
size and issue a query like filter out a tuple both by thglobal combination ofall of its

attribute values (like in the layer-based approach) and by the Layer-Based Approach

individual consideration of the particular attribute values used Te |ayer-based approach constructs a global index based on
for ranking (like in the list-based approach). In addition, onge combination ofall attribute values of each tuple. Within
HL-index can handleany queries on ararbitrary subsetof the index, tuples are partitioned into multiple layers, where
the attributes avoiding the space overhead of the view-basgd ;t» layer contains the tuples that can potentially be the
approach. More precisely, we make the following contributio%p_i answer. Therefore, the tdpanswers can be computed

in this paper. by reading at mosk: layers. ONION[7] and AppRI[21] are

« We propose the HL-index that can be used for answeriM!l-known methods of this approach.
top-k queries on an arbitrary subset of attributes. The HL- ONION[7] builds the index by making layers with the
index can be built for either (1) linear scoring function¥ertices (or theextreme pointgL3]) of theconvex hull$4] over
(including monotone and non-monotone linear functiond)e set of tuples represented as point objects in the multi-
or (2) monotone scoring functions (including linear an@imensional space. That is, it makes the first layer with the
non-linear monotone functions). The HL-index has sigionvex hull vertices over the entire set of tuples, and then,
nificantly more pruning power than existing approaché@akes the second layer with the convex hull vertices over the
and does not require a separate index customized for e&6h of remaining tuples, and so on. As a result, an outer layer
class of queries on different subsets of attributes. geometrically encloses inner layers. By using the concept of

« We present the algorithms for processing fopueries the optimally linearly ordered seChang et al.[7] has shown
using the HL-index. Through an in-depth analysis of th&at ONION answers top-queries by reading at mostlayers
interaction of the list-based and layer-based approach&@rting from the outmost layer.
we derive a tight bound to minimize the number of ONION is capable of answering a query with an arbitrary
tuples that are retrieved during query processing af@tonotone or non-monotone) linear function because of the
to guarantee the correctness of the computed resufi§ometrical properties of the convex hull[12]. On the other
We also provide formal proofs of correctness of thogaand, the query performance is sometimes adversely affected
algorithms. due to the relatively large sizes of layers[21], particularly

« We conduct extensive experiments comparing the perf(yyhen the number of attributes mentioned in the query is small,
mance of the HL-index with those of existing approachdcause it reads all the tuples in a layer. AppRI[21] constructs
on both synthetic and real data. The HL-index can explcﬁt”St of layers as well, but exploiting the domination relation
the synergic effect of the list-based approach and t§é skylines.
layer-based approach by meticulous integration of t@_ List-Based Approach

two approaches. As a result, the HL-index shows better) .)
performance over existing approaches for practically all The list-based approach constructs a set of lists by sorting all

settings in our experiments. In particular, our experimentt‘éples based on their values in each attribute. It then finds the
show that the HL-index performs particularly well wher]oP* tuples by merging as many lists as are needed[2], [11].

the size of the database is large, leading to a factor 'GP €xample, the threshold algorithm (TA)[11], a well-known

three or more improvement for a database of milliofrethod of the list-based approach, sequentially accesses each
tuples in our experiments. sorted list mentioned in a query in parallel. That is, for all

attributes appearing in a query, it accesses the first element of

The rest of the paper is organized as follows: We first ggach sorted list, then the second element, and so on, until a
over related work in Section Il and we formally define the toparticular threshold condition is met. For each tuple identifier
k queries that we handle in Sectionlll. Then, in Section \seen under the sorted accesses, it also randomly accesses the
we describe the HL-index construction algorithm and, iBther lists to get its values of the other attributes to compute
SectionV, explain the top-query processing algorithm usingthe tuple’s score.
the HL-index and prove its correctness. In SectionVI we Under the list-based approach, since the lists are indepen_
present our experiments that compare the performance of gt of one another, top-tuples are computed by accessing
HL-index to existing approaches. We conclude the paper dmly those lists corresponding to the attributes mentioned in
Section VII. the query. That is, it can filter out unnecessary tuples by
individual consideration of these attribute values. However,
since TA does not exploit the relationship among the attributes
when creating the sorted lists, its performance gets worse as

the number of attributes mentioned in the query increases.
There have been a number of methods proposed to answer

top+ queries by accessing only a subset of the database. e View-Based Approach

categorize the existing methods into three classes:lisitie The basic idea behind the view-based approach is to “pre-
based approacithelayer-based approactand theview-based compute” the answers to a class of queries on every subset of
approach We briefly review each of these approaches in thatributes and return the precomputed topnswers given a
section. qguery. When the exact answers to the query issued by a user

Il. RELATED WORK

has not been precomputed, the “closest” precomputed answeheret|i] is thei*" attribute value of andwli] is the “weight”
are used to compute the answer for the query. PREFER [Dbf]the i*" attribute. The vector ofv[i] values,w, is referred
and LPTA[9] are well-known methods of this approachto as thepreference vectorWithout loss of generality, the
Because the view-based approach requires constructingwgi] values are assumed to range betwéen.0,1.0] and

index for each subset of attributes, its space and maintenaace normalized to b& ", |w[i]| = 1. A monotonescoring
overhead often becomes an important issue in using thisction satisfies the following condition[11]:
approach for a practical system[20]. If t[s) <t'[s] foralli=1,...,d, thenf(t) < f(¥).

Informally, monotony means that if an object has smaller

; o _ scores than others &l attributes, then its overall score should
There exists a large body of work for efficient computatiog|so pe smaller. We note that a linear functijnis monotone

of skyline queries[6], [17], [18]. Because the skyline cony anq only if its wli] values are all non-negative. Depending
tains at least one tuple that minimizes any monotone scorigg the sign of thew[i] values, a linear function may be non-
function [5], this body of work can be used to deal with top- y,onotone.
queries under a monotone scoring function for the special caseg we will explain, our HL-index can be designed to deal
of k = 1. SUB-TOPK[19] is one extension of these methodgith eijther of the following classes: (Lpll linear functions
that finds the topk results for any value, but because it is still including monotone and non-monotone linear functions; (2)
based on the skyline approach, it only deals with monotoR@ monotone functions including linear and non-linear mono-
scoring functions and is unable to handle non-monotone lingghe functions. Due to space limit and for the clarify of
functions. our exposition, however, we mainly assume linear scoring
Table| summarizes the tap-indexing methods that arefynctions (monotone or non-monotone) in the rest of this paper
compared in this paper and the functions they support. and briefly deal with the variation for non-linear monotone
functions in Section V-E.

D. Other Approaches

TABLE |
TOP-k INDEXING METHODS COMPARED AND THE FUNCTIONS THEY TABLE 1l
SUPPORT THE NOTATION.
[Functions | Linear [Non-linear] [Symbols | _ Definition§]
TA. ONION TA PREFER R the target relation for top- queries
Monotone AppRI, PREFER, SUB-TOPK N the cardinality ofr
LPTA, SUB-TOPK d the number of atiributes o or the dimension of the
Non-monotone ONION universe

the i*" attribute of R (1 < i < d)
an object inR (¢ is considered as &dimensional vector|

I1l. PROBLEM DEFINITION t that haSt[Z] as theit® element)
the value of attributed; in the objectt (¢ € R)

>

~+
<]

In this section, we formally define the problem of tbp- o aprefergnce vector (@dimensional vector that has[i]
queries when the tuples are ranked by an arbitrary subset of . ;Setazi;hfﬁrgft?i%um i e T

. . . wIT '3
attributes. A target relatiol® of N tuples hgsd attributes L. the i*" layer or the set of objects in th&" fayer
Aq, As, ..., Agq. The value of each attributd; is assumed to Li; the Tist of objects inZ; sorted in the ascending order of
range betweei0.0, 1.0], so every tuple in the relatioR can = :Egmgm\ﬁ';eimred ST e S

