
The Hybrid-Layer Index: A Synergic Approach to
Answering Top-k Queries in Arbitrary Subspaces

Jun-Seok Heo†, Junghoo Cho‡, and Kyu-Young Whang†

†Department of Computer Science, KAIST, Korea,{jsheo,kywhang }@mozart.kaist.ac.kr
‡University of California, Los Angeles, USA,cho@cs.ucla.edu

Abstract— In this paper, we propose the Hybrid-Layer Index
(simply, the HL-index) that is designed to answer top-k queries
efficiently when the queries are expressed on anyarbitrary subset
of attributes in the database. Compared to existing approaches,
the HL-index significantly reduces the number of tuples accessed
during query processing by pruning unnecessary tuples based
on two criteria, i.e., it filters out tuples both (1) globally based
on the combination of all attribute values of the tuples like
in the layer-based approach (simply, layer-level filtering) and
(2) based on individual attribute values specifically used for
ranking the tuples like in the list-based approach (simply,list-level
filtering). Specifically, the HL-index exploits the synergic effect
of integrating the layer-level filtering method and the list-level
filtering method. Through an in-depth analysis of the interaction
of the two filtering methods, we derive a tight bound that reduces
the number of tuples retrieved during query processing while
guaranteeing the correct query results. We propose the HL-
index construction and retrieval algorithms and formally prove
their correctness. Finally, we present the experimental results
on synthetic and real datasets comparing the performance of
the HL-index to other state-of-the-art indexes. Our experiments
demonstrate that the HL-index shows the best (or close to best)
performance in most scenarios regardless of the size of the
dataset, the number of attributes in the tuples, and the number
of attributes used in the queries.

I. I NTRODUCTION

Computing top-k answers quickly is becoming ever more
important as the size of databases grows and as more users
access data through interactive interfaces. When a database
is large, it may take minutes (if not hours) to compute the
complete answer to a query if the query matches millions of
the tuples in the database. Most users, however, are interested
in looking at just the top few results (ranked by a small set of
attribute values that the users are interested in) and they want
to see the results immediately after they issue the query.

As an example, consider a database of digital cameras,
which has many attributes such as price, manufacturer, model
number, weight, size, pixel count, sensor size, etc. Among
these attributes, a particular user is likely to be interested in
a small subset when they make a decision to purchase. For
example, a user who wants to buy a cheap compact digital
camera will be mainly interested in the price and the weight
and may issue a query like

SELECT * FROM Cameras

ORDER BY 0.5*price+0.5*weight ASC LIMIT k .
Another user who primarily cares about the quality of the
pictures will be more interested in the pixel count and sensor
size and issue a query like

SELECT * FROM Cameras

ORDER BY 0.4*pixelCount+0.6*sensorSize DESC

LIMIT k .
To handle scenarios like the above, we propose theHybrid-

Layer Index(simply, theHL-index) that is designed to answer
top-k queries on anarbitrary subsetof the attributes efficiently.
There exist a number of approaches for efficient computation
of top-k answers. For example, in their seminal work, Fagin
et al.[10], [11] designed a series of algorithms that consider
a tuple as a potential top-k answer only if the tuple is ranked
high in at least one of the attributes used for ranking. We
refer to this approach as thelist-based approachbecause
the algorithms require maintaining one sorted list per each
attribute. While this approach shows significant improvement
compared to earlier work, it often considers an unnecessarily
large number of tuples. For instance, when a tuple is ranked
high in one attribute but low in all others, the tuple is likely
to be ranked low in the final answer and can potentially be
ignored, but the list-based approach has to consider it because
of its high rank in that one attribute. As the size of the database
grows, this becomes an acute problem because there are likely
to be more tuples that are ranked high in one attribute but low
overall.

To avoid this pitfall, Chang et al.[7] proposed an algorithm
that constructs a global index based on the combination of
all attribute values and uses this index for top-k answer
computation. We refer to this approach as thelayer-based
approachbecause it builds an index that partitions the tuples
into multiple layers. The layer-based approach avoids the
pitfall of the Fagin’s algorithms, but it also has the opposite
problem. Because the index is constructed onall attributes, it
does not perform well when the query ranks tuples by a small
subsetof the attributes. A tuple may be ranked high globally
on many attributes, but it may be ranked low for a particular
subset of attributes used for a query.

One simple way to address the drawback of the layer-based
approach is to build one dedicated index perevery subset
of attributes and use the appropriate index for a query as
in [9], [14]. We refer to these approaches as theview-based
approach. Clearly, view-based approaches lead to high query
performance, but they also incur significant space overhead.

Our proposed HL-index tries to avoid all pitfalls of the ex-
isting approaches in the following ways. By careful integration
of the list-based and the layer-based approaches, it is able to
filter out a tuple both by theglobal combination ofall of its

attribute values (like in the layer-based approach) and by the
individual consideration of the particular attribute values used
for ranking (like in the list-based approach). In addition, one
HL-index can handleany queries on anarbitrary subsetof
the attributes avoiding the space overhead of the view-based
approach. More precisely, we make the following contributions
in this paper.

• We propose the HL-index that can be used for answering
top-k queries on an arbitrary subset of attributes. The HL-
index can be built for either (1) linear scoring functions
(including monotone and non-monotone linear functions)
or (2) monotone scoring functions (including linear and
non-linear monotone functions). The HL-index has sig-
nificantly more pruning power than existing approaches
and does not require a separate index customized for each
class of queries on different subsets of attributes.

• We present the algorithms for processing top-k queries
using the HL-index. Through an in-depth analysis of the
interaction of the list-based and layer-based approaches,
we derive a tight bound to minimize the number of
tuples that are retrieved during query processing and
to guarantee the correctness of the computed results.
We also provide formal proofs of correctness of those
algorithms.

• We conduct extensive experiments comparing the perfor-
mance of the HL-index with those of existing approaches
on both synthetic and real data. The HL-index can exploit
the synergic effect of the list-based approach and the
layer-based approach by meticulous integration of the
two approaches. As a result, the HL-index shows better
performance over existing approaches for practically all
settings in our experiments. In particular, our experiments
show that the HL-index performs particularly well when
the size of the database is large, leading to a factor of
three or more improvement for a database of million
tuples in our experiments.

The rest of the paper is organized as follows: We first go
over related work in Section II and we formally define the top-
k queries that we handle in Section III. Then, in Section IV,
we describe the HL-index construction algorithm and, in
Section V, explain the top-k query processing algorithm using
the HL-index and prove its correctness. In Section VI we
present our experiments that compare the performance of the
HL-index to existing approaches. We conclude the paper in
Section VII.

II. RELATED WORK

There have been a number of methods proposed to answer
top-k queries by accessing only a subset of the database. We
categorize the existing methods into three classes: thelist-
based approach, thelayer-based approach, and theview-based
approach. We briefly review each of these approaches in this
section.

A. Layer-Based Approach

The layer-based approach constructs a global index based on
the combination ofall attribute values of each tuple. Within
the index, tuples are partitioned into multiple layers, where
the ith layer contains the tuples that can potentially be the
top-i answer. Therefore, the top-k answers can be computed
by reading at mostk layers. ONION [7] and AppRI [21] are
well-known methods of this approach.

ONION [7] builds the index by making layers with the
vertices (or theextreme points[13]) of theconvex hulls[4] over
the set of tuples represented as point objects in the multi-
dimensional space. That is, it makes the first layer with the
convex hull vertices over the entire set of tuples, and then,
makes the second layer with the convex hull vertices over the
set of remaining tuples, and so on. As a result, an outer layer
geometrically encloses inner layers. By using the concept of
the optimally linearly ordered set, Chang et al. [7] has shown
that ONION answers top-k queries by reading at mostk layers
starting from the outmost layer.

ONION is capable of answering a query with an arbitrary
(monotone or non-monotone) linear function because of the
geometrical properties of the convex hull [12]. On the other
hand, the query performance is sometimes adversely affected
due to the relatively large sizes of layers [21], particularly
when the number of attributes mentioned in the query is small,
because it reads all the tuples in a layer. AppRI [21] constructs
a list of layers as well, but exploiting the domination relation
of skylines.

B. List-Based Approach

The list-based approach constructs a set of lists by sorting all
tuples based on their values in each attribute. It then finds the
top-k tuples by merging as many lists as are needed [2], [11].
For example, the threshold algorithm (TA) [11], a well-known
method of the list-based approach, sequentially accesses each
sorted list mentioned in a query in parallel. That is, for all
attributes appearing in a query, it accesses the first element of
each sorted list, then the second element, and so on, until a
particular threshold condition is met. For each tuple identifier
seen under the sorted accesses, it also randomly accesses the
other lists to get its values of the other attributes to compute
the tuple’s score.