. d Omin -
be considered as a point in tHedimensional spac_E).O, 1.0]%. HG) [{0lfa(0) < Fulomim (L)) for o € LiULaU-—UL;
Hereafter, we call the spadé.0,1.0]¢ as the universe, refer [S;,(n the set of the firsi. objects from the head (or tail) of
page.o, L. _ J

to a tuplet in R as an objectt in the universe, and use Lij

2V
. . . . S Si usS; U---usS;
the tuple and the object interchangeably as is appropriate: UEZ)) Li’lf@i(n);}i%nz,bjects inLidt%Z)t are not InS; (n)

A scoring functionf(¢) : ¢ — [—1.0,1.0] maps each object | a,;(n) | the A; value of then?™ object from the head (or tail) 0

t € [0.0,1.0]¢ to a real value in[—1.0,1.0]. Then, a top- : Lij : i I
k query is to find thek objects inR that have the lowest Filn) ﬁzé“géﬁﬁ?é‘ﬁsivg?)t’ﬁeiﬁ;Fﬁ)d.("))’ no oblectnti)

(or highest) score undef(t). Without loss of generality, we
assume that we are looking for the lowest-scored objects in theAs we stated in Introduction, wheR has many attributes,
rest of this paper. Therefore, our goal is to retrieve a sequerarey particular topt query is likely to have nonzero weights
of objects[t!, 2, ..., t¥] that satisfy f(t}) < f(2) < ... < only for a small subset of the attributes[19]. To emphasize
f(tF) < f(#), k+1 <1 < N. Here,t/ denotes thg'" ranked this fact, we useSUB to denote the set of attributes with
object in the ascending order of their score, where j < N. wli] # 0 and call the size oSUB the sub-dimensiorand
The scoring function for tog- queries is generally assumedhe space consisting of these attributes shbspace That
to be either linear[7], [9], [14], [21] or monotone [9], [11].is, SUB = {i|w[i] # Ofor: = 1,...,d}. Under this
[14], [19], [21]. A linear scoring function is a function of the notation, a subspace tdpguery is to find thek lowest-scored
following form objects[t!, ..., t*] given the query triple(SUB f4(), k). In
Tablell, we summarize the notation that we use throughout
faolt) = Zw[i] « t[i] (1) th_is paper. 1_'he gymbols_ that have not been introduced yet
— will be explained in SectionV.

7=

IV. HYBRID-LAYER INDEX (HL-INDEX) to partition R will be explained later in SectionV. Then, in

We now explain how to construct an HL-index to efficiently-in€s 4 and 5, the algorithm constructs two sorted ligts;
handle subspace tdp-queries. The primary goal of the HL- andL, o, for the five objects ink,. More specifically.L, ; and
index is to enable botHayer-level filtering and list-level L1,2 list the object IDs inR, in the ascending order of their
filtering: (1) The layer-level filtering prunes an object by thel1 and A, values, respectively. For example, in Figure 2(d)
global combination ofall of its attribute values like in the the first object inL,; is ¢, becausel, is the object with
layer-based approach. (2) The list-level filtering prunes dhe smallestd; value in R;. As the algorithm proceeds, it
object by thendividual consideration of the particular attributelteratively constructs a new convex hull with the remaining
values with nonzero weights in the scoring function like in th@bjects until the input sek becomes empty. Eventually, the
list-based approach. algorithm constructs three layets;, L, and L3, for the input

To enable the two types of filtering, an HL-index is cont€lation i, as shown in Figure 2(d).

structed in two steps: (1)ayering step In this step, objects o144

in the relationR are partitioned into a disjoint set of layers, - 0; 18

{Ly, Lo, ..., Ly}, whereL; represents thé'" layer. Every t‘ 0‘1 0'3 A

object belongs to one and only one layer. As we will see tj 0:3 0:4 e

later, once the objects are partitioned into layers, thektop- 44 06501 '." oy A
objects can be obtained froat mostthe firstk layers; objects s 10506 ! ',' N ‘\

in all the other layers can be ignored, enabling the layer- [~ "To75[0.45 Py _fs::, R
level filtering. (2)Listing step In this step, for each layek,, 1005 o n g7
we constructd sorted lists{L; 1, L; 2, ..., L; q}, WhereL; ; f, | 0408 f \\‘Jtl
represents the list of objects ih; sorted in the ascending f | 0.8 09 0 : g

order of theirj*" attribute values.

. . . X (a) A target relation R. (b) The convex hull vertices over the objects in R.
As we mentioned earlier, our HL-index can be built for

. . . . L Ly
either all linear functions or for all monotone functions. A I
Figure 1 describes the version of the HL-index construction Ll =
algorithm for all linear function$.The input to the algorithm E =
is the setR of the d-dimensional objects, and the output is @
the set of layerd, = {Ly, Lo, ..., L,,}, where thei*" layer E
L; containsd sorted lists,L; = {L; 1,..., L; q¢}. We explain 2
the algorithm using Example 1.
Algorithm LayerbasedListBuilding:
Input : R: a set of d-dimensional objects (c) The layer list. (d) The HL-index.
Output: L: the list of the sets of d sorted lists (the HL Index)
Algorithm: Fig. 2. An example of constructing the layer lists and the HL-index in the
g ' two-dimensional universe.
1. WHILE (R # {}) DOBEGIN
2. i=i+1 /*layer number, i is initialized with 0 */ Before we proceed, we emphasize that, in our HL-index
3 R, = objects at the vertices of the convex hull over R /* i-th layer */ L={Li={L11,.--sL1a}ts---sLon = {Lm1,---, Lna}}
4. FORj:=1todDO /*for each attribute */ each sorted list; ; contains only object identifiers, but not the
> Sort the objects in R; in the ascending order of their j-th attribute full attribute values of the objects. We store their full attribute
o 1 v,aLlueS andLSt?re/ihzir 1dennff{1;rs as(;hﬁ llsl/L'J values in a separate place. Therefore, once we obtain an object
. i={Lip . L t ted list . . .
P W e dygl 1 TAE SELOL A SOTEG ASE ID from the HL-index, we will have to retrieve the full values

7. R=R-R,
8. END /* WHILE */
9. RETURN L:=[L={Ly}..... Ly g}, - L, = {Lpp1s s Ly 3]

of its attributes separately in order to compute the object score
under a given scoring function as done by Chaudhuri et al. [8].

V. QUERY PROCESSINGUSING THEHL-INDEX

Example 1: Let us assume that the input relatidh has We now discuss how we can use the HL-index for exploiting
nine objects %1 to. and two attributes A, and A,, as the synergic effect of layer-level filtering and list-level filtering
we show in Figure 2(a). HerdD represents the identifier of N computing the toge objects. In SectionV-A, we start

the object. Given this input relation, in Line 3, the algorithrﬁe\/ie"ving the ONION algorithm /] to explain how the HL-

finds the convex hull and places the objects at the vertic'é‘gJex can be used for layer-level filtering. Then n Section V-B,
of this convex hull,{¢1, 2, t4, ¢+, o}, into Ry (R is the set we explain how we can extend the ONION algorithm to enable

that contains all objects in thé&" layer ;) as shown in the list-level filtering.
left-most rectangle in Figure 2(c). Why we use the convex hyll. ONION Algorithm: Layer-Level Filtering

1Again, the HL-index for all monotone functions are described IN the HL-index construction algorithm of Figurel, the
briefly in Section V-E. input objects inR are partitioned into multiple layers by the

Fig. 1. The LayerbasedListBuilding algorithm for building the HL-index.

repeated extraction of the convex hull vertices. This layeriradgorithm is thatall objects in these layers, which could be
strategy was proposed by Chang et al.[7], where the authtagye, have to be retrieved to evaluate their scores. In the next
proved that the top- objects are guaranteed to be in the firsdection, we explain how we can use the individual lists in the
k layers Ly through Lj. Therefore, in computing the top-HL-index to perform list-level filtering by retrieving only a
k answers, all objects in the laydr,., and above can be subset of objects in each layer.
ignored, making layer-level filtering possible. More preciselyé , _
Chang et al. [7] proved the following important theorem. - List-Level Filtering For HL-Index

Theorem 1: [7] (Optimally Linearly Ordered Set Prop- In designing the algorithm that retrieves only a subset of
erty) Let L = {Li, Lo,...,L,,} be the set of layers con-objects from each layer, we first note that the only reason
structed by the recursive extraction of convex hull verticewhy the ONION algorithm retrieves all objects frod; in
Let 0,in(L;) be the minimum-scored object ib;. Then, no Line 2 is to be able to identify,,,;, (L;) and H (i) in Lines 3

object in the layerd.;,1,..., L,, can have a score less tharand 4. In other wordsys long as we can identiby,,,,,(L;) and
omin(Li). That is,Yo € L; (i < j < m), fo(omin(L;)) < H(i) correctly, we do not have to retrieve all objects In.
fw(0) under any preference vectar. The main challenge for allowing the list-level filtering is then

Theorem 1 implies that if we have fouridor more objects to figure out the way to identify,,;,(L;) and H (i) without
whose scores are lower than or equalftg(o,i,(L;)) from evaluating the scorg; for every object inL;.
the layersL, through L;, then we can ignore all objects in To explain how we can achieve this using the HL-index, we
L;,, throughL,,. More precisely, Chang et al. [7] proved thdirst introduce relevant notation. Here, for ease of understand-

following corollary. ing, we consider the notation to be used for handling monotone
Corollary 1: [7] Let o,,:n(L;) be the minimum-scored linear functions and extend it to handle non-monotone linear

object in the layerl;. Let H (i) be the objects i, Ly,..., functions in SectionV-C.1. We us§; ;(n) to refer to the

L; whose scores ar¢; (o, (L;)) or less. That isH (i) = set of the firstn objects at the head of the list; ;. For

{o|fo(0) < fo(omin(Li)) foro € L1 ULy U---U L;}.2 If example,S12(3) = {ta,t4,17} in Figure 2(d). We seS;(n)

H (i) containsk or more objects (i.e., ifH(i)| > k), H(i) to be S;i(n) U Si2(n) U --- U S;4(n). Informally, S;(n)
contains the tog: objects. can be considered as the set of objects that we “see” by
Based on Corollary 1, Chang et al.[7] proposed the ONIOrgtrieving the firstz objects from each lisL; ;. For instance,

algorithm. In Figure 3 we show a slightly modified versio®1(2) = {t1,t2,t4} in Figure 2(d). We sel/;(n) = L;—S;(n).
of the ONION algorithn® Starting from: = 1, the ONION For example,U1(2) = L1 — S1(2) = {t1,t2,ta,t7,t0} —
algorithm retrievesall objects inL; and evaluates their scores{t1,t2,t1} = {t7,t9}. Informally, U;(n) can be considered as
in Line 2. Once all object scores are evaluated, it identifiége set of the objects ih; that are not “seen” by retrieving the
omin(L;), the minimum-scored object ifi;, in Line 3 and topn objects from each lisk; ;. We useu; ;(n) to refer to the
computesH (i), the set of objects i, throughL; with scores A; attribute value of the.'” object at the head of the ligt; ;.
fa(omin(L;)) or less, in Line 4. Then, in Lines 5 and 6, thd=or example, in Figure 2(d}; 2(3) is 0.5, theA, value of the
algorithm returns the top-objects fromH (i) if H (i) contains third objectt; in L, . Since each lisL; ; is sorted by thed;

k or more objects. Otherwise, it increasdsy one and repeats values,a; j(n) monotonously increases asncreases. Finally,
the process. we setF;(n) = f(a;1(n),a;2(n),...a;q4(n)). The meaning

of the new set of symbols is summarized in Tablell. Under

1. FOR7=11tom DO BEGIN this notation, Fagin et al.[11] proved the following important

Evaluate f;,(0) forallo € L;

. g theorem:
Find Ol”lﬂ(l‘l) from Li WhCI‘Cf“‘(()mm(

Compute H() = {0 | fo(0) < (0 Theorem 2:; [11] Under any monotone (linear or non-

2
3 L)) < fo(0) foranyo e L;

4, . : any

5. IF|H()| = k THEN linear) function f, every object inU;(n) has a score larger
6

7.

(L) foroe L, U ..UL}

min

RETURN the k objects in H(i) with the lowest scores than or equal to the threshold VaIUE(n)- That iS, Yo €
END /* FOR */ Ui(n), f(O) > f (ai71(7’b), aw(n), cey aq;,d(n)) = .7:7,(71)
1) Identifyingo,,:»(L;): Theorem 2 provides an important
clue on how we can identify the,,;,(L;) from L; without
We note that the ONION algorithm performs the layer-leveetrieving all objects inL;. In particular, under a monotone
filtering by retrieving objects only from the first few layers. In{linear or non-linear) scoring functiorf, the theorem guar-
particular, thei value in the algorithm never increases beyonantees that after we retrievg;(n), the firstn objects from
k, so even in the worst case scenario, at most the/fitayers each list L; ; of L;, if 0,:,(Si(n)), the minimum-scored
are retrieved [7]. However, the main drawback of the ONIONbject in S;(n), has a score less than or equal &(n),
then 0,,,;,,(Si(n)) is the minimum-scored object ifi;. More
?In the original definition, the inequality sign should have beeprecisely, Fagin et al.[11] proved the following corollary.
“>" instead of “>"[15], and for finding & objects with the lowest Corollary 2: [11]Leto,,(S;(n)) be the minimum-scored

scores as the results, we use™ ‘ect in S Und t i f f
3We present a slightly modified algorithm from what was proposeQPJeC in - S;(n). nder any monaotone linear function

by Chang et al.[7] in order to make our later discussion easier fo it flomin(Si(n))) < Fi(n),thenf(omin(Si(n))) =
follow. f(OnLin(Li))-

Fig. 3. The modified ONION algorithm.

Based on Corollary2, Fagin et al.[11] proposed the Thom L;, we can identify the objects ill; whose scores
algorithm. In Figure4 we show a modified version of thare lower than or equal t@(o..:.(L;)) without retrieving all

TA algorithm identifyingo...» (L;) by retrieving the first few

the objects inL;. Once all suchS;(n;)’s are computed for

objects from each lisL; ;. In the algorithm, we assume thatl < j <, it returnsH (¢) from Sy (n1)U- - -US;(n;) in Line 8.

the functiongetNextObjec(3 incrementally retrieves the next

From Corollary 3, it is easy to see that thE:) returned from

object of each listL; ; in L; starting from the head as hasthe algorithm is correct. Now we are ready to introduce our
been proposed by Fagin et al.[11]. For example, the firalgorithm that performs both layer-level filtering and list-level

time that getNextObjec($ is called onZ; in Figure 2(d), it
returns the top objects, and ¢4 of the lists L; ; and Ly o,
respectively. The second timgetNextObject$ is called on
L,, the next objectst; andt,, are returned. Starting from
n = 1, the algorithm incrementally buildS;(n) by retrieving
the next objects inL; ;’s in Line 4 until f(0mn(Si(n)))
becomes less than or equal to the threshold vaife). Then
in Line 6, the algorithm returna,,;,,(S;(n)) as theo,,;,(L;).

Since the algorithm exits from the while loop only when

f(omin(Si(n))) < Fi(n), from Corollary 2, we can see that
the returned object is the minimum-scored objecLin

1. n:=0;S(n) = {}

2. DO BEGIN

3. n:=ntl

4. Sn) =S,(n) U getNextObjects(L;, SUB, [)
5. END WHILE (f0,,,(S{(n))) > F(n))

6. RETURNo,,,(L) :== 0,,,{(S(n))

Fig. 4. A modified TA algorithm identifying,, i, (L;) from L;.