Under the list-based approach, since the lists are indepen-
dent of one another, top-k tuples are computed by accessing
only those lists corresponding to the attributes mentioned in
the query. That is, it can filter out unnecessary tuples by
individual consideration of these attribute values. However,
since TA does not exploit the relationship among the attributes
when creating the sorted lists, its performance gets worse as
the number of attributes mentioned in the query increases.

C. View-Based Approach

The basic idea behind the view-based approach is to “pre-
compute” the answers to a class of queries on every subset of
attributes and return the precomputed top-k answers given a
query. When the exact answers to the query issued by a user

has not been precomputed, the “closest” precomputed answers
are used to compute the answer for the query. PREFER [14]
and LPTA [9] are well-known methods of this approach.
Because the view-based approach requires constructing an
index for each subset of attributes, its space and maintenance
overhead often becomes an important issue in using this
approach for a practical system [20].

D. Other Approaches

There exists a large body of work for efficient computation
of skyline queries [6], [17], [18]. Because the skyline con-
tains at least one tuple that minimizes any monotone scoring
function [5], this body of work can be used to deal with top-k
queries under a monotone scoring function for the special case
of k = 1. SUB-TOPK [19] is one extension of these methods
that finds the top-k results for anyk value, but because it is still
based on the skyline approach, it only deals with monotone
scoring functions and is unable to handle non-monotone linear
functions.

Table I summarizes the top-k indexing methods that are
compared in this paper and the functions they support.

TABLE I

TOP-k INDEXING METHODS COMPARED AND THE FUNCTIONS THEY

SUPPORT.

Functions Linear Non-linear
TA, ONION, TA, PREFER,

Monotone AppRI, PREFER, SUB-TOPK
LPTA, SUB-TOPK

Non-monotone ONION

III. PROBLEM DEFINITION

In this section, we formally define the problem of top-k
queries when the tuples are ranked by an arbitrary subset of
attributes. A target relationR of N tuples hasd attributes
A1, A2, . . . , Ad. The value of each attributeAi is assumed to
range between[0.0, 1.0], so every tuple in the relationR can
be considered as a point in thed-dimensional space[0.0, 1.0]d.
Hereafter, we call the space[0.0, 1.0]d as the universe, refer
to a tuple t in R as an objectt in the universe, and use
the tuple and the object interchangeably as is appropriate.
A scoring functionf(t) : t → [−1.0, 1.0] maps each object
t ∈ [0.0, 1.0]d to a real value in[−1.0, 1.0]. Then, a top-
k query is to find thek objects inR that have the lowest
(or highest) score underf(t). Without loss of generality, we
assume that we are looking for the lowest-scored objects in the
rest of this paper. Therefore, our goal is to retrieve a sequence
of objects[t1, t2, ..., tk] that satisfyf(t1) ≤ f(t2) ≤ ... ≤
f(tk) ≤ f(tl), k+1 ≤ l ≤ N . Here,tj denotes thejth ranked
object in the ascending order of their score, where1 ≤ j ≤ N .

The scoring function for top-k queries is generally assumed
to be either linear [7], [9], [14], [21] or monotone [9], [11],
[14], [19], [21]. A linear scoring function is a function of the
following form

fw̄(t) =
d∑

i=1

w[i] ∗ t[i] (1)

wheret[i] is theith attribute value oft andw[i] is the “weight”
of the ith attribute. The vector ofw[i] values,w̄, is referred
to as thepreference vector. Without loss of generality, the
w[i] values are assumed to range between[−1.0, 1.0] and
are normalized to be

∑d
i=1 |w[i]| = 1. A monotonescoring

function satisfies the following condition [11]:
If t[i] ≤ t′[i] for all i = 1, . . . , d, thenf(t) ≤ f(t′).

Informally, monotony means that if an object has smaller
scores than others inall attributes, then its overall score should
also be smaller. We note that a linear functionfw̄ is monotone
if and only if its w[i] values are all non-negative. Depending
on the sign of thew[i] values, a linear function may be non-
monotone.

As we will explain, our HL-index can be designed to deal
with either of the following classes: (1)all linear functions
including monotone and non-monotone linear functions; (2)
all monotone functions including linear and non-linear mono-
tone functions. Due to space limit and for the clarify of
our exposition, however, we mainly assume linear scoring
functions (monotone or non-monotone) in the rest of this paper
and briefly deal with the variation for non-linear monotone
functions in Section V-E.

TABLE II

THE NOTATION.

Symbols Definitions
R the target relation for top-k queries
N the cardinality ofR
d the number of attributes ofR or the dimension of the

universe
Ai the ith attribute ofR (1 ≤ i ≤ d)
t an object inR (t is considered as ad-dimensional vector

t̄ that hast[i] as theith element)
t[i] the value of attributeAi in the objectt (t ∈ R)
w̄ a preference vector (ad-dimensional vector that hasw[i]

as theith element)
w[i] the weight of attributeAi in the preference vector̄w
Li the ith layer or the set of objects in theith layer

Li,j the list of objects inLi sorted in the ascending order of
their Aj values

omin(S) the minimum-scored object in the setS
H(i) {o|fw̄(o) ≤ fw̄(omin(Li)) for o ∈ L1∪L2∪· · ·∪Li}

Si,j(n) the set of the firstn objects from the head (or tail) of
Li,j

Si(n) Si,1(n) ∪ Si,2(n) ∪ · · · ∪ Si,d(n)
Ui(n) Li − Si(n); the objects inLi that are not inSi(n)
ai,j(n) theAj value of thenth object from the head (or tail) of

Li,j

Fi(n) fw̄(ai,1(n), ai,2(n), . . . , ai,d(n)); no object inUi(n)
has a score lower thanFi(n).

As we stated in Introduction, whenR has many attributes,
any particular top-k query is likely to have nonzero weights
only for a small subset of the attributes [19]. To emphasize
this fact, we useSUB to denote the set of attributes with
w[i] 6= 0 and call the size ofSUB the sub-dimensionand
the space consisting of these attributes thesubspace. That
is, SUB = {i|w[i] 6= 0 for i = 1, . . . , d}. Under this
notation, a subspace top-k query is to find thek lowest-scored
objects [t1, . . . , tk] given the query triple(SUB, fw̄(), k). In
Table II, we summarize the notation that we use throughout
this paper. The symbols that have not been introduced yet
will be explained in Section V.

IV. H YBRID-LAYER INDEX (HL- INDEX)

We now explain how to construct an HL-index to efficiently
handle subspace top-k queries. The primary goal of the HL-
index is to enable bothlayer-level filtering and list-level
filtering: (1) The layer-level filtering prunes an object by the
global combination ofall of its attribute values like in the
layer-based approach. (2) The list-level filtering prunes an
object by theindividualconsideration of the particular attribute
values with nonzero weights in the scoring function like in the
list-based approach.

To enable the two types of filtering, an HL-index is con-
structed in two steps: (1)Layering step: In this step, objects
in the relationR are partitioned into a disjoint set of layers,
{L1, L2, . . . , Lm}, whereLi represents theith layer. Every
object belongs to one and only one layer. As we will see
later, once the objects are partitioned into layers, the top-k
objects can be obtained fromat mostthe firstk layers; objects
in all the other layers can be ignored, enabling the layer-
level filtering. (2)Listing step: In this step, for each layerLi,
we constructd sorted lists{Li,1, Li,2, . . . , Li,d}, whereLi,j

represents the list of objects inLi sorted in the ascending
order of theirjth attribute values.

As we mentioned earlier, our HL-index can be built for
either all linear functions or for all monotone functions.
Figure 1 describes the version of the HL-index construction
algorithm for all linear functions.1 The input to the algorithm
is the setR of the d-dimensional objects, and the output is
the set of layersL = {L1, L2, . . . , Lm}, where theith layer
Li containsd sorted lists,Li = {Li,1, . . . , Li,d}. We explain
the algorithm using Example 1.

Algorithm LayerbasedListBuilding:
Input : R: a set of d-dimensional objects
Output: L: the list of the sets of d sorted lists (the HL Index)
Algorithm:
1. WHILE (R ≠ {}) DO BEGIN
2. i := i + 1 /* layer number, i is initialized with 0 */
3. Ri := objects at the vertices of the convex hull over R /* i-th layer */
4. FOR j := 1 to d DO /* for each attribute */
5. Sort the objects in Ri in the ascending order of their j-th attribute

values and store their identifiers as the list Li,j
6. Li := {Li,1, …, Li,d} /* the set of d sorted lists */
7. R := R – Ri
8. END /* WHILE */
9. RETURN L := [L1 = {L1,1, …, L1,d}, …, Lm = {Lm,1, …, Lm,d}]

Fig. 1. The LayerbasedListBuilding algorithm for building the HL-index.