2) Identifying H(:): The set H(i) {o|f(0) <
f(omin(L;)) foro € Ly ULy U---U L;} can be obtained
similarly, based on the following corollary.

Corollary 3: Let f be anarbitrary monotone linear
function, andf(omin(L;)) be the minimum score among all
objects in the layel,;. For each layet; (1 < j <), letn;
be the minimumn that satisfiesF;(n) > f(omin(L;)). Then
H (i) is a subset 051 (n1) U Sz(ng) U--- U S;(n;).

Proof: Let o be an object ind (:). From the definition of
H(i), H(i) is a subset oy U- - -UL;, soo must be in one of
Li,Ly,...,L;. LetobeinL; (1 < j <4). From the definition
of H(i), o satisfiesf(0) < f(0min(L;)). From the definition
of n;, Theorem2, and the conditiaft;(n) > f(omin(L:)),
such aro cannot be inU;(n;), so it must be inS;(n;). Since
Sj(n;) €S =Si(n1)U---US;(n;), o must be inS. That is,
all the objects inH (i) exist in S. Thus, H (i) C S. [|

Corollary 3 suggests the algorithm in Figure 5 that comput

filtering using the HL-index.

1. FOR; =1TOi DO BEGIN
2 n;:=0:S(n) = {}

3. DO BEGIN

4 n=n+ 1

5

Sj(nj) = Sj(nj) U gelNexlOly’ecls(Lj, SUB, f)
6. END WHILE (1) < £(0,,,(L,)))
7. END /* FOR */

8. RETURN H(i) := {0 | o) = f(0,,,(L)) for o € S(n)) U ... US(n)}

min

Fig. 5. The algorithm that identifie§ (z) from L; throughL;.

C. Basic Algorithm

Figure 6 showsBasicLayerbasedThresholdAlgorith(eim-
ply, BasicLTA for processing subspace tépeueries using
the HL-index. The inputs to BasicLTA are the HL-index and
a query@ = (SUB fs(),k). The output is thek objects
having the lowest scores for the scoring functify(). Start-
ing from ¢ 1, the algorithm first computes,,,;,,(L;) in
Lines 2 through 6; it retrieves the next objects frdm;’s
by calling getNextObject3 and incrementally buildsS;(n;)
until fz(omin(Si(n;))) becomes lower than or equal to the
threshold valueF;(n;). (Note the similarity of this part of
BasicLTA to the algorithm in Figure4.) Once the algorithm
reaches Line 79, (Si(n:)) IS 0min(L;). Then, in Lines8
through 13, the algorithm computés(:): for each lower layer
L;(1 <1 < i), it retrieves next objects from eadh ; and
incrementally buildsS;(n;) until the threshold valueF;(n;)
becomes greater thafl; (0min(Si(n:))) (which is the same
as fz(omin(L;))). We note that when the functiogetNex-
tObjects()is called onL; in Line 11, the function resumes
where it left off. It does not start reading the first object from
each list again. Then in Lines 15 and 16, the algorithm checks
whether or not toge objects are found. 167 (n1)U- - -US;(n;)
containsk or more objects whose scores are lower than or
equal to f (0min(S;i(n;))) (i.e., if |[H(i)| > k), the algorithm
@sturns the tope objects inSy(nq) U--- U S;(n;). Otherwise,

the H(i) by retrieving the first few objects in each listit increases by one and repeats the process.

L;; from the layersL; through L;. The algorithm takes

1) Dealing with Non-Monotone Linear Function8efore

f(omin(L;)) (that can be computed by the modified TA algowe provide the formal correctness proof of BasicLTA, we first

rithm in Figure 4) as its input and returd$(i) as its output.
Starting fromj = 1, it finds the minimumn; that satisfies
Fi(n;) > f(omin(L;)) in the while loop between Lines 3
and 6. In the loop it also constructs (n;) by incrementally
retrieving the next objects througietNextObjec(. That is,

explain the functiorgetNextObjec($ in more detail.

First, to make our discussion simple, we have assumed that
getNextObjec(3 retrieves one object from every lidl; ; in
L;. But this is clearly not necessary. Since the zero-weight
attributes do not affect the final object score, the function

by using f (omin(L;)) as the bound in retrieving more objectgetNextObjec(y needs to retrieve objects only from then-

4“What the functiongetNextObjecty does is slightly more com-
plicated than what we describe here because it should haudie
monotondinear functions as well. The exact mechanisngefNex-
tObjectg) will be explained in Section V-C.1.

zero-weight attributdists.

Second, when the preference vectohas negative as well
as positive weight terms, the linear functiofy, becomes
non-monotone, making it necessary to adgetNextObject3

Algorithm BasicLayerbasedThresholdAlgorithm(BasicLTA):
Imput: () [L, ={L,,....L,},.... L, ={L, ., Lm‘d}]: an HL Index
(2) O=(SUB, f(), k): a subspace top-k query
Output: [top-1, ..., top-k]: the sequence of k objects with the lowest scores

for /50

Algorithm:

1. FORi:=1tomDO BEGIN /* m is the number of layers */

2 n; = 0;S(n) = {}

3 DO BEGIN /* Compute o,,,(L,) */

4. n:=n;+1

5. Sin,) =Sn;) U getNextObjects(L, SUB, f3())

6 END WHILE (£5(0,,,(S{(1))) > #(n,))

7 /* Retrieve more objects to compute H(i) */

8 FOR/=1TOi-1DO BEGIN /*Ifi = 2, perform this loop */

9. WHILE (1) < f3(0,,,(S)))) DO BEGIN

10. n=nptl

11. S((m) :=S{n;) U getNextObjects(L;, SUB, £;())

12. END /* WHILE */

13. END /*FOR*/

14. /* Does H(i) contains k or more objects ? */

15, IF (S;(n)) U ... U Si(n,) contains k or more objects whose scores are
J3(0,::(S{(n,))) or lower) THEN

16. RETURN the top-k objects in Sy(n;) U ... U S{(n)

17. END /* FOR */

Fig. 6. The BasicLTA algorithm for processing subspacekapieries using
HL-index.

appropriately. We note that a linear functiofy (¢), consists
of d terms,w[1] * ¢[1],...,w[d] % t[d], as shown in Eg.(1).
If wlj] < 0, the termw|j] * t[j] decreases a4j] increases.
Otherwise,w[j] = t[j] increases ag[j] does. That is, if we
accessL; ; from the head (i.e., smallesti; object first)
without considering the sign ob[j]'s, we cannot guarantee

increases as increases regardless of the sigmgfj]. Using
this notation, we naturally have the following corollary:

Corollary 4: Under anylinear function f;(), every ob-
ject in U;(n) has a score larger than or equal to the
threshold valueF;(n). That is, Vo € U;(n), fz(o) >
fo(a;i1(n), ... a;q(n)) = Fi(n).

Given Corollary 4, we can see that Corollaries2 and 3 are

still true if we replace the “monotone linear functigii with
the “linear functionf;.” Let us call them modified Corollary 2
and modified Corollary 3, respectively.

Figure 7 shows the complete version g&tNextObjec(3

that performs the monotone access to deal with both mono-
tone and non-monotone linear functions. In Line 3, for each

L; ; (j € SUB), it checks the sign of thg!” attribute weight.
If the sign is positive, it retrieves the next objectlof; from
the head. Otherwise, it retrieves that object from the tail.