Example 1: Let us assume that the input relationR has
nine objects,t1, . . . , t9, and two attributes,A1 and A2, as
we show in Figure 2(a). Here,ID represents the identifier of
the object. Given this input relation, in Line 3, the algorithm
finds the convex hull and places the objects at the vertices
of this convex hull,{t1, t2, t4, t7, t9}, into R1 (Ri is the set
that contains all objects in theith layer Li) as shown in the
left-most rectangle in Figure 2(c). Why we use the convex hull

1Again, the HL-index for all monotone functions are described
briefly in Section V-E.

to partition R will be explained later in Section V. Then, in
Lines 4 and 5, the algorithm constructs two sorted lists,L1,1

andL1,2, for the five objects inR1. More specifically,L1,1 and
L1,2 list the object IDs inR1 in the ascending order of their
A1 and A2 values, respectively. For example, in Figure 2(d)
the first object inL1,1 is t2 becauset2 is the object with
the smallestA1 value in R1. As the algorithm proceeds, it
iteratively constructs a new convex hull with the remaining
objects until the input setR becomes empty. Eventually, the
algorithm constructs three layers,L1, L2 andL3, for the input
relationR, as shown in Figure 2(d).

A1

A2
t3

O

t8
t7t5 t9

t2
t1

t6
t4

A1

A2
t3t3

O

t8
t7t7t5t5 t9

t2t2
t1

t6t6
t4

L1,1
t2
t1
t4
t9
t7

L1,1
t2
t1
t4
t9
t7

L1,2
t4
t2
t7
t9
t1

L1,2
t4
t2
t7
t9
t1

ID A1 A2
t1 0.2 1.0
t2 0.1 0.3
t3 0.3 0.4
t4 0.65 0.1
t5 0.5 0.6
t6 0.75 0.45
t7 1.0 0.5
t8 0.4 0.8
t9 0.8 0.9

ID A1 A2
t1 0.2 1.0
t2 0.1 0.3
t3 0.3 0.4
t4 0.65 0.1
t5 0.5 0.6
t6 0.75 0.45
t7 1.0 0.5
t8 0.4 0.8
t9 0.8 0.9

L2,1
t3
t8
t6
L2,1
t3
t8
t6

L2,2
t3
t6
t8
L2,2
t3
t6
t8

L3,1
t5L3,1t5 L3,2

t5L3,2
t5L1 L2 L3

(d) The HL-index.

(a) A target relation R. (b) The convex hull vertices over the objects in R.

R1
t1
t2
t4
t7
t9
R1
t1
t2
t4
t7
t9

R2
t3
t6
t8
R2
t3
t6
t8

R3
t5R3
t5

(c) The layer list.

asc
en

din
g o

rde
r

Fig. 2. An example of constructing the layer lists and the HL-index in the
two-dimensional universe.

Before we proceed, we emphasize that, in our HL-index
L = {L1 = {L1,1, . . . , L1,d}, . . . , Lm = {Lm,1, . . . , Lm,d}},
each sorted listLi,j contains only object identifiers, but not the
full attribute values of the objects. We store their full attribute
values in a separate place. Therefore, once we obtain an object
ID from the HL-index, we will have to retrieve the full values
of its attributes separately in order to compute the object score
under a given scoring function as done by Chaudhuri et al. [8].

V. QUERY PROCESSINGUSING THE HL- INDEX

We now discuss how we can use the HL-index for exploiting
the synergic effect of layer-level filtering and list-level filtering
in computing the top-k objects. In Section V-A, we start
reviewing the ONION algorithm [7] to explain how the HL-
index can be used for layer-level filtering. Then in Section V-B,
we explain how we can extend the ONION algorithm to enable
list-level filtering.

A. ONION Algorithm: Layer-Level Filtering

In the HL-index construction algorithm of Figure 1, the
input objects inR are partitioned into multiple layers by the

repeated extraction of the convex hull vertices. This layering
strategy was proposed by Chang et al. [7], where the authors
proved that the top-k objects are guaranteed to be in the first
k layers L1 through Lk. Therefore, in computing the top-
k answers, all objects in the layerLk+1 and above can be
ignored, making layer-level filtering possible. More precisely,
Chang et al. [7] proved the following important theorem.

Theorem 1: [7] (Optimally Linearly Ordered Set Prop-
erty) Let L = {L1, L2, . . . , Lm} be the set of layers con-
structed by the recursive extraction of convex hull vertices.
Let omin(Li) be the minimum-scored object inLi. Then, no
object in the layersLi+1, . . . , Lm can have a score less than
omin(Li). That is,∀o ∈ Lj (i < j ≤ m), fw̄(omin(Li)) ≤
fw̄(o) under any preference vector̄w.

Theorem 1 implies that if we have foundk or more objects
whose scores are lower than or equal tofw̄(omin(Li)) from
the layersL1 throughLi, then we can ignore all objects in
Li+1 throughLm. More precisely, Chang et al. [7] proved the
following corollary.

Corollary 1: [7] Let omin(Li) be the minimum-scored
object in the layerLi. Let H(i) be the objects inL1, L2, . . . ,
Li whose scores arefw̄(omin(Li)) or less. That is,H(i) =
{o|fw̄(o) ≤ fw̄(omin(Li)) for o ∈ L1 ∪ L2 ∪ · · · ∪ Li}. 2 If
H(i) containsk or more objects (i.e., if|H(i)| ≥ k), H(i)
contains the topk objects.

Based on Corollary 1, Chang et al. [7] proposed the ONION
algorithm. In Figure 3 we show a slightly modified version
of the ONION algorithm.3 Starting fromi = 1, the ONION
algorithm retrievesall objects inLi and evaluates their scores
in Line 2. Once all object scores are evaluated, it identifies
omin(Li), the minimum-scored object inLi, in Line 3 and
computesH(i), the set of objects inL1 throughLi with scores
fw̄(omin(Li)) or less, in Line 4. Then, in Lines 5 and 6, the
algorithm returns the top-k objects fromH(i) if H(i) contains
k or more objects. Otherwise, it increasesi by one and repeats
the process.

1. FOR i = 1 to m DO BEGIN
2. Evaluate fw(o) for all o ∈ Li
3. Find omin(Li) from Li where fw(omin(Li)) ≤ fw(o) for any o ∈ Li
4. Compute H(i) = {o | fw(o) ≤ fw(omin(Li)) for o ∈ L1 ∪ ... ∪ Li}
5. IF |H(i)| ≥ k THEN
6. RETURN the k objects in H(i) with the lowest scores
7. END /* FOR */

Fig. 3. The modified ONION algorithm.

We note that the ONION algorithm performs the layer-level
filtering by retrieving objects only from the first few layers. In
particular, thei value in the algorithm never increases beyond
k, so even in the worst case scenario, at most the firstk layers
are retrieved [7]. However, the main drawback of the ONION

2In the original definition, the inequality sign should have been
“≥” instead of “>” [15], and for findingk objects with the lowest
scores as the results, we use “≤”.

3We present a slightly modified algorithm from what was proposed
by Chang et al. [7] in order to make our later discussion easier to
follow.

algorithm is thatall objects in these layers, which could be
large, have to be retrieved to evaluate their scores. In the next
section, we explain how we can use the individual lists in the
HL-index to perform list-level filtering by retrieving only a
subset of objects in each layer.

B. List-Level Filtering For HL-Index

In designing the algorithm that retrieves only a subset of
objects from each layer, we first note that the only reason
why the ONION algorithm retrieves all objects fromLi in
Line 2 is to be able to identifyomin(Li) andH(i) in Lines 3
and 4. In other words,as long as we can identifyomin(Li) and
H(i) correctly, we do not have to retrieve all objects inLi.
The main challenge for allowing the list-level filtering is then
to figure out the way to identifyomin(Li) andH(i) without
evaluating the scorefw̄ for every object inLi.

To explain how we can achieve this using the HL-index, we
first introduce relevant notation. Here, for ease of understand-
ing, we consider the notation to be used for handling monotone
linear functions and extend it to handle non-monotone linear
functions in Section V-C.1. We useSi,j(n) to refer to the
set of the firstn objects at the head of the listLi,j . For
example,S1,2(3) = {t2, t4, t7} in Figure 2(d). We setSi(n)
to be Si,1(n) ∪ Si,2(n) ∪ · · · ∪ Si,d(n). Informally, Si(n)
can be considered as the set of objects that we “see” by
retrieving the firstn objects from each listLi,j . For instance,
S1(2) = {t1, t2, t4} in Figure 2(d). We setUi(n) = Li−Si(n).
For example,U1(2) = L1 − S1(2) = {t1, t2, t4, t7, t9} −
{t1, t2, t4} = {t7, t9}. Informally, Ui(n) can be considered as
the set of the objects inLi that are not “seen” by retrieving the
top n objects from each listLi,j . We useai,j(n) to refer to the
Aj attribute value of thenth object at the head of the listLi,j .
For example, in Figure 2(d),a1,2(3) is 0.5, theA2 value of the
third objectt7 in L1,2. Since each listLi,j is sorted by theAj

values,ai,j(n) monotonously increases asn increases. Finally,
we setFi(n) = f(ai,1(n), ai,2(n), . . . ai,d(n)). The meaning
of the new set of symbols is summarized in Table II. Under
this notation, Fagin et al. [11] proved the following important
theorem:

Theorem 2: [11] Under any monotone (linear or non-
linear) functionf , every object inUi(n) has a score larger
than or equal to the threshold valueFi(n). That is, ∀o ∈
Ui(n), f(o) ≥ f (ai,1(n), ai,2(n), . . . , ai,d(n)) = Fi(n).

1) Identifyingomin(Li): Theorem 2 provides an important
clue on how we can identify theomin(Li) from Li without
retrieving all objects inLi. In particular, under a monotone
(linear or non-linear) scoring functionf , the theorem guar-
antees that after we retrieveSi(n), the first n objects from
each list Li,j of Li, if omin(Si(n)), the minimum-scored
object in Si(n), has a score less than or equal toFi(n),
then omin(Si(n)) is the minimum-scored object inLi. More
precisely, Fagin et al. [11] proved the following corollary.

Corollary 2: [11] Letomin(Si(n)) be the minimum-scored
object in Si(n). Under any monotone linear function
f , if f(omin(Si(n))) ≤ Fi(n), thenf(omin(Si(n))) =
f(omin(Li)).

Based on Corollary 2, Fagin et al. [11] proposed the TA
algorithm. In Figure 4 we show a modified version of the
TA algorithm identifyingomin(Li) by retrieving the first few
objects from each listLi,j . In the algorithm, we assume that
the functiongetNextObjects() incrementally retrieves the next
object of each listLi,j in Li starting from the head as has
been proposed by Fagin et al. [11]. For example, the first
time that getNextObjects() is called onL1 in Figure 2(d), it
returns the top objectst2 and t4 of the listsL1,1 and L1,2,
respectively. The second timegetNextObjects() is called on
L1, the next objects,t1 and t2, are returned.4 Starting from
n = 1, the algorithm incrementally buildsSi(n) by retrieving
the next objects inLi,j ’s in Line 4 until f(omin(Si(n)))
becomes less than or equal to the threshold valueFi(n). Then
in Line 6, the algorithm returnsomin(Si(n)) as theomin(Li).
Since the algorithm exits from the while loop only when
f(omin(Si(n))) ≤ Fi(n), from Corollary 2, we can see that
the returned object is the minimum-scored object inLi.

1. n := 0; Si(n) := {}
2. DO BEGIN
3. n := n+1
4. Si(n) := Si(n) ∪ getNextObjects(Li, SUB, f)
5. END WHILE (f(omin(Si(n))) > Fi(n))
6. RETURN omin(Li) := omin(S i(n))

Fig. 4. A modified TA algorithm identifyingomin(Li) from Li.

2) Identifying H(i): The set H(i) = {o|f(o) ≤
f(omin(Li)) for o ∈ L1 ∪ L2 ∪ · · · ∪ Li} can be obtained
similarly, based on the following corollary.

Corollary 3: Letf be an arbitrary monotone linear
function, andf(omin(Li)) be the minimum score among all
objects in the layerLi. For each layerLj (1 ≤ j ≤ i), let nj

be the minimumn that satisfiesFj(n) > f(omin(Li)). Then
H(i) is a subset ofS1(n1) ∪ S2(n2) ∪ · · · ∪ Si(ni).

Proof: Let o be an object inH(i). From the definition of
H(i), H(i) is a subset ofL1∪· · ·∪Li, soo must be in one of
L1, L2, . . . , Li. Let o be inLj (1 ≤ j ≤ i). From the definition
of H(i), o satisfiesf(o) ≤ f(omin(Li)). From the definition
of nj , Theorem 2, and the conditionFj(n) > f(omin(Li)),
such ano cannot be inUj(nj), so it must be inSj(nj). Since
Sj(nj) ⊆ S = S1(n1)∪ · · · ∪Si(ni), o must be inS. That is,
all the objects inH(i) exist in S. Thus,H(i) ⊆ S.

Corollary 3 suggests the algorithm in Figure 5 that computes
the H(i) by retrieving the first few objects in each list
Li,j from the layersL1 through Li. The algorithm takes
f(omin(Li)) (that can be computed by the modified TA algo-
rithm in Figure 4) as its input and returnsH(i) as its output.
Starting fromj = 1, it finds the minimumnj that satisfies
Fj(nj) > f(omin(Li)) in the while loop between Lines 3
and 6. In the loop it also constructsSj(nj) by incrementally
retrieving the next objects throughgetNextObjects(). That is,
by usingf(omin(Li)) as the bound in retrieving more objects

4What the functiongetNextObjects() does is slightly more com-
plicated than what we describe here because it should handlenon-
monotonelinear functions as well. The exact mechanism ofgetNex-
tObjects() will be explained in Section V-C.1.

from Lj , we can identify the objects inLj whose scores
are lower than or equal tof(omin(Li)) without retrieving all
the objects inLj . Once all suchSj(nj)’s are computed for
1 ≤ j ≤ i, it returnsH(i) from S1(n1)∪· · ·∪Si(ni) in Line 8.
From Corollary 3, it is easy to see that theH(i) returned from
the algorithm is correct. Now we are ready to introduce our
algorithm that performs both layer-level filtering and list-level
filtering using the HL-index.

1. FOR j = 1 TO i DO BEGIN
2. nj := 0; Sj(nj) := {}
3. DO BEGIN
4. nj := nj + 1
5. Sj(nj) := Sj(nj) ∪ getNextObjects(Lj, SUB, f)
6. END WHILE (Fj(nj) ≤ f(omin(Li)))
7. END /* FOR */
8. RETURN H(i) := {o | f(o) ≤ f(omin(Li)) for o ∈ S1(n1) ∪ ... ∪Si(n i)}
Fig. 5. The algorithm that identifiesH(i) from L1 throughLi.

C. Basic Algorithm

Figure 6 showsBasicLayerbasedThresholdAlgorithm(sim-
ply, BasicLTA) for processing subspace top-k queries using
the HL-index. The inputs to BasicLTA are the HL-index and
a query Q = (SUB, fw̄(), k). The output is thek objects
having the lowest scores for the scoring functionfw̄(). Start-
ing from i = 1, the algorithm first computesomin(Li) in
Lines 2 through 6; it retrieves the next objects fromLi,j ’s
by calling getNextObjects() and incrementally buildsSi(ni)
until fw̄(omin(Si(ni))) becomes lower than or equal to the
threshold valueFi(ni). (Note the similarity of this part of
BasicLTA to the algorithm in Figure 4.) Once the algorithm
reaches Line 7,omin(Si(ni)) is omin(Li). Then, in Lines 8
through 13, the algorithm computesH(i): for each lower layer
Ll (1 ≤ l < i), it retrieves next objects from eachLl,j and
incrementally buildsSl(nl) until the threshold valueFl(nl)
becomes greater thanfw̄(omin(Si(ni))) (which is the same
as fw̄(omin(Li))). We note that when the functiongetNex-
tObjects() is called onLl in Line 11, the function resumes
where it left off. It does not start reading the first object from
each list again. Then in Lines 15 and 16, the algorithm checks
whether or not top-k objects are found. IfS1(n1)∪· · ·∪Si(ni)
containsk or more objects whose scores are lower than or
equal tofw̄(omin(Si(ni))) (i.e., if |H(i)| ≥ k), the algorithm
returns the top-k objects inS1(n1)∪ · · · ∪ Si(ni). Otherwise,
it increasesi by one and repeats the process.

1) Dealing with Non-Monotone Linear Functions:Before
we provide the formal correctness proof of BasicLTA, we first
explain the functiongetNextObjects() in more detail.

First, to make our discussion simple, we have assumed that
getNextObjects() retrieves one object from every listLi,j in
Li. But this is clearly not necessary. Since the zero-weight
attributes do not affect the final object score, the function
getNextObjects() needs to retrieve objects only from thenon-
zero-weight attributelists.