Function getNextObjects()
Input: (1) L;: thedsorted list L, , ..., L, ,of L,
(2) SUB: the set of the sequence numbers of the attributes mentioned
in the query
(3) f30): the linear score function
Output: S: the set of the next objects of LiJ’s (j € SUB)
1. S={}
2. FOR EACH; € SUB DO BEGIN
3. IF w[j] = 0 THEN /* the sign of w[/] is positive */
Get the next identifier r from Z, J /* starting from the head */
ELSE
Get the next identifier » from L, in the reverse order /*starting
from the tail */
Retrieve the object o that has the identifier from the target relation R
S=S U {o}
END /* FOR */

/* the sign of w[j] is negative */

A

that the threshold value monotonously increases as we acce§§_ RETURN S

more objects and, accordingly, cannot exploit Theorem
Fortunately, we note that[j] «t[j] increases a8];j] decreases
when w[j] < 0. Thus, if we accesd,; ; from the tail (i.e.,
largest A, object first) whenw[j] < 0, the threshold value
monotonously increases. That is, to ensure théf * t[j]

2:
Fig. 7. A function for the BasicLTA algorithm.
We are now ready to prove the correctness of BasicLTA.
Theorem 3: For any linear scoring functiorf;, the algo-
rithm BasicLTAcorrectly findsk objects with lowest scores.

monotonously increases as we access more objects, we accessProof: Let R be the set of all objects in the database.
L; ; starting from either the head or the tail depending on ti&ince every returned object has a sc@gg o, (Si(n;))) or

sign of w[j] — if the sign is positive, we access objectslof;
in the ascending order of theit; attribute values. Otherwise,

less, we can prove correctness by showing that any object
in R but not in Sy(nq) U --- U S;(n;) at Line 16 satisfies

we access them in the descending order. We call this updaigdo) > fu(0min(Si(n;))). We first note that, due to the

access mechanismonotone access

We use alternative definitions of; ;(n) and a; ;(n) in
Table Il depending on the sign e#[j]. If w[j] > 0, we use

the “head” versions of the definitions in Table Il. Otherwise,

we use the “tail” versions. That iy, ;(n) is the set of the
n objects from the head or tail of;;, anda; ;(n) is the

A; attribute value of then!” object from the head or tail
of L; ;. Alternatively, we can consides; ;(n) as the set of
the objects that are retrieved by accessing n times in
monotone access. Similarly, we can considgf(n) as theA;
value of then!” object retrieved fronL; ; in monotone acces
Finally, we setF;(n) = fg(a;1(n),a;2(n),...a;q(n)) and
Ui(n) = L; — S;(n) under the updated definitions af ;(n)
and S;(n). Here, we note thatv[j] * a; ;(n) monotonously

S.

condition in Line 6, f5(0min(Si(n:))) < Fi(n;) when the
algorithm reaches Line 16. Given this inequality, we know
from modified Corollary 2 that

fw(omin(si(ni))) = fw(Omm(Li))~ (2)
Consider three cases ofin R but not in Sy(n) U--- U
S’i(ni):

1) o € L;: From EQq. (2) 0min (S:(n;)) is the minimum-scored
object inL;, SO f5(0) > f&(0min(S:i(n;))).

(2) 0o € L; for I > i: From Theorem 1, we know thdi; (o) >
fw(omin(Li)), s0 from Eq. (2),fu(0) > fu(0min(Si(n:))).
(3) o € L, for I < i: Due to the condition in Line 9y, is
increased until

Fi(n1) > fo(omin(Si(ni)))- ©))

Becausen ¢ Sl(nl), o should be iﬂUl(nl) by the definition Algorithm EnhancedLayerbasedThresholdAlgorithm(EnhancedLTA):

of Uy(ny) = Ly — Si(n;). From Corollary 4, such an satisfies ~ tputs (V1L =Ly oo Ly o L, =L o oo 1y)] an HE Index
(2) O=(SUB, f(). k): a subspace top-k query

fw(o) > Fi(ny). 4) Output: [top-1, ..., top-k]: the sequence of k objects with the lowest scores

for f50)

From Eqgs. (3) and (4), we gét;(0) > fu(omin(Si(n;))). A Algorithm:

. 1. FORi:=1t DO BEGIN /* m is th ber of 1 */
D. Enhanced Algorithm p o tem o 15 fhe number ot fayers
2. n;:=0;S(n) = {}
In this section, we enhance the BasicLTA algorithm to 3. DoBEGIN

further reduce the number of retrieved objects. In BasicLTA, 4. n=n+ 1
once we identifyo,,;,(L;) from layer L;, we retrieve more 5 Si(n;) = Si(n) U getNextObjects(L;, SUB, fz())
objects in layerd.; throughL;_; using fu(omin(L;)) as the & /* Retrieve more objects */

FOR/=1TOi-1DO BEGIN /* If i = 2, perform this loop */

bound of their scores. Our following observation suggests that" e
WHILE (%) < min(7(0,,(S,(n,))), €(1,))) DO BEGIN

. 8
we may be able to use a smaller number as this bound ang

. . n=n+1
retrieve fewer objects front, throughZ;: . 0. S:(n,) L (1) U getNexiObjects(L, SUB. £.0)
Lemma 1: During the execution of BasicLTA, the inequal- ;. END /* WHILE */
|ty min (\Fl(nl)7 fﬂ)(omin(si(ni)))) S fw(omzn(Lz)) a|WayS 12. END /* FOR */
holds. 13. /* Does S|(n;) U ... U S(n,) contains k or more objects ? */
Proof: Omin(Li) is in Sl(nl) or Ul(nz) If Omin(Li) c 14. IF (Sy(n;) U ... U S(n,) contains k or more objects whose scores
Si(ni): then fﬁ) (Omin(si (nz))) — fw (Omzn(Lz)) If are min(f;(0,,,(S(n,)), F(n,)) or lower) THEN
onlL) € D). then F) S falonn(L) 1 KU e b s 500
rom Corollary 4. Thus,min(F;(n;), fo(0min(Si(n:)))) <

17. END /* FOR */

f1D Omyin Lz . L
érom (Le)n)”nmal and Theorem1, it is easy to see theﬁig. 8. The query processing algorithm enhanced to use a tighter bound.
every object in layersL;., through L,, has a score
min (F;(n;), fo(omin(Si(n;)))) or higher. Therefore, if we
can find £ or more objects from layerd; through L;
with scoremin (F;(n;), fo(omin(Si(n;)))) or less, they are
guaranteed to be the tdp-because no object ih;; and
above has a smaller score. Since we can usentimmum
betweenF;(n;) and fz(omin(Si(n;))) as the bound without
E?V,:E?OSZA%ﬁﬂg%%ﬁgﬁfé),’[hvgetor;_tgi\j/eecg_wer objects from (3) o€ L for.l < i: Due to the condition in Line 8p, is
Figure 8 showsEnhancedLayerbasedThreshoIdAIgorithrr|1ncreased until

Consider three cases ofin R but not in Sy(n) U--- U
1) o € L;: Since opmin(L;) is the minimum-
scored object in L;, fg(o) > fo(omin(Li)) >
min(F; (n;), fo(0min(Si(n;)))) from Lemma 1.

(2) 0o € L; for I > i: From Theorem 1, we know thdi; (o) >
fw(0min(Li)) = min(Fi(n;), fo(omin(Si(n:)))).