Second, when the preference vectorw̄ has negative as well
as positive weight terms, the linear functionfw̄ becomes
non-monotone, making it necessary to adjustgetNextObjects()

Algorithm BasicLayerbasedThresholdAlgorithm(BasicLTA):
Input: (1) [L1 = {L1,1, …, L1,d}, …, Lm = {Lm,1, …, Lm,d}]: an HL Index

(2) Q = (SUB, fw(), k): a subspace top-k query
Output: [top-1, …, top-k]: the sequence of k objects with the lowest scores

for fw()
Algorithm:
1. FOR i := 1 to m DO BEGIN /* m is the number of layers */
2. ni := 0; Si(ni) := {}
3. DO BEGIN /* Compute omin(Li) */
4. ni := ni + 1
5. Si(ni) := S i(ni) ∪ getNextObjects(Li, SUB, fw())
6. END WHILE (fw(omin(Si(ni))) > Fi(ni))
7. /* Retrieve more objects to compute H(i) */
8. FOR l = 1 TO i - 1 DO BEGIN /* If i ≥ 2, perform this loop */
9. WHILE (Fl(nl) ≤ fw(omin(Si(ni)))) DO BEGIN
10. nl := nl + 1
11. Sl(nl) := Sl(nl) ∪ getNextObjects(Ll, SUB, fw())
12. END /* WHILE */
13. END /* FOR */
14. /* Does H(i) contains k or more objects ? */
15. IF (S1(n1)∪ ... ∪ S i(ni) contains k or more objects whose scores are

fw(omin(Si(ni))) or lower) THEN
16. RETURN the top-k objects in S1(n1) ∪ ... ∪ Si(ni)
17. END /* FOR */

Fig. 6. The BasicLTA algorithm for processing subspace top-k queries using
HL-index.

appropriately. We note that a linear function,fw̄(t), consists
of d terms,w[1] ∗ t[1], . . . , w[d] ∗ t[d], as shown in Eq. (1).
If w[j] < 0, the termw[j] ∗ t[j] decreases ast[j] increases.
Otherwise,w[j] ∗ t[j] increases ast[j] does. That is, if we
accessLi,j from the head (i.e., smallestAj object first)
without considering the sign ofw[j]’s, we cannot guarantee
that the threshold value monotonously increases as we access
more objects and, accordingly, cannot exploit Theorem 2.
Fortunately, we note thatw[j]∗ t[j] increases ast[j] decreases
when w[j] < 0. Thus, if we accessLi,j from the tail (i.e.,
largestAj object first) whenw[j] < 0, the threshold value
monotonously increases. That is, to ensure thatw[j] ∗ t[j]
monotonously increases as we access more objects, we access
Li,j starting from either the head or the tail depending on the
sign ofw[j] – if the sign is positive, we access objects ofLi,j

in the ascending order of theirAj attribute values. Otherwise,
we access them in the descending order. We call this updated
access mechanismmonotone access.

We use alternative definitions ofSi,j(n) and ai,j(n) in
Table II depending on the sign ofw[j]. If w[j] ≥ 0, we use
the “head” versions of the definitions in Table II. Otherwise,
we use the “tail” versions. That is,Si,j(n) is the set of the
n objects from the head or tail ofLi,j , and ai,j(n) is the
Aj attribute value of thenth object from the head or tail
of Li,j . Alternatively, we can considerSi,j(n) as the set of
the objects that are retrieved by accessingLi,j n times in
monotone access. Similarly, we can considerai,j(n) as theAj

value of thenth object retrieved fromLi,j in monotone access.
Finally, we setFi(n) = fw̄(ai,1(n), ai,2(n), . . . ai,d(n)) and
Ui(n) = Li − Si(n) under the updated definitions ofai,j(n)
and Si(n). Here, we note thatw[j] ∗ ai,j(n) monotonously

increases asn increases regardless of the sign ofw[j]. Using
this notation, we naturally have the following corollary:

Corollary 4: Under any linear function fw̄(), every ob-
ject in Ui(n) has a score larger than or equal to the
threshold valueFi(n). That is, ∀o ∈ Ui(n), fw̄(o) ≥
fw̄ (ai,1(n), . . . , ai,d(n)) = Fi(n).

Given Corollary 4, we can see that Corollaries 2 and 3 are
still true if we replace the “monotone linear functionf ” with
the “linear functionfw̄.” Let us call them modified Corollary 2
and modified Corollary 3, respectively.

Figure 7 shows the complete version ofgetNextObjects()
that performs the monotone access to deal with both mono-
tone and non-monotone linear functions. In Line 3, for each
Li,j (j ∈ SUB), it checks the sign of thejth attribute weight.
If the sign is positive, it retrieves the next object ofLi,j from
the head. Otherwise, it retrieves that object from the tail.

Function getNextObjects()
Input: (1) Li: the d sorted list Li,1, ..., Li,d of Li

(2) SUB: the set of the sequence numbers of the attributes mentioned
in the query

(3) fw(): the linear score function
Output: S: the set of the next objects of Li,j’s (j∈ SUB)
1. S := {}
2. FOR EACH j∈ SUB DO BEGIN
3. IF w[j] ≥ 0 THEN /* the sign of w[j] is positive */
4. Get the next identifier r from Li,j /* starting from the head */
5. ELSE /* the sign of w[j] is negative */
6. Get the next identifier r from Li,j in the reverse order /*starting

from the tail */
7. Retrieve the object o that has the identifier r from the target relation R
8. S := S ∪ {o}
9. END /* FOR */
10. RETURN S

Fig. 7. A function for the BasicLTA algorithm.

We are now ready to prove the correctness of BasicLTA.
Theorem 3: For any linear scoring functionfw̄, the algo-

rithm BasicLTAcorrectly findsk objects with lowest scores.
Proof: Let R be the set of all objects in the database.

Since every returned object has a scorefw̄(omin(Si(ni))) or
less, we can prove correctness by showing that any objecto
in R but not in S1(n1) ∪ · · · ∪ Si(ni) at Line 16 satisfies
fw̄(o) ≥ fw̄(omin(Si(ni))). We first note that, due to the
condition in Line 6,fw̄(omin(Si(ni))) ≤ Fi(ni) when the
algorithm reaches Line 16. Given this inequality, we know
from modified Corollary 2 that

fw̄(omin(Si(ni))) = fw̄(omin(Li)). (2)

Consider three cases ofo in R but not in S1(n1) ∪ · · · ∪
Si(ni):
(1) o ∈ Li: From Eq. (2),omin(Si(ni)) is the minimum-scored
object inLi, so fw̄(o) ≥ fw̄(omin(Si(ni))).
(2) o ∈ Ll for l > i: From Theorem 1, we know thatfw̄(o) ≥
fw̄(omin(Li)), so from Eq. (2),fw̄(o) ≥ fw̄(omin(Si(ni))).
(3) o ∈ Ll for l < i: Due to the condition in Line 9,nl is
increased until

Fl(nl) > fw̄(omin(Si(ni))). (3)

Becauseo 6∈ Sl(nl), o should be inUl(nl) by the definition
of Ul(nl) = Ll−Sl(nl). From Corollary 4, such ano satisfies

fw̄(o) ≥ Fl(nl). (4)

From Eqs. (3) and (4), we getfw̄(o) > fw̄(omin(Si(ni))).

D. Enhanced Algorithm

In this section, we enhance the BasicLTA algorithm to
further reduce the number of retrieved objects. In BasicLTA,
once we identifyomin(Li) from layer Li, we retrieve more
objects in layersL1 throughLi−1 usingfw̄(omin(Li)) as the
bound of their scores. Our following observation suggests that
we may be able to use a smaller number as this bound and
retrieve fewer objects fromL1 throughLi:

Lemma 1: During the execution of BasicLTA, the inequal-
ity min (Fi(ni), fw̄(omin(Si(ni)))) ≤ fw̄(omin(Li)) always
holds.

Proof: omin(Li) is in Si(ni) or Ui(ni). If omin(Li) ∈
Si(ni), then fw̄(omin(Si(ni))) = fw̄(omin(Li)). If
omin(Li) ∈ Ui(ni), then Fi(ni) ≤ fw̄(omin(Li))
from Corollary 4. Thus,min(Fi(ni), fw̄(omin(Si(ni)))) ≤
fw̄(omin(Li)).

From Lemma 1 and Theorem 1, it is easy to see that
every object in layersLi+1 through Lm has a score
min (Fi(ni), fw̄(omin(Si(ni)))) or higher. Therefore, if we
can find k or more objects from layersL1 through Li

with scoremin (Fi(ni), fw̄(omin(Si(ni)))) or less, they are
guaranteed to be the top-k, because no object inLi+1 and
above has a smaller score. Since we can use theminimum
betweenFi(ni) and fw̄(omin(Si(ni))) as the bound without
having to identifyomin(Li), we retrieve fewer objects from
L1 throughLi to compute the top-k objects.

Figure 8 showsEnhancedLayerbasedThresholdAlgorithm
(simply, EnhancedLTA), which implements this idea. The
inputs and the output of EnhancedLTA are same to those
of BasicLTA in Figure 6. In BasicLTA, starting fromi =
1, we keep retrieving objects fromLi until we find
the omin(Li) by repeatedly callinggetNextObjects() until
Fi(ni) > fw̄(omin(Si(ni))). Only then it goes back to
previous layers to retrieve more objects with the score bound
fw̄(omin(Li)). In contrast, in EnhancedLTA, each time we call
getNextObjects() in Line 5, we immediately go back to the
earlier layers and retrieve more objects with the score bound
min(Fi(ni), fw̄(omin(Si(ni)))) (Lines 7 through 12). If there
exist k or more such objects, we return the top-k objects in
Line 16. We now prove the correctness of EnhancedLTA.

Theorem 4: For any linear scoring functionfw̄, the algo-
rithm EnhancedLTA correctly findsk objects with lowest
scores.

Proof: This proof is very similar to our proof
for Theorem 3. Let R be the set of all objects in
the database. Since every returned object has a score
min(Fi(ni), fw̄(omin(Si(ni)))) or less, we can prove the
correctness by showing that any objecto in R but not
in S1(n1) ∪ · · · ∪ Si(ni) at Line 15 satisfiesfw̄(o) ≥
min(Fi(ni), fw̄(omin(Si(ni)))).

Algorithm EnhancedLayerbasedThresholdAlgorithm(EnhancedLTA):
Input: (1) [L1 = {L1,1, …, L1,d}, …, Lm = {Lm,1, …, Lm,d}]: an HL Index

(2) Q = (SUB, fw(), k): a subspace top-k query
Output: [top-1, …, top-k]: the sequence of k objects with the lowest scores

for fw()
Algorithm:
1. FOR i := 1 to m DO BEGIN /* m is the number of layers */
2. ni := 0; Si(ni) := {}
3. DO BEGIN
4. ni := ni + 1
5. Si(ni) := S i(ni) ∪ getNextObjects(Li, SUB, fw())
6. /* Retrieve more objects */
7. FOR l = 1 TO i - 1 DO BEGIN /* If i ≥ 2, perform this loop */
8. WHILE (Fl(nl) ≤min(fw(omin(Si(ni))), Fi(ni))) DO BEGIN
9. nl := nl + 1
10. Sl(nl) := Sl(nl) ∪ getNextObjects(Ll, SUB, fw())
11. END /* WHILE */
12. END /* FOR */
13. /* Does S1(n1) ∪ ... ∪ Si(ni) contains k or more objects ? */
14. IF (S1(n1) ∪ ... ∪ Si(ni) contains k or more objects whose scores

are min(fw(omin(Si(ni))), Fi(ni)) or lower) THEN
15. RETURN the top-k objects in S1(n1) ∪ ... ∪ Si(ni)
16. END WHILE (fw(omin(Si(ni))) > Fi(ni))
17. END /* FOR */

Fig. 8. The query processing algorithm enhanced to use a tighter bound.

Consider three cases ofo in R but not in S1(n1) ∪ · · · ∪
Si(ni):
(1) o ∈ Li: Since omin(Li) is the minimum-
scored object in Li, fw̄(o) ≥ fw̄(omin(Li)) ≥
min(Fi(ni), fw̄(omin(Si(ni)))) from Lemma 1.
(2) o ∈ Ll for l > i: From Theorem 1, we know thatfw̄(o) ≥
fw̄(omin(Li)) ≥ min(Fi(ni), fw̄(omin(Si(ni)))).
(3) o ∈ Ll for l < i: Due to the condition in Line 8,nl is
increased until

Fl(nl) > min(Fi(ni), fw̄(omin(Si(ni)))). (5)

Becauseo 6∈ Sl(nl), o should be inUl(nl) by the definition
of Ul(nl) = Ll−Sl(nl). From Corollary 4, such ano satisfies
fw̄(o) ≥ Fl(nl) > min(Fi(ni), fw̄(omin(Si(ni)))) from
Eq. (5).

E. HL-index for Monotone Functions

We now briefly explain how we may extend the HL-index
to handle all monotone functions including both linear and
non-linear cases. In our earlier algorithms, the core part that
makes the linearity assumption is the layering step of the index
construction algorithm. With a non-linear scoring function,
top-k objects may not necessarily reside in the firstk layers
built through the recursive extraction of convex hull vertices,
making it impossible to apply layer-level filtering. To address
this problem for monotone non-linear functions, we build
layers by recursively drawingskylines[5] instead of convex
hulls. Since the layer list consisting of skylines satisfies the
optimally linearly ordered set property (extended for monotone
functions) as proved in Lemma 2 below, the same theorems
and lemmas that we proved in Section V also apply to the
skyline version with the correctness of the algorithms proved.

Therefore, this new version of the HL-index can use the
identical algorithm in Fig. 8 except that the layers are now
constructed using skylines, not convex hull vertices.

Lemma 2: For a given setU of objects in the universe, a
layer list constructed using skylines overU satisfies optimally
linearly ordered set property under any monotone functionf .

Proof: Let L = {L1, L2, . . . , Lm} be the list of layers
constructed by recursive extraction of skylines. That is,L1 ∪
· · · ∪Lm is the entire database, andLi is the set of objects in
the skyline overLi ∪ · · · ∪Lm. According to the definition of
the skyline [5]5, whenLi is the skyline overLi ∪ · · · ∪ Lm,
every object inLi+1 ∪ · · · ∪ Lm is dominated by at least
one object inLi. That is, for anyo ∈ Li+1 ∪ · · · ∪ Lm,
there existo′ ∈ Li such thato is dominated byo′. Then
f(o′) ≤ f(o) for any monotone functionf according to the
definition of monotony. That is,∀o ∈ Li+1∪· · ·∪Lm, ∃o′ ∈
Li s.t. f(o′) ≤ f(o). Therefore,f(omin(Li)) ≤ f(o) for
any o ∈ Lj (i < j ≤ m). This proves the optimally linearly
ordered set property ofL.

From now on, if we need to differentiate this new version of
the HL-index from the earlier one, we refer to the earlier one
as HL-index (convex) and this new one as HL-index (skyline).

VI. EXPERIMENTS

A. Experimental Data and Environment

We compare the index building time and the query per-
formance of the HL-index with the following existing meth-
ods: ONION [7] (a layer-based method), TA [11] (a list-based
method), PREFER [14] (a view-based method) and SUB-
TOPK [19]. We use the wall clock time as the measure of
the index building time and the number of objects read from
database,NumObjectsRead, as the measure of the query
performance.NumObjectsReadis a measure widely used in
top-k research [7], [14], [21] because its results are not affected
by the implementation detail of the individual methods used
in the experiments. In addition, this measure is useful in
environments like main memory DBMSs or the ones using
flash memory (e.g., a solid-state drive(SSD)) because elapsed
time is approximately proportional to the number of objects
accessed in these environments where sequential/random IO
cost difference is not as significant as in disk.

We perform experiments using synthetic and real datasets.
For the synthetic dataset, we generate uniform datasets (UNI-
FORM) by using the generator used by Borzsonyi et al. [5].
The datasets consist of three-, five-, and seven-dimensional
datasets of 10K, 100K, and 1000K objects. For the real dataset,
we use the regular season statistics6 of the NBA players that
play over ten minutes per year from 1951 to 2007 (NBA).
The dataset consists of 19364 objects with seven attributes:
minutes played, total points, field goals attempted, free throws
attempted, total rebounds, total assists, and total personal fouls.

5 “The Skyline is defined as the set of those points that are not
dominated by any other point. A pointA dominatesanother pointB
if A is as good as or better thanB in all dimensions and better than
B in at least one dimension.” [5]

6http://www.basketballreference.com

For the experiments, we have implemented HL-index (both
convex hull and skyline based versions), ONION, TA, SUB-
TOPK, and PREFER using C++. For TA, we use the TA
algorithm extended with our monotone access method (to
handle non-monotone linear functions). We call itTA(e). For
PREFER, we translate the code of the PREFER system7

witten in JAVA into C++. To compute convex hulls for HL-
index and ONION, we used the Qhull library [1]. To compute
skylines, we used the BNL algorithm [5]. We conducted all the
experiments on a Pentium-4 2.0 GHz Linux PC with 1GBytes
of main memory.

B. Index building time

We first compare the index building times of HL-index,
ONION, and TA(e). Due to space limit, we only report the
results for the UNIFORM data of the dimensiond = 5 while
varying the number of objects (N = 10K, 100K, 1000K)
in Table III. From these results, we observe that the index
building times of ONION and TA(e) are (almost) equivalent to
the times of the layering step and the listing step, respectively.
We also observe that for all ranges ofN , the layering step
takes significantly longer than the listing step, and thus, the
total index building time of HL-index is very close to the
building time of ONION. The results for other parameter
settings is close to what we observe from Table III. Similarly,
the index building time of HL-index(skyline) is close to the
sum of the time for constructing the skyline layers and the
time for building the lists of TA(e).

TABLE III

INDEX BUILDING TIME AS N IS VARIED (UNIFORM AND d=5).