(simply, EnhancedLTA which implements this idea. The Fi(ng) > min(Fi(1:), fo(0min(Si(ni)))). (5)
inputs and the output of EnhancedLTA are same to those _ o
of BasicLTA in Figure6. In BasicLTA, starting from = Becauseo ¢ Sj(n;), o should be inU;(n;) by the definition

1, we keep retrieving objects fromL; until we find of U;(n;) = L;—Si(n;). From Corollary 4, such an satisfies
the 0,,:,(L;) by repeatedly callinggetNextObjec until fw(o) > Fi(n) > min(Fi(ni), fo(omin(Si(ni)))) from
Filni) > folomin(Si(ni))). Only then it goes back to EQ.(5). u
previous layers to retrieve more objects with the score bound))
Fa(omin(Li)). In contrast, in EnhancedLTA, each time we calf- HL-index for Monotone Functions
getNextObject in Line 5, we immediately go back to the We now briefly explain how we may extend the HL-index
earlier layers and retrieve more objects with the score boutad handle all monotone functions including both linear and
min(F;(n;), fo(omin(Si(n:)))) (Lines 7 through 12). If there non-linear cases. In our earlier algorithms, the core part that
exist £ or more such objects, we return the tbmbjects in makes the linearity assumption is the layering step of the index
Line 16. We now prove the correctness of EnhancedLTA. construction algorithm. With a non-linear scoring function,
Theorem 4: For any linear scoring functiorf;, the algo- top-k objects may not necessarily reside in the fitsyers
rithm Enhanced LT A correctly findsk objects with lowest built through the recursive extraction of convex hull vertices,
scores. making it impossible to apply layer-level filtering. To address
Proof: This proof is very similar to our proof this problem for monotone non-linear functions, we build
for Theorem3. Let R be the set of all objects inlayers by recursively drawingkylined5] instead of convex
the database. Since every returned object has a scbuodls. Since the layer list consisting of skylines satisfies the
min(F;(n;), fo(omin(Si(n;)))) or less, we can prove theoptimally linearly ordered set property (extended for monotone
correctness by showing that any objectin R but not functions) as proved in Lemma?2 below, the same theorems
in Si(ny) U --- U Si(n;) at Line 15 satisfiesf;(0) > and lemmas that we proved in SectionV also apply to the
min(F;(n;), fo(0min(Si(n4:)))). skyline version with the correctness of the algorithms proved.

Therefore, this new version of the HL-index can use the For the experiments, we have implemented HL-index (both
identical algorithm in Fig.8 except that the layers are nosonvex hull and skyline based versions), ONION, TA, SUB-
constructed using skylines, not convex hull vertices. TOPK, and PREFER using C++. For TA, we use the TA
Lemma 2: For a given seUU of objects in the universe, aalgorithm extended with our monotone access method (to
layer list constructed using skylines owérsatisfies optimally handle non-monotone linear functions). We callT&(e) For
linearly ordered set property under any monotone funcfion PREFER, we translate the code of the PREFER system
Proof: Let L = {Ly,Ls,...,L,,} be the list of layers witten in JAVA into C++. To compute convex hulls for HL-
constructed by recursive extraction of skylines. ThatlisjJ index and ONION, we used the Qhull library [1]. To compute
---U L, Is the entire database, afig is the set of objects in skylines, we used the BNL algorithm [5]. We conducted all the
the skyline overL; U---U L,,. According to the definition of experiments on a Pentium-4 2.0 GHz Linux PC with 1GBytes
the skyline [5P, when L; is the skyline overL; U---U L,,, of main memory.
every object inL;.; U---U L,, is dominated by at least
one object inL;. That is, for anyo € L;11 U -+ U Ly,
there existo’ € L; such thato is dominated byo’. Then We first compare the index building times of HL-index,
f(0") < f(o) for any monotone functiorf according to the ONION, and TA(e). Due to space limit, we only report the
definition of monotony. Thatisfo € L;,1U---UL,,, 3o’ € results for the UNIFORM data of the dimensidn= 5 while
L; st f(o') < f(o). Therefore, f(omin(L;)) < f(o) for varying the number of objectsM = 10K, 100K, 1000K)
anyo € L; (i < j < m). This proves the optimally linearly in Tablelll. From these results, we observe that the index
ordered set property af. m building times of ONION and TA(e) are (almost) equivalent to
From now on, if we need to differentiate this new version dhe times of the layering step and the listing step, respectively.
the HL-index from the earlier one, we refer to the earlier ond/e also observe that for all ranges df, the layering step
as HL-index (convex) and this new one as HL-index (skyline)takes significantly longer than the listing step, and thus, the
total index building time of HL-index is very close to the
building time of ONION. The results for other parameter
A. Experimental Data and Environment settings is close to what we observe from Table Ill. Similarly,
We compare the index building time and the query pethe index building time of HL-index(skyline) is close to the
formance of the HL-index with the following existing meth-sum of the time for constructing the skyline layers and the
ods: ONION[7] (a layer-based method), TA[11] (a list-basetime for building the lists of TA(e).
method), PREFER[14] (a view-based method) and SUB-

B. Index building time

VI. EXPERIMENTS

: TABLE Il
TOPK[19]. We use the wall clock time as the measure of | ey syipinG TIME AS NV 1S VARIED (UNIFORM AND d=5).
the index building time and the number of objects read from [Wethods e | T0K | 100K | TO00K |
databasé\lum ObjectsRead as the measure of the query ONION 514 15270 T 250061
performanceNumObjectsReadis a measure widely used in TA 0.24 2.89 35.24
top-k research [7], [14], [21] because its results are not affected | HL-index [layering | 9.14 152.70 | 2500.61

. . . L listing 0.23 2.65 31.57
by the implementation detail of the individual methods used Hi-index | Tayering | 1.33 14699 | 17283.95
in the experiments. In addition, this measure is useful in (skyline) [Tisting 0.24 2.46 39.36

environments like main memory DBMSs or the ones using
flash memory (e.g., a solid-state drive(SSD)) because elap§kdPerformance of monotone or non-monotone linear queries
time is approximately proportional to the number of objects we now compare the query performance of the HL-index
accessed in these environments where sequential/randoma3inst other existing methods under both monotone and non-
cost difference is not as significant as in disk. monotondinear functions. Note that while ONION and TA(e)
We perform experiments using synthetic and real datase{gpport allinear functions, PREFER and SUB-TOPK support
For the synthetic dataset, we generate uniform datab®l$ (monotonefunctions and thus cannot handle non-monotone
FORM by using the generator used by Borzsonyi et al. [Sjinear functions. In this section, therefore, we only compare

The datasets consist of three-, five-, and seven-dimensiopglingex (that uses the convex hall layering), ONION, and
datasets of 10K, 100K, and 1000K objects. For the real datasm(e)_ The comparison of all six methods will be done in the

we use the regular season statisticg the NBA players that next section when we usaonotone lineafunctions.

play over ten minutes per year from 1951 to 200VBAY. We measure the query performance of the three methods on
The dataset consists of 19364 objects with seven attributggs synthetic and real datasets while varying the sub-dimension
minutes played, total points, field goals attempted, free thro‘é’?i.e., the size oBUBIn Section Ill), the number of resulfs
attempted, total rebounds, total assists, and total personal fowlS.anq4. We measuréVum_Objects_Read for ten randomly

5 “The Skylineis defined as the set of those points that are n&enerated queries having different prefgrence V,eCtorS’ and
dominated by any other point. A point dominatesanother point3 ~ then, use the average value over all queries. We first generate
if Ais as good as or better thah in all dimensions and better thanthe setSUB which is the subset of the sequence numbers
B in at least one dimension.”[5]

Shttp://www.basketballreference.com "http://db.ucsd.edu/PREFER/application.htm

of the attributes, for each size(1 < s < d). That is, we each layer of ONION increases sublinearly (more precisely,
randomly choose unique elements from1,2,...,d}. Then, in proportion to(In N)°! wherecl is a positive constant[3]).
we randomly choose the attribute preferendé, which is the Since the HL-index exploits the synergic effect of the layer-
weight of thei*" attribute (i € SUB) in the preference vector level filtering and the list-level filtering due to its meticulous
w, from {—4,-3,-2,—1,1,2,3,4}, and normalizew[i|'s so integration of the two filtering capabilities, the HL-index
that), suglwli]] = 1. Table IV summarizes the experimentsignificantly outperforms both TA(e) and ONION for large
and the parameters used for this set of experiments. N values, making it particularly useful for a large database.
Experiment 2: query performance ass is varied

Figure 11 shows the query performance of HL-index, ONION,
and TA(e) ass is varied from 1 to 5. Wher = 1, the query
performance of HL-index is worse than that of TA(e), but is

TABLE IV
EXPERIMENTS AND PARAMETERS USED FOR COMPARING THE
PERFORMANCE OF MONOTONE OR NOMONOTONE LINEAR QUERIES

[Experiments [Parameters] . . .
Exp T comparison of the | datasel OREGRT much petter than that of ONIQN. As mentioned in Section IV,
query performance [N TOK, TOOK, T000K in HL-index, the elements within a layer are totally ordered,
asN is varied d g but elements in different layers are not. Thus, HL-index reads
,‘z 50 more thank objects from the heads (or tails) of lists in some
Exp.2 | comparison of the | dataset UNIFORM layers while TA(e) only readk objects from the head (or tail)
query ;?Ser\flgl;riggnce JZ 105?*(of one sorted list because the elements of the list are totally
s 1,2,5 ordered. However, wher > 2, HL-index begins to show
— S f - UNHE(O)RM better performance than the other methods due to the synergic
P21 query performance N — TOoR effect of the two filtering capabilities. HL-index improves by
ask is varied d 5 1.4 to 166.2 times over ONION and by 0.5 to 2.6 times over
P 020 100 TA(e).
Exp.4 | comparison of the | dataset UNIFORM Experiment 3: query performance ask is varied
quz;ydi?gr\f/t;rr?gznce 1; 10K, %0%K171000K Figure 12 shows the query performance of HL-index, ONION,
5 W and TA(e) ask is varied from 1 to 100. HL-index outperforms
E 0 the other methods for alt values. HL-index improves by 2.7
Exp.5 Comparls?n of the da]t\f;lset NBA 1(Sr;33t'jl6l4data) to 3.2 times over ONION and by 1.6 to 5.0 times over TA(e).
;suf?é Bgﬁig{,mui?ﬁg q 7 E_xperiment 4: query performance asd is varie_d
a real dataset 5 .2, ... 7 Figure 13 shows the query performance of HL-index, ONION,
E 50 . ; -
Exp. 6 comparison of the | dataset] NBA (real data) and TA(e) asd is varied from 3 to 7. Here, we use= 2
query performance N 19364 whend = 3, s = 3 whend = 5, ands = 4 whend = 7.
ask is varied using d 7 Since (In N)4~1 is the average number of objects in convex
a real dataset s !
T 110,20, ..., 100 hull vertices [3], the entire objects can reside in the first layer
whend is very large. Thus, in that case, since HL-index can
Comparison of basic and enhanced algorithm exploit only the list-level filtering like TA(e), the performance

Before we compare the HL-index with other approaches, ve¢ HL-index would converge to that of TA(e). However, within
first show the improvement of EnhandedLTA compared the experimental range df HL index outperforms TA(e). HL-
BasicLTA. Figure9 shows the query performance of HLindex improves by 2.5 to 3.2 times over ONION and by 1.2
index and HL-index(basic) as is varied from 1 to 3, to 3.0 times over TA(e).

where HL-index(basic) and HL-index represent the resulBxperiment 5: query performance as s is varied when
from BasicLTA and EnhancedLTA, respectively. HL-indexusing a real dataset

improves performance by up to 20% over HL-index(basiclrigure 14 shows the gquery performance of HL-index, ONION,
Due to this better performance, we show only HL-index frorand TA(e) ass is varied from 1 to 7 when usingV BA, a
EnhancedLTA in the rest of our experimental results. seven-dimensional real dataset. HL-index begins to outperform
Experiment 1: query performance as N is varied the other methods whern > 2. This tendency is similar to
Figure 10 shows the query performance of HL-index, ONIONhat of the synthetic dataset shown in Figure 11. HL-index
and TA(e) asN is varied from 10K to 1000K. From the improves by 1.4 to 138.9 times over ONION and by 0.6 to
result, we observe that HL-index outperforms ONION anil.6 times over TA(e).

TA(e) for all N values. For example, HL-index outperformExperiment 6: query performance as k is varied when
both ONION and TA(e) by a factor of three or more atising a real dataset

N=1000K. Interestingly, we note that TA(e) performs quit€&igure 15 shows the query performance of HL-index, ONION,
well for a small N (it shows performance close to HL-indexand TA(e) ask is varied from 1 to 100 when using NBA. HL-
for N=10K), but its performance gets significantly worse thaimdex outperforms the other methods for the entire range of
the two others beyond a certain cross-over point. This is This tendency is similar to that of the synthetic dataset
because the number of objects retrieved from each list gliown in Figure 12. HL-index improves by 2.3 to 3.3 times
TA(e) grows linearly withNV, while the number of objects in over ONION and by 1.3 to 5.3 times over TA(e).

4000 60000 50000
[~e-TA(e) —A ONION —5- HL-index —5-TA(e) —A ONION -5 HL-index
—%— HL-index(basic) 50000 o
?\3 3000 0 § S ';340000
«, &, 40000 |
] 2 £ 30000 |-
8 2000 8 30000 <
8 8 0,20000 | P
I | 20000 1
E 4000 § 0 £ f
z Z 10000 =z 10000 |
0t 0 : 0
1 2 3 10K 100K 1000K 1 2 3 4 5
Sub-dimension s Data Size N Sub-dimension s
Fig. 9. Query performance of the basic and Fig. 10. Query performance a¥ is varied Fig. 11. Query performance as is varied
enhanced algorithms (NBAI=7, N=19364, and (UNIFORM, d=5, s=3, andk=50). (UNIFORM, d=5, N=100K, andk=50).
k=50).
30000 60000 14000
[-o-TA() ——ONION -8~ HL-index A\ [-o-TA(e) —&—ONION —5-HLrindex
< 25000 5 50000 o 12000 4 S
© o ©
&l 20000 40000 &I 10000 |]
2 £ £ 8000 |
o 15000 2. 30000 s
8! % 20000 % gl
10000 i
£ § § 4000 |- ~)
Z 5000 10000 2000 | 5~ ONON
i —=~ HL-index
0 0 0 : : : :
1 20 40 60 80 100 3(s=2) 5(s=3) 7(s=4) 1 2 3 4 5 6 7
Top-k Dimension d Sub-dimension s
Fig. 12. Query performance &s is varied Fig. 13. Query performance as is varied Fig. 14. Query performance as is varied
(UNIFORM, d=5, s=3, and N=100K). (UNIFORM, N=100K, andk=50). (NBA, d=7, N=19364, and=50).
D. Performance of monotone linear queries Experiment 7: query performance as s is varied when

using only monotone linear scoring functions

, We now compare the perfqrmance of all six methods, HLFigure 16 shows the query performance of HL-index (convex),
index (convex), HL-index (skyline), ONION, TA(e), PREFERHL-index (skyline), ONION, TA(e), PREFER, and SUB-

and SUB-TOPK, undemonotone linear functionsie limit +opy ass is varied from 1 to 5. Since the query performance

. . Caudf PREFER improves as the number of views increases, for a
HL-index (skyline), PREFER’ and SUB-TOPK are dg&gneﬁir comparison with HL-index, we use five views generated
to handle monotone 'functlons and cannot deal with noFEmdome.B The comparison between HL-index, ONION, and
monotone Iln_ear functlon§. _ TA(e) shows similar results to what we observed earlier;
In generating the queries, we use the same setting that i€ index shows significant improvement over ONION and
used in the previous section, except that we now choose tﬂ@(e) in almost all cases. For example, HL-index (skyline)
attribute preferencev[i] randomly from{1,2,3,4}, and nor- 4150 improves by up to 782.0 times over PREFER and by up
malize them to b ;g g|w(i]| = 1. We note that, in the pre- 4 2 6 times over SUB-TOPK. In addition, for monotomen-
vious sectionu|i] were chosen fron{—4, -3, -2, —1,1,2, |inear querie?, HL-index (skyline) also shows similar results
3,4} to allow non-monotone linear functions. Again, W&, what we observed in this experiment. HL-index (skyline)
measure Num_Objects_Read for ten randomly generatedimpro\,eS by up to 1063.8 times over PREFER, by up to 2.5

queries, and then, use the average value over them. TablgNes over SUB-TOPK, and by up to 3.7 times over TA(e)(the
summarizes the experiments and the parameters used for thig ¢ graph is omitted due to space limit).

set of experiments. Experiment 8: query performance as k is varied when

using only monotone linear scoring functions

Figure 17 shows the query performance of HL-index (convex),
HL-index (skyline), ONION, TA(e), PREFER, and SUB-
TOPK ask is varied from 1 to 100 when using monotone

TABLE V
EXPERIMENTS AND PARAMETERS USED FOR COMPARING THE
PERFORMANCE OF MONOTONE LINER QUERIES

| Experiments [Parameters | linear scoring functions. Here again, PREFER uses five views.
Exp.7 comparison of the | dataset UNIFORM .
query performance [N TOOK The performance trends of HL-index, ONION, and TA(e)
ass is vlaried when d . 5 s are similar to what we observed in earlier experiments; HL-
using only monotone__» o index shows significant improvement over ONION and TA(e).