Methods (sec) 10K 100K 1000K
ONION 9.14 152.70 2500.61

TA 0.24 2.89 35.24
HL-index layering 9.14 152.70 2500.61

listing 0.23 2.65 31.57
HL-index layering 1.33 146.99 17283.95
(skyline) listing 0.24 2.46 39.36

C. Performance of monotone or non-monotone linear queries

We now compare the query performance of the HL-index
against other existing methods under both monotone and non-
monotonelinear functions. Note that while ONION and TA(e)
support alllinear functions, PREFER and SUB-TOPK support
monotonefunctions and thus cannot handle non-monotone
linear functions. In this section, therefore, we only compare
HL-index (that uses the convex hall layering), ONION, and
TA(e). The comparison of all six methods will be done in the
next section when we usemonotone linearfunctions.

We measure the query performance of the three methods on
the synthetic and real datasets while varying the sub-dimension
s (i.e., the size ofSUBin Section III), the number of resultsk,
N , andd. We measureNum Objects Read for ten randomly
generated queries having different preference vectors, and
then, use the average value over all queries. We first generate
the setSUB, which is the subset of the sequence numbers

7http://db.ucsd.edu/PREFER/application.htm

of the attributes, for each sizes (1 ≤ s ≤ d). That is, we
randomly chooses unique elements from{1, 2, . . . , d}. Then,
we randomly choose the attribute preferencew[i], which is the
weight of theith attribute(i ∈ SUB) in the preference vector
w̄, from {−4,−3,−2,−1, 1, 2, 3, 4}, and normalizew[i]’s so
that

∑
i∈SUB|w[i]| = 1. Table IV summarizes the experiments

and the parameters used for this set of experiments.

TABLE IV

EXPERIMENTS AND PARAMETERS USED FOR COMPARING THE

PERFORMANCE OF MONOTONE OR NON-MONOTONE LINEAR QUERIES.

Experiments Parameters
Exp. 1 comparison of the dataset UNIFORM

query performance N 10K, 100K, 1000K
asN is varied d 5

s 3
k 50

Exp. 2 comparison of the dataset UNIFORM
query performance N 100K

ass is varied d 5
s 1, 2, . . . , 5
k 50

Exp. 3 comparison of the dataset UNIFORM
query performance N 100K

ask is varied d 5
s 3
k 1, 10, 20, . . . , 100

Exp. 4 comparison of the dataset UNIFORM
query performance N 10K, 100K, 1000K

asd is varied d 3, 5, 7
s d d

2
e

k 50
Exp. 5 comparison of the dataset NBA (real data)

query performance N 19364
ass is varied using d 7

a real dataset s 1, 2, . . . , 7
k 50

Exp. 6 comparison of the dataset NBA (real data)
query performance N 19364
ask is varied using d 7

a real dataset s 4
k 1, 10, 20, . . . , 100

Comparison of basic and enhanced algorithm
Before we compare the HL-index with other approaches, we
first show the improvement of EnhandedLTA compared to
BasicLTA. Figure 9 shows the query performance of HL-
index and HL-index(basic) ass is varied from 1 to 3,
where HL-index(basic) and HL-index represent the results
from BasicLTA and EnhancedLTA, respectively. HL-index
improves performance by up to 20% over HL-index(basic).
Due to this better performance, we show only HL-index from
EnhancedLTA in the rest of our experimental results.
Experiment 1: query performance asN is varied
Figure 10 shows the query performance of HL-index, ONION,
and TA(e) asN is varied from 10K to 1000K. From the
result, we observe that HL-index outperforms ONION and
TA(e) for all N values. For example, HL-index outperforms
both ONION and TA(e) by a factor of three or more at
N=1000K. Interestingly, we note that TA(e) performs quite
well for a smallN (it shows performance close to HL-index
for N=10K), but its performance gets significantly worse than
the two others beyond a certain cross-over point. This is
because the number of objects retrieved from each list of
TA(e) grows linearly withN , while the number of objects in

each layer of ONION increases sublinearly (more precisely,
in proportion to(ln N)c1 wherec1 is a positive constant [3]).
Since the HL-index exploits the synergic effect of the layer-
level filtering and the list-level filtering due to its meticulous
integration of the two filtering capabilities, the HL-index
significantly outperforms both TA(e) and ONION for large
N values, making it particularly useful for a large database.
Experiment 2: query performance ass is varied
Figure 11 shows the query performance of HL-index, ONION,
and TA(e) ass is varied from 1 to 5. Whens = 1, the query
performance of HL-index is worse than that of TA(e), but is
much better than that of ONION. As mentioned in Section IV,
in HL-index, the elements within a layer are totally ordered,
but elements in different layers are not. Thus, HL-index reads
more thank objects from the heads (or tails) of lists in some
layers while TA(e) only readsk objects from the head (or tail)
of one sorted list because the elements of the list are totally
ordered. However, whens ≥ 2, HL-index begins to show
better performance than the other methods due to the synergic
effect of the two filtering capabilities. HL-index improves by
1.4 to 166.2 times over ONION and by 0.5 to 2.6 times over
TA(e).
Experiment 3: query performance ask is varied
Figure 12 shows the query performance of HL-index, ONION,
and TA(e) ask is varied from 1 to 100. HL-index outperforms
the other methods for allk values. HL-index improves by 2.7
to 3.2 times over ONION and by 1.6 to 5.0 times over TA(e).
Experiment 4: query performance asd is varied
Figure 13 shows the query performance of HL-index, ONION,
and TA(e) asd is varied from 3 to 7. Here, we uses = 2
when d = 3, s = 3 when d = 5, and s = 4 when d = 7.
Since (ln N)d−1 is the average number of objects in convex
hull vertices [3], the entire objects can reside in the first layer
whend is very large. Thus, in that case, since HL-index can
exploit only the list-level filtering like TA(e), the performance
of HL-index would converge to that of TA(e). However, within
the experimental range ofd, HL index outperforms TA(e). HL-
index improves by 2.5 to 3.2 times over ONION and by 1.2
to 3.0 times over TA(e).
Experiment 5: query performance as s is varied when
using a real dataset
Figure 14 shows the query performance of HL-index, ONION,
and TA(e) ass is varied from 1 to 7 when usingNBA, a
seven-dimensional real dataset. HL-index begins to outperform
the other methods whens ≥ 2. This tendency is similar to
that of the synthetic dataset shown in Figure 11. HL-index
improves by 1.4 to 138.9 times over ONION and by 0.6 to
1.6 times over TA(e).
Experiment 6: query performance as k is varied when
using a real dataset
Figure 15 shows the query performance of HL-index, ONION,
and TA(e) ask is varied from 1 to 100 when using NBA. HL-
index outperforms the other methods for the entire range of
k. This tendency is similar to that of the synthetic dataset
shown in Figure 12. HL-index improves by 2.3 to 3.3 times
over ONION and by 1.3 to 5.3 times over TA(e).

0

1000

2000

3000

4000

1 2 3
Sub-dimension s

 N
um

_O
bje

cts
_R

ea
d

HL-index
HL-index(basic)

Fig. 9. Query performance of the basic and
enhanced algorithms (NBA,d=7,N=19364, and
k=50).

0

10000

20000

30000

40000

50000

60000

10K 100K 1000K
Data Size N

Nu
m_

Ob
jec

ts_
Re

ad

TA(e) ONION HL-index

Fig. 10. Query performance asN is varied
(UNIFORM, d=5, s=3, andk=50).

0

10000

20000

30000

40000

50000

1 2 3 4 5
Sub-dimension s

Nu
m_

Ob
jec

ts_
Re

ad

TA(e) ONION HL-index

Fig. 11. Query performance ass is varied
(UNIFORM, d=5, N=100K, andk=50).

0

5000
10000

15000

20000
25000

30000

1 20 40 60 80 100
Top-k

Nu
m_

Ob
jec

ts_
Re

ad

TA(e) ONION HL-index

Fig. 12. Query performance ask is varied
(UNIFORM, d=5, s=3, andN=100K).

0

10000

20000
30000

40000

50000

60000

3(s=2) 5(s=3) 7(s=4)
Dimension d

Nu
m_

Ob
jec

ts_
Re

ad

TA(e) ONION HL-index

Fig. 13. Query performance asd is varied
(UNIFORM, N=100K, andk=50).

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7
Sub-dimension s

Nu
m_

Ob
jec

ts_
Re

ad

TA(e)
ONION
HL-index

Fig. 14. Query performance ass is varied
(NBA, d=7, N=19364, andk=50).

D. Performance of monotone linear queries

We now compare the performance of all six methods, HL-
index (convex), HL-index (skyline), ONION, TA(e), PREFER,
and SUB-TOPK, undermonotone linear functions. We limit
the scoring function to monotone linear functions because
HL-index (skyline), PREFER, and SUB-TOPK are designed
to handle monotone functions and cannot deal with non-
monotone linear functions.