Exp.8 comparison of the | dataset UNIFORM

Suery E’/Z?;g&mvsﬁgre] Zf 1050K 8\We simply consider one view as one list. Thus, PREFER with five
using only monotone 3 = views has five lists aqd HL-|n.dex has flvedllsts V\'Ihﬁﬁ:'52.
linear functions 15 T, 10, 20, ..., 100 ®We use a quadratic functiory,(t) = Y ;_, w[i] = t[¢]*, as the

monotone non-linear scoring function.

P 80000 40000 PREFER(5) SUB-TOPK
— —%— SUB-
12000 1 ——PREFER() 35000 | |-o-TA(e) —A~ ONION
k] o +$:(B;T0PK - —F HL-index(convex) —o— HL-index(skyline)
o L —— e, © L
gg‘ 10000 3 60000 e 8 30000 |
| —8— HL-index(convex) I 25000
‘3 8000 % —o— HL-index(skyline) ‘3 =
T 6000 8 40000 8 20000 |
o, f e} O, 15000 |
£ £ £
5 4000 -6-TA(e) 5 20000 3 10000 g
Z 000 4 —A— ONION z 1 =
~B- HL-index 5000
i
0 s 0 0
1 20 40 60 80 100 1 2 3 4 5 1 20 40 60 80 100
Top-k Sub-dimension s Top-k
Fig. 15. Query performance &s is varied Fig. 16. Performance of monotone lin- Fig. 17. Performance of monotone linear

(NBA, d=7, s=4, N=19364, andk=50). ear queries as is varied (UNIFORM, d=5,

N=100K, andk=50).

gueries ask is varied (UNIFORM,d=5, s=3,
and N=100K).

Compared to SUB-TOPK, HL-index shows approximately ACKNOWLEDGEMENTS

10% (which should be higher with a higher sub-dimension Thjs work was partially supported by the Korea Science and
such ass > 4) performance improvement in many cases=npgineering Foundation(KOSEF) grant funded by the Korean
Compared to PREFER, HL-index shows up to 33.6 tim&Sovernment(MEST) (No. ROA-2007-000-20101-0). This work

performance improvement. For monotonen-linear queries, \yas also partially supported by the Internet Services Theme

HL-index (skyline) shows similar results to what we observegrogram funded by Microsoft Research Asia.

in this experiment. HL-index (skyline) improves by up to 232.6
times over PREFER and by up to 9.5 times over TA(e)
and shows performance comparable to SUB-TOPK (the resuif
graph is omitted due to space limit). 2

VII. CONCLUSIONS (3]
In this paper, we proposed the HL-index that is designegl]
to handle topk queries on an arbitrary subset of attributeqs]
efficiently. The HL-index has significantly more pruning power
than any existing method because it exploits the synerg{g]
effect of the integration of layer-level filtering and list-level [7]
filtering. We described tog- answer computation algorithms
for the HL-index and formally proved their correctness. We[s]
also derived dight bound for guaranteeing the correct query
results through in-depth analysis. 1[?)]
For the clarity of our exposition, we first presented th%]
convex hull version of the HL-index that deals with lineafl1]
scoring functions. Since this version of HL-index does n?{z]
put any restriction on the sign of the attribute weigHt], it
can handléoth monotone and non-monotone linear function§t3]
We then briefly discussed the skyline version of the HL-ind%>l<4]
that can handle monotone (linear or non-linear) functions.
Our extensive experiments demonstrate that the HL-index
outperforms all existing methods in practically all scenarioE,S]

and its improvement gets more noticeable for larger databases.

Given that our HL-index retrieves significantly fewer object&.6]
than any existing methods, we expect that it is particularh/?]
suitable for the environments like main memory DBMSs or
the ones using flash memory, which are being and will becori€l
more and more prevalent in the foreseeable future [16]. [19]

Finally, we note that the HL-index algorithms and their
proofs can be applied to any layering methods that satidf]
the optimally linearly ordered set property. Finding a Iayeringl]
method that can handle both all linear functions and all
monotone functions while satisfying this property would be
an interesting problem. We leave this as future study.

REFERENCES

Barber, B., Dobkin, D., and Huhdanpaa, H., “The Quickhull Algorithm
for Convex Hulls,”ACM TOMS \Vol. 22, No. 4, 1996.

Bast, M. et al., “IO-Top-k: Index-access Optimized Top-k Query Pro-
cessing,” InVLDB, 2006.

Bentley, J. L. et al., “On the Average Number of Maxima in a Set of
Vectors and Applications JACM, Vol. 33, No. 2, 1978.

Berg, M. et al.,Computational Geometry: Algorithms and Applicatipns
2nd ed., Springer-Verlag, 2000.

Borzsonyi, S., Kossmann, D., and Stocker, K., “The Skyline Operator,”
In ICDE, 2001.

Chan, C.-Y., Eng, P.-K., and Tan, K.-L., “Stratified computation of
skylines with partially-ordered domains,” BIGMOD, 2005.

Chang, Y. C. et al, “The Onion Technique: Indexing for Linear
Optimization Queries,” ISIGMOD, 2000.

Chaudhuri, S., Ramakrishnan, R., and Weikum, G.,“Integrating DB and
IR Technologies: What is the Sound of One Hand Clapping?CIDR,
2005.

Das, G. et al., “Answering Top-k Queries Using Views,"IhDB, 2006.
Fagin, R., “Fuzzy Queries in Multimedia Database SystemsP@DS
1998.

Fagin, R., Lotem, A., and Naor, M., “Optimal Aggregation Algorithms
for Middleware,” InPODS 2001.

Gass, S. G.l.inear Programming: Method and Applicationsth ed. An
International Thomson Publishing Company, 1985.

Hadley, G. Linear ProgrammingAddison-Wesley Publishing Company,
1962.

Hristidis, V. and Papakonstantinou, Y. “Algorithms and applications
for answering ranked queries using ranked view$e VLDB Journal

Vol. 13, No. 1, 2004.

Heo, J.-S. et al., “The Partitioned-Layer Index: Answering Monotone
Top-k Queries Using the Convex Skyline and Partitioning-Merging
Technique,’Information Sciencedo appear, 2009.

Lee, S.-W. et al., “A Case for Flash Memory SSD in Enterprise Database
Applications,” In SIGMOD, 2008.

Papadias, D. et al., “Progressive skyline computation in database sys-
tems,” ACM TODS Vol. 30, No. 1, 2005.

Tan, K.-L., Eng, P.-K., and Ooi, B. C., “Efficient progressive skyline
computation,” InVLDB, 2001.

Tao, Y., Xiao, X., and Pei, J., “Efficient Skyline and Top-k Retrieval in
Subspaces,JEEE TKDE Vol. 19, No. 8, 2007.

Yi, K. et al., “Efficient Maintenance of Materialized Top-k Views,” In
ICDE, 2003.

Xin, D., Chen, C., and Han, J., “Towards Robust Indexing for Ranked
Queries,” InVLDB, 2006.