In generating the queries, we use the same setting that we
used in the previous section, except that we now choose the
attribute preferencew[i] randomly from{1, 2, 3, 4}, and nor-
malize them to be

∑
i∈SUB|w[i]| = 1. We note that, in the pre-

vious section,w[i] were chosen from{−4,−3,−2,−1, 1, 2,
3, 4} to allow non-monotone linear functions. Again, we
measureNum Objects Read for ten randomly generated
queries, and then, use the average value over them. Table V
summarizes the experiments and the parameters used for this
set of experiments.

TABLE V

EXPERIMENTS AND PARAMETERS USED FOR COMPARING THE

PERFORMANCE OF MONOTONE LINER QUERIES.

Experiments Parameters
Exp. 7 comparison of the dataset UNIFORM

query performance N 100K
ass is varied when d 5

using only monotone s 1, 2, . . . , 5
linear functions k 50

Exp. 8 comparison of the dataset UNIFORM
query performance N 100K
ask is varied when d 5
using only monotone s 3

linear functions k 1, 10, 20, . . . , 100

Experiment 7: query performance as s is varied when
using only monotone linear scoring functions
Figure 16 shows the query performance of HL-index (convex),
HL-index (skyline), ONION, TA(e), PREFER, and SUB-
TOPK ass is varied from 1 to 5. Since the query performance
of PREFER improves as the number of views increases, for a
fair comparison with HL-index, we use five views generated
randomly.8 The comparison between HL-index, ONION, and
TA(e) shows similar results to what we observed earlier;
HL-index shows significant improvement over ONION and
TA(e) in almost all cases. For example, HL-index (skyline)
also improves by up to 782.0 times over PREFER and by up
to 2.6 times over SUB-TOPK. In addition, for monotonenon-
linear queries9, HL-index (skyline) also shows similar results
to what we observed in this experiment. HL-index (skyline)
improves by up to 1063.8 times over PREFER, by up to 2.5
times over SUB-TOPK, and by up to 3.7 times over TA(e)(the
result graph is omitted due to space limit).
Experiment 8: query performance as k is varied when
using only monotone linear scoring functions
Figure 17 shows the query performance of HL-index (convex),
HL-index (skyline), ONION, TA(e), PREFER, and SUB-
TOPK ask is varied from 1 to 100 when using monotone
linear scoring functions. Here again, PREFER uses five views.
The performance trends of HL-index, ONION, and TA(e)
are similar to what we observed in earlier experiments; HL-
index shows significant improvement over ONION and TA(e).

8We simply consider one view as one list. Thus, PREFER with five
views has five lists and HL-index has five lists whend = 5.

9We use a quadratic function,f(t) =
∑d

i=1 w[i] ∗ t[i]2, as the
monotone non-linear scoring function.

0
2000
4000
6000
8000

10000
12000
14000

1 20 40 60 80 100
Top-k

Nu
m_

Ob
jec

ts_
Re

ad

TA(e)
ONION
HL-index

Fig. 15. Query performance ask is varied
(NBA, d=7, s=4, N=19364, andk=50).

0

20000

40000

60000

80000

1 2 3 4 5
Sub-dimension s

Nu
m_

Ob
jec

ts_
Re

ad

PREFER(5)
SUB-TOPK
TA(e)
ONION
HL-index(convex)
HL-index(skyline)

Fig. 16. Performance of monotone lin-
ear queries ass is varied (UNIFORM, d=5,
N=100K, andk=50).

0
5000

10000
15000
20000
25000
30000
35000
40000

1 20 40 60 80 100
Top-k

Nu
m_

Ob
jec

ts_
Re

ad

PREFER(5) SUB-TOPK
TA(e) ONION
HL-index(convex) HL-index(skyline)

Fig. 17. Performance of monotone linear
queries ask is varied (UNIFORM,d=5, s=3,
andN=100K).

Compared to SUB-TOPK, HL-index shows approximately
10% (which should be higher with a higher sub-dimension
such ass ≥ 4) performance improvement in many cases.
Compared to PREFER, HL-index shows up to 33.6 times
performance improvement. For monotonenon-linear queries,
HL-index (skyline) shows similar results to what we observed
in this experiment. HL-index (skyline) improves by up to 232.6
times over PREFER and by up to 9.5 times over TA(e)
and shows performance comparable to SUB-TOPK (the result
graph is omitted due to space limit).

VII. C ONCLUSIONS

In this paper, we proposed the HL-index that is designed
to handle top-k queries on an arbitrary subset of attributes
efficiently. The HL-index has significantly more pruning power
than any existing method because it exploits the synergic
effect of the integration of layer-level filtering and list-level
filtering. We described top-k answer computation algorithms
for the HL-index and formally proved their correctness. We
also derived atight bound for guaranteeing the correct query
results through in-depth analysis.

For the clarity of our exposition, we first presented the
convex hull version of the HL-index that deals with linear
scoring functions. Since this version of HL-index does not
put any restriction on the sign of the attribute weightw[i], it
can handleboth monotone and non-monotone linear functions.
We then briefly discussed the skyline version of the HL-index
that can handle monotone (linear or non-linear) functions.

Our extensive experiments demonstrate that the HL-index
outperforms all existing methods in practically all scenarios,
and its improvement gets more noticeable for larger databases.
Given that our HL-index retrieves significantly fewer objects
than any existing methods, we expect that it is particularly
suitable for the environments like main memory DBMSs or
the ones using flash memory, which are being and will become
more and more prevalent in the foreseeable future [16].

Finally, we note that the HL-index algorithms and their
proofs can be applied to any layering methods that satisfy
the optimally linearly ordered set property. Finding a layering
method that can handle both all linear functions and all
monotone functions while satisfying this property would be
an interesting problem. We leave this as future study.

ACKNOWLEDGEMENTS

This work was partially supported by the Korea Science and
Engineering Foundation(KOSEF) grant funded by the Korean
Government(MEST) (No. R0A-2007-000-20101-0). This work
was also partially supported by the Internet Services Theme
Program funded by Microsoft Research Asia.

REFERENCES

[1] Barber, B., Dobkin, D., and Huhdanpaa, H., “The Quickhull Algorithm
for Convex Hulls,”ACM TOMS, Vol. 22, No. 4, 1996.

[2] Bast, M. et al., “IO-Top-k: Index-access Optimized Top-k Query Pro-
cessing,” InVLDB, 2006.

[3] Bentley, J. L. et al., “On the Average Number of Maxima in a Set of
Vectors and Applications,”JACM, Vol. 33, No. 2, 1978.

[4] Berg, M. et al.,Computational Geometry: Algorithms and Applications,
2nd ed., Springer-Verlag, 2000.

[5] Borzsonyi, S., Kossmann, D., and Stocker, K., “The Skyline Operator,”
In ICDE, 2001.

[6] Chan, C.-Y., Eng, P.-K., and Tan, K.-L., “Stratified computation of
skylines with partially-ordered domains,” InSIGMOD, 2005.

[7] Chang, Y. C. et al., “The Onion Technique: Indexing for Linear
Optimization Queries,” InSIGMOD, 2000.

[8] Chaudhuri, S., Ramakrishnan, R., and Weikum, G.,“Integrating DB and
IR Technologies: What is the Sound of One Hand Clapping?,” InCIDR,
2005.

[9] Das, G. et al., “Answering Top-k Queries Using Views,” InVLDB, 2006.
[10] Fagin, R., “Fuzzy Queries in Multimedia Database Systems,” InPODS,

1998.
[11] Fagin, R., Lotem, A., and Naor, M., “Optimal Aggregation Algorithms

for Middleware,” In PODS, 2001.
[12] Gass, S. G.,Linear Programming: Method and Applications, 5th ed. An

International Thomson Publishing Company, 1985.
[13] Hadley, G.,Linear Programming, Addison-Wesley Publishing Company,

1962.
[14] Hristidis, V. and Papakonstantinou, Y. “Algorithms and applications

for answering ranked queries using ranked views,”The VLDB Journal,
Vol. 13, No. 1, 2004.

[15] Heo, J.-S. et al., “The Partitioned-Layer Index: Answering Monotone
Top-k Queries Using the Convex Skyline and Partitioning-Merging
Technique,”Information Sciences, to appear, 2009.

[16] Lee, S.-W. et al., “A Case for Flash Memory SSD in Enterprise Database
Applications,” In SIGMOD, 2008.

[17] Papadias, D. et al., “Progressive skyline computation in database sys-
tems,” ACM TODS, Vol. 30, No. 1, 2005.

[18] Tan, K.-L., Eng, P.-K., and Ooi, B. C., “Efficient progressive skyline
computation,” InVLDB, 2001.

[19] Tao, Y., Xiao, X., and Pei, J., “Efficient Skyline and Top-k Retrieval in
Subspaces,”IEEE TKDE, Vol. 19, No. 8, 2007.

[20] Yi, K. et al., “Efficient Maintenance of Materialized Top-k Views,” In
ICDE, 2003.

[21] Xin, D., Chen, C., and Han, J., “Towards Robust Indexing for Ranked
Queries,” InVLDB, 2006.

